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a b s t r a c t

In this paper, we propose to learn the structures of stereoscopic image based on convolutional neural
network (CNN) for no-reference quality assessment. Taking image patches from the stereoscopic images
as inputs, the proposed CNN can learn the local structures which are sensitive to human perception and
representative for perceptual quality evaluation. By stacking multiple convolution and max-pooling
layers together, the learned structures in lower convolution layers can be composed and convolved to
higher levels to form a fixed-length representation. Multilayer perceptron (MLP) is further employed to
summarize the learned representation to a final value to indicate the perceptual quality of the stereo
image patch pair. With different inputs, two different CNNs are designed, namely one-column CNN with
only the image patch from the difference image as input, and three-column CNN with the image patches
from left-view image, right-view image, and difference image as the input. The CNN parameters for
stereoscopic images are learned and transferred based on the large number of 2D natural images. With
the evaluation on public LIVE phase-I, LIVE phase-II, and IVC stereoscopic image databases, the proposed
no-reference metric achieves the state-of-the-art performance for quality assessment of stereoscopic
images, and is even competitive to existing full-reference quality metrics.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Image perceptual quality assessment [5] plays the essential role
in the image processing and communication, such as image cap-
turing, compression, storage, transmission, displaying, printing, and
sharing. There existed many image quality metrics aiming at guid-
ing the performance optimization during each step of image pro-
cessing and communication. As human eyes are the ultimate
receivers of the images, subjective evaluation [5,7,8] is regarded as
the most reliable way to evaluate the perceptual quality of the
image. The subjective evaluation requires a group of non-
professional subjects to participate and watch the test images in
some particular circumstances. Each participant gives a subjective
rating for the target image. Finally, the mean opinion score (MOS) is
calculated as the quality index. Apparently, subjective evaluation
costs too much time and effort in the whole procedure. More
importantly, it is impractical to perform subjective image quality
assessment (IQA) in real-time. Hence, the objective quality metrics
[9–12,15,63] that can automatically evaluate the image perceptual
quality and guide the image processing applications are demanded.

With the rapid development of content generation and display
technology, three-dimensional (3D) applications and services are
becoming more and more popular to improve the visual quality of
experiences (QoE) for human viewers. The 3D contents displaying
on the 3D devices, such as the 3D films and video games, have now
brought more entertainments and vivid experiences to the con-
sumers, which have attracted more and more attentions from not
only academia but also the industry. For these applications, the
quality of 3D content is the most critical part to guarantee the visual
QoE. However, in the 3D processing chain including capturing,
processing, coding, transmitting, reconstruction, retrieving, etc.,
artifacts are inevitably introduced due to the resource shortage in
processing. Therefore, how to evaluate the perceptual quality of 3D
content becomes an important and challenging task in 3D visual
signal processing, which can automatically evaluate the perceptual
degradation during each processing stage. Compared to conven-
tional 2D IQAs, IQAs for 3D signals are more challenging. The arti-
facts of 3D content affect more on human visual system (HVS) than
conventional 2D contents. First, watching 3D contents for a long
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time will bring adverse symptoms such as dizziness, nausea, and
vomiting, which may affect the perceptual quality [3,16,19,20]. The
visual discomfort and fatigue of watching 3D contents has been
studied in [24,27]. Besides, the quality of the perceived depth
[21,36] needs to be considered, which is greatly influenced by the
stereopair images [22,23]. Also, incorrect usage of stereography may
result in negative influences on visual QoE.

Nowadays, more and more images are appearing and shared on
the Internet. With such a large amount of images, we can rely on
intelligent image understanding [1,4,13,14,17] techniques to
automatically process and analyse the images. Deep neural net-
works, more specifically the convolutional neural networks
(CNNs), have been extensively studied for recognition [57,59],
localization [42,48], and understanding [55,68,56]. CNN is a bio-
logically inspired learning model. The features are learned end-to-
end from raw data for classification or prediction. More specifi-
cally, CNN takes the raw images as input, and ensemble the feature
learning and the training as a whole process. With a designed deep
structure, CNN can effectively learn the complicated mapping
relations between the raw image and the labels. Moreover, the
spatial structure of images is adequately considered and used in
CNN [58] for regularization through restricted connectivity
between layers (local filters), parameter sharing (convolutions),
and special local invariance-building neurons (max pooling). Fur-
thermore, parameters in local filters and between layers are con-
nected and trained as a whole to encode some characteristics
about human visual system (HVS), such as the edges and contours,
which are vital for human to perceive and understand an image.

Recently, a number of databases depicting the stereoscopic
image quality are constructed [7,30,50]. Based on the large amount
of labeled data, we resort to CNNs to construct a no-reference (NR)
quality metrics for stereoscopic images, which can not only ana-
lyze the image content but also help model the HVS property. It is
expected that the structures learned by CNNs are sensitive to the
HVS quality perception. With such QA models, we can control and
optimize the perceptual quality of the 3D contents, specifically the
stereoscopic images, at each processing stage. The best visual QoE
can thus be provided to the consumers. In this paper, we propose
to construct CNNs to learn the local structures for NR IQA of ste-
reoscopic images. The learned structures are expected to be sen-
sitive to the distortions, and to indicate the perceptual quality of
the stereoscopic images. With different inputs, two different CNNs
are designed for the stereoscopic IQA. It is found that the perfor-
mance of quality assessment on stereoscopic images can be
boosted by transferring the learned parameters from 2D natural
images to stereoscopic ones.

This paper is organized as follows. Section 2 gives a survey of
the existing quality metrics for stereoscopic images. In Section 3,
NR metrics based on CNN are proposed to learn the structures of
stereoscopic images. Section 4 provides the implementation
details of the proposed CNN models. Section 5 gives experimental
results and comparative analysis. Finally, conclusions are drawn in
Section 6.
2. Related work

Based on the volume of accessible information in the images,
the current IQA methods for stereoscopic images can be generally
divided into three categories: full-reference (FR), reduced-
reference (RR), and no-reference (NR).

FR IQAs require the original image accessible for comparison to
generate the quality index of the content. Gorley and Holliman
[29] proposed a PSNR-based measurement to account for the
sensitivity of HVS to contrast and luminance changes at regions of
high spatial frequency between the left and right views of a
stereoscopic image pair. Benoit et al. [30] presented an IQA to
predict the quality by evaluating the left reference image and left
distorted one, the right reference image and right distorted one,
and the disparity maps in a 2D manner. Some well-known 2D
quality metrics such as C4 [31] and SSIM [32] are used to produce
the quality score for stereoscopic images. You et al. [33] investi-
gated the capabilities of 2D IQAs for stereoscopic images, and
proved that disparity is an important factor in stereopsis. Yang
et al. [34] proposed an FR IQA metric which measures not only the
average PSNR of the two images in the stereo-pair, but also the
absolute difference between the left and right view. Chen et al.
[35] synthesized an intermediate ‘cyclopean’ images, and then
applied 2D FR metric on it to predict the perceptual quality. The FR
metrics can yield good performances, where the original stereo-
scopic image pair is required. Therefore, FR IQAs are mostly
employed for guiding the image/video compression and water-
marking. However, in most practical applications, the original
stereoscopic images are unavailable, and FR IQAs cannot help
evaluate the perceptual quality of stereoscopic images.

In order to relieve the limitations of FR IQAs, RR [46,47] metrics
are presented, which only require partial information of the
reference images and are mostly used in applications like real-
time visual information communications over wired or wireless
networks. The RR IQA is employed to monitor image quality
degradations or control the network streaming resources. As edges
and contours of the depth map indicate different depth levels of
stereoscopic images, Hewage and Martini [28] presented an RR
IQA metric by exploiting the edge information of the depth map.
Ma et al. [45] proposed an RR IQA metric for stereoscopic images
by evaluating the distortion in the reorganized discrete cosine
transform (DCT) domain. Wang et al. [52] relied on the natural
image statistics in the contourlet domain to design an RR metric
for stereoscopic images. However, when using the FR metrics, we
still need to extract features from the original images, which is still
an obstacle for the real-world applications. Another issue is that
we need to transmit or embed the extracted RR features with the
distorted images. This will introduce an additional burden for
quality assessment.

In practical applications, NR IQAs are more appealing because
the distorted images can be assessed without any reference.
Existing NR IQA metrics normally assume that the distortion type
is known beforehand. Based on the behaviors of the distortions, i.e.
blur [6], the perceptual quality of an image is easier to be eval-
uated. The general NR IQA [44] for evaluating the image perceptual
quality without knowing the distortion type is highly demanded.
Chen et al. [50] proposed to utilize the 2D cues in cyclopean
images [35] and 3D cues in disparity [33], and delivered compe-
titive performance compared to the FR IQA metrics. Sazzad et al.
[60] developed an NR method based on spatio-temporal seg-
mentation using the perceptual differences of local features in
stereopairs. Akhter et al. [37] employed a logistic regression model
to predict the quality, where the features are extracted from
stereo-pairs and the disparity maps. Ryu and Sohn [54] presented
an NR IQA scheme by modelling the binocular quality perception
of the HVS in the context of blurriness and blockiness. Shao et al.
[53] constructed binocular guided quality lookup and visual
codebook to achieve NR IQA by simply pooling process. These NR
quality metrics are mostly based the handcrafted features to
represent the characteristics of the stereoscopic images. However,
these features may not well reflect the perceptual quality of ste-
reoscopic images. Recently, Kang et al. [44] did a pioneering work
on discussing the capability of the CNN for evaluating the quality
of an image. Inspired by [44], we propose an end-to-end CNN for
the quality assessment of stereoscopic images. To the best of our
knowledge, this is the first attempt of employing CNN for NR
quality assessment of stereoscopic images. The proposed CNN
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Fig. 1. Framework of the proposed one-column CNN.

Fig. 2. The stereoscopic image sample. (a) The left view image; (b) the right view image; (c) the difference image.
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couples the feature extraction and learning process together to
produce the perceptual quality from the image pixel. Moreover, we
consider both the image contents and the view difference infor-
mation of the stereoscopic images in the proposed quality metric.
3. Learning structure of stereoscopic image with convolu-
tional neural network

In this paper, we focus on learning the structures of the ste-
reoscopic images for NR IQA. Nowadays, convolutional neural
networks (CNNs) have been successfully employed to learn the
image representation for various applications, such as image
classification [38–41], object detection [42,43], human parsing
[18,2,25] and activity recognition [26]. In this paper, we rely on
CNN for learning local structures of the stereoscopic images. The
structures are learned via multiple layers of convolution and max-
pooling, which are expected to be sensitive to the quality per-
ception of the stereoscopic images.

The stereoscopic images differ from the 2D natural images, as
the left and right views together can provide depth perception.
Therefore, perceptual evaluation of the stereoscopic images needs
to consider the information from both the left and right views. We
propose two CNNs to fully exploit the structures of the stereo-
scopic images, which are expected to be sensitive for quality
perception. As demonstrated in [45], the difference image between
the left view and right view is more important than the left and
right views for quality assessment. We firstly introduce a one-
column CNN to learn the structures of the difference image for the
aim of quality evaluation.

3.1. One-column CNN

The proposed one-column CNN for learning the structures of
the difference image is illustrated in Fig. 1. The input of the con-
structed CNN is an image patch sampled from the difference
image. Two layers of convolutions are employed to generate the
intermediate representation, each of which is followed by a max-
pooling layer, which can further reduce the computation for upper
layers. With the convolution and max-pooling processes, the
multilayer perception (MLP) with two fully-connected layers is
employed to summarize the representation into a final score
indicating the perceptual quality of the input image patch.

3.1.1. Preparation of the image patch
As aforementioned, the difference image is more important

than the left and right views for stereoscopic IQA. The reason is
that the difference image not only considers the image content but
also the depth and disparity information of the stereoscopic ima-
ges [45]. Generally, the difference image can be obtained by:

Idðx; yÞ ¼ Ilðx; yÞ� Irðxþdðx; yÞ; yþdðx; yÞÞ ð1Þ
where Il and Ir are the left and right view images, respectively.
dðx; yÞ denotes the disparity. Id is the obtained difference image by
referring the disparity information. However, for NR quality
assessment, since the original (distortion-free) images are missing,
the disparity cannot be identified accurately from the distorted
ones. Similar to [34,45,51], we calculate the difference image from
the left image and right image directly as:

Idðx; yÞ ¼ Ilðx; yÞ� Irðx; yÞ ð2Þ
As shown in Fig. 2, the difference image containing the view

differences can also imply the disparity and depth information of
the stereoscopic image pair.

3.1.2. Convolution
Convolutional process is the biologically inspired variant of

MLPs, which exploits the spatially local correlation by enforcing a
local connectivity pattern. In this paper, we employ a small recep-
tive field defined as 3�3 for the convolution process, which is the
smallest size to capture the notion of left/right, up/down, and
center. This is because that it is easy to obtain an effective receptive
field of 5�5 by stacking two 3�3 convolution layers, and an
effective receptive field of 7�7 by stacking three 3�3 convolution
layers. As stated in [39], compared with one 7�7 convolution layer,
three 3�3 convolution layers incorporate more non-linear layers,
which could make the decision function more discriminative. Sec-
ond, the number of convolution parameters can be significantly



Fig. 3. Framework of the proposed three-column CNN.
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reduced. If each layer of 3�3 convolution has K channels for con-
volution, all three 3�3 convolution layers requires 3� ð32 � KÞ ¼
27K parameters. For one single 7�7 convolution layer with K
channels, the number of parameters is 72 � K ¼ 49K , which is more
than that of three 3�3 convolution layers.

With such configuration (3�3 convolution), the output of each
convolution process only depends on the local 3�3 spatial content,
and is unresponsive to the signals outside the receptive field with
respect to the retina. Such convolution process ensures that the learnt
‘filters’ produce the strongest responses to the spatially local input
patterns. The convolution process can be defined as the following:

hkij ¼ωkxijþbk ð3Þ

where ωk and bk are the parameters of the convolution filters for the
kth feature map generation. xij denotes the local image patch lying in
the receptive field. hijk is the generated kth feature map. Note that the
parameters ωk and bk are shared for each convolution layer. Twofold
benefits are provided. First, shared parameters allow features to be
detected regardless of their locations in the image, which can help
learn the local structures of the image. Second, learning efficiency can
be improved as the number of the parameters to be learned is
reduced significantly. Compared to the fully connected layers like
autoencoder and restricted Boltzmann machine (RBM), convolutional
layer can learn a good representation of the image patch with a small
number of parameters. Furthermore, in order to form a richer
representation of the input image patches, multiple feature maps f
hk; k¼ 0;…;Kg are generated as the output of the convolution layer.

3.1.3. Max-pooling
After convolution, a richer representation with multiple feature

maps is obtained. Pooling is performed to improve position
invariance of the convolution filters. In this paper, we employ the
max-pooling [49,39,40] to partition the input image patch into a
set of rectangles and output the maximum value for each sub-
region. The max-pooling process is defined as:

μk
xy ¼ max

ðx;yÞAΩ
ðhkxyÞ ð4Þ

where Ω denotes the local window for max-pooling. hxyk denotes
the kth feature map after the convolution. μxy

k represents the
feature value obtained after pooling process.
The effects of max-pooling are twofold. First, the max-pooling
process eliminates the non-maximal values. Together the stride
parameter, max-pooling can reduce the dimension of the feature
map as well as the computational complexity of upper layers.
Second, max-pooling provides a form of translation-invariant
features for the upper layer convolution process. With the fea-
ture map in the same window, only the maximum value is pooled
out, which will not affect the upper layer process.

3.1.4. Multilayer perception (MLP)
After performing two layers of convolution and pooling pro-

cesses, the final representation is obtained. MLP with two fully-
connected layers are utilized to summarize the representation and
generate the final score as follows:

S¼ωsðσðωhðϑimÞþbhÞÞþbs ð5Þ
where σð�Þ is the nonlinear activation function. ϑim denotes the
learned representation with two layers of convolution and max-
pooling. ωh and bh are used to map the obtained image repre-
sentation ϑim to the representation in the hidden layer. ωs and bs
are the parameters to compute the final score of the input image
patch. S is the learned score to indicate the perceptual quality of
the input image patch.

3.2. Three-column CNN

Besides the difference image, the left view and right view
images are also available and important for the stereoscopic image
quality assessment. Therefore, we propose a new architecture with
three column CNNs to jointly consider the content property (from
the left and right view image), and the view difference property
(from the difference image). The architecture of the three-column
CNN is illustrated in Fig. 3.

For each column in the three-column CNN, the architecture is
the same as the one-column CNN and has two layers of convolu-
tion and max-pooling. The three identical CNNs are used to learn
the structures from the left view, right view, and difference image,
respectively. With two layers of convolution and max-pooling
processes, three different image patches are represented as three
different vectors, which are expected to contain the structures of
stereoscopic images from different viewpoints. Finally, these three
vectors are concatenated together and fed into the upper MLP
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layer as shown in Fig. 3 to learn their compositions and finally
output the quality score.
4. Implementation details

In this section, we will first describe the configurations of the
proposed two CNN models for NR stereoscopic IQA, and then
introduce how the proposed CNNs are trained.

4.1. CNN configurations

Configurations of the proposed two CNNs are outlined in
Table 1. For one-column CNN, image patch with size of 32�32 is
cropped only from the difference image, while three image pat-
ches of the same size extracted from the left view, right view, and
difference image are taken as input for three-column CNN. We
have two layers of convolution and max-pooling to learn the
structures of the stereoscopic image patches and produce the final
representation. For the convolution, 3�3 convolution kernels are
employed. For max-pooling, 3�3 together with stride of 3 are
used in the lower layer. For upper layer, the 8�8 max-pooling is
used to represent the image patch as one 50-dimensional feature
vector. After convolution and max-pooling, an MLP with two fully-
connected layers is employed to map the representation to the
hidden layer and produce the perceptual quality of the
input patch.

4.2. Training

We train our network on non-overlapping 32�32 image pat-
ches generated from the stereoscopic images. Since the training
images in our database have homogeneous distortions, each input
patch was assigned a score the same as the one of its source image.
Given the image patch p and its quality score Qp, we define the
training objective function as follows:

L¼ 1
N

XN
n ¼ 1

JSn�Qn
p J

2
2 ð6Þ

where Sn is the generated quality score via one-column or three-
column CNN by Eq. (5) for the nth image patch. Qp

n is the corre-
sponding ground-truth value. By minimizing the objective func-
tion defined in Eq. (6), the parameters of the proposed CNNs can
be learned via stochastic gradient decent (SGD) and back-
propagation. Besides, a validation set and dropout procedure are
included to prevent overfitting.

However, since only a small number of stereoscopic images
with annotated subjective scores are available in the training set, it
may not be able to tune CNNs well for learning structures in our
model. To relieve this problem, we turn to pretraining with 2D
natural images to give initial estimations of the CNN parameters,
Table 1
Configurations of the proposed CNNs. (conv denotes the convolution layer; max
denotes the max-pooling layer; FC denotes the full-connected layer.)

One-column CNN Three-column CNN
Input: 32�32 patch Input: three 32�32 patches from left, right, and differ-

ence images

conv-50 (3�3) conv-50 (3�3) conv-50 (3�3) conv-50 (3�3)
max (3�3) max (3�3) max (3�3) max (3�3)
conv-50 (3�3) conv-50 (3�3) conv-50 (3�3) conv-50 (3�3)
max (8�8) max (8�8) max (8�8) max (8�8)
FC-300 FC-300
FC-1 FC-1
and then transfer the learnt parameters from 2D images to the
stereoscopic ones.

4.3. 2D-to-stereoscopic transfer

As illustrated in Fig. 4, the histograms of left and right images
significantly differ from that of the difference image. Also, it can be
observed that the distribution of the difference image is approxi-
mately of zero mean. Therefore, in order to produce similar image
patches as the difference image, we firstly normalize the image
patches as follows:

Îðx; yÞ ¼ Iðx; yÞ�μðx; yÞ
σðx; yÞþc

μðx; yÞ ¼ 1
M � N

X
ði;jÞAΩ

Iðxþ i; yþ jÞ

σðx; yÞ ¼ 1
M � N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ði;jÞAΩ

ððxþ i; yþ jÞ�μðx; yÞÞ2
s

ð7Þ

where Ω denotes the local region for calculating the mean and
variance is defined as a 3�3 window. M � N denotes the total
number of the image pixels in the local window. c is a small
positive value in case of the denominator becomes zero. After
normalization, the original patch is of zero mean and unit var-
iance. And the effects of luminance and contrast information are
also alleviated for further learning structures. The histogram dis-
tribution of the normalized image appears to be similar with that
of the difference image.

In order to further demonstrate the effectiveness of the nor-
malization process as in Eq. (7), we employ different measure-
ments to evaluate the histogram distance between the difference
image and the original/normalized view image. More specifically,
the measurements, Kullback–Leibler divergence (KLD), Jenson–
Shannon divergence (JSD), Jeffrey divergence (JD), Chi-square (CS),
Kolmogorov–Smirnov (KS), quadratic form (QF), and histogram
intersection, as stated in [70,71] are used. For these measure-
ments, the smaller the distance, the more similar the two histo-
gram distributions. Table 2 illustrates the histogram distances in
terms of different measurements between the difference image
and original/normalized view images, shown in Fig. 4. It can be
observed that the histogram distance between the difference
image and the normalized view image is much smaller than that
between the difference image and original view image. As such,
we can assume that the normalized view images can well
resemble the statistical characteristics and structures of the dif-
ference image. Therefore, it is reasonable to import the normalized
image patch for the training process. It is expected that we can
transfer the parameters learned from 2D natural images to the
difference image of the stereoscopic images.

Since the 2D natural images are much more than the stereo-
scopic images, we can sample the patches from 2D images and
perform the normalization process before feeding them into the
one-column CNN. After pretraining, the parameters of the con-
volution and fully-connected layers can be obtained. For one-
column CNN, these parameters are used to initialize the network
before training on the difference images of the stereoscopic ima-
ges. For the three-column CNN, only the parameters of convolu-
tion layers are employed to initialize the model. For the upper two
fully-connected layers, we randomly initialize the parameters for
the stereoscopic image patches.
5. Experiments

In this section, we evaluate the effectiveness of our proposed
CNNs for learning the structures of stereoscopic images. We begin by



Fig. 4. The histograms of the stereoscopic images. (a) The left image and its histogram; (b) the normalized left image and its histogram; (c) the right image and its histogram;
(d) the normalized right image and its histogram; (e) the difference image and its histogram.
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Table 2
Relationship between the difference image and the original/normalized
view image.

Histogram distance Left Normalized left Right Normalized right

KLD 1.8009 0.0991 1.6257 0.0620
JSD 0.4021 0.0260 0.3780 0.0162
JD 0.8041 0.0519 0.7559 0.0325
CS 0.6679 0.0511 0.6316 0.0321
KS 0.8013 0.2085 0.7747 0.1593
QF 0.8800 0.2299 0.8527 0.1727
Histogram intersection 0.8080 0.2082 0.7843 0.1593

Table 3
SROCC of IQA metrics in predicting stereoscopic image quality on LIVE phase-I
dataset.

Type Algorithm JP2K JPEG WN BLUR FF ALL

FR Benoit et al. [30] 0.9103 0.6028 0.9292 0.9308 0.6989 0.8892
You et al. [33] 0.8598 0.4388 0.9395 0.8822 0.5833 0.8789
Gorley and Holli-
man [29]

0.4203 0.0152 0.7408 0.7498 0.3663 0.1419

MS-SSIM [35] 0.948 0.888 0.53 0.925 0.707 0.916

RR Hewage and Mar-
tini [28]

0.8558 0.5001 0.8963 0.6900 0.5477 0.8140

Wang et al. [32] 0.8832 0.5420 0.9066 0.9246 0.6548 0.8890
Ma et al. [45] 0.8866 0.6163 0.9124 0.8791 0.6964 0.9052

NR Akhter et al. [37] 0.866 0.675 0.914 0.555 0.640 0.383
Shao et al. [53] 0.9003 0.6073 0.9032 0.9235 – 0.8941
Ryu and Sohn [54] – – – – – 0.86
Chen et al. [50] 0.863 0.617 0.919 0.878 0.652 0.891
Proposed one-col- 0.889 0.613 0.909 0.877 0.758 0.925
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describing the datasets used for validation, followed by experimental
results and comparative analysis on stereoscopic IQA.

5.1. Datasets
umn CNN
Proposed three-
column CNN

0.931 0.693 0.946 0.909 0.834 0.943

Table 4
LCC of IQA metrics in predicting stereoscopic image quality on LIVE phase-I dataset.

Type Algorithm JP2K JPEG WN BLUR FF ALL

FR Benoit et al. [30] 0.9398 0.6405 0.9253 0.9488 0.7472 0.9025
You et al. [33] 0.8778 0.4874 0.9412 0.9198 0.7300 0.8814
Gorley and Holli-
man [29]

0.4853 0.3124 0.7961 0.8527 0.3648 0.4511

MS-SSIM [35] 0.948 0.888 0.53 0.925 0.707 0.916

RR Hewage [28] 0.9043 0.5305 0.8955 0.7984 0.6698 0.8303
Wang et al. [32] 0.9162 0.5697 0.9133 0.9574 0.7833 0.8921
Ma et al. [45] 0.9182 0.7222 0.9131 0.9247 0.8068 0.9056

NR Akhter et al. [37] 0.905 0.729 0.904 0.617 0.503 0.626
Shao et al. [53] 0.8723 0.8975 0.9161 0.9233 – 0.8994
Ryu and Sohn [54] 0.86 0.63 0.94 0.96 0.78 0.80
Chen et al. [50] 0.907 0.695 0.917 0.917 0.735 0.895
Proposed one-col-
umn CNN

0.898 0.632 0.923 0.928 0.845 0.926

Proposed three-
column CNN

0.926 0.740 0.944 0.930 0.883 0.947
� LIVE 2D natural image dataset [8]: A total of 779 distorted images
with five different distortions, specifically the JPEG2000 com-
pression (JP2K), JPEG compression (JPEG), white noise (WN),
Gaussian blur (BLUR), and fast fading (FF) are generated from 29
reference images. Differential mean opinion scores (DMOSes)
are provided for each image, roughly in the range [0,100].
Higher DMOS value indicates lower perceptual quality. As
mentioned before, the insufficient number of stereoscopic
images cannot well train and finetune our proposed CNNs.
Therefore, the 2D natural images are used to firstly learn the
parameters in CNNs. Afterwards, the learned parameters from
2D natural images can be further transferred to the stereoscopic
images. As discussed in Section 4.3, the normalized versions of
the 2D natural image present similar characteristics with the
difference image of the stereoscopic images. That is also the
main reason that the normalized image can be used for learning
the parameters.

� LIVE stereoscopic image dataset phase-I [7]: The LIVE stereoscopic
image dataset phase-I consists of 20 reference images and 365
distorted images (45 images for BLUR and 80 images for each
JPEG, JP2K, FF, WN distortion type) with co-registered human
scores in the form of DMOS (roughly in the range [0,100]). The
LIVE stereoscopic image dataset phase-I contains the same
types of distortions with LIVE 2D images, and all distortions
are symmetric in nature. The ‘symmetric’ means that the same
level of distortion was created between the image pair. Based on
the transferred parameters learned from 2D natural images, the
stereoscopic images are further employed to tune the para-
meters. Specifically, we random select 10 images of BLUR
distortion and 20 images of other distortions as the training
samples. Based on the training samples of the stereoscopic
images, we can further train the transferred parameters from
2D natural images. After obtaining the trained parameters, the
rest distorted stereoscopic images are used for testing.

� LIVE stereoscopic image dataset phase-II [50]: Though LIVE
stereoscopic image dataset phase-I is a valuable resource for
the research on 3D IQA, it only has symmetrically distorted
stereo images. However, in the real world, a stereo image pair
may be distorted symmetrically or asymmetrically. To provide a
complete stereoscopic image database, LIVE stereoscopic image
dataset phase-II provides both symmetrically and asymmetri-
cally distorted stereo images with human subjective ratings.
LIVE phase-II database consists of 8 reference images and 360
distorted images with co-registered human scores in the form
of DMOS. For each distortion type (JPEG, JP2K, BLUR, FF, and
WN), every reference stereopair was processed to create three
symmetric distorted stereopairs and six asymmetric distorted
stereopairs.

� IVC stereoscopic image dataset [30]: This dataset contains 96
stereoscopic images and their associated subjective scores. The
resolution of these images is 512�512, which were displayed
on a 1280�1024 monitor with an uniform gray around the
image to keep the native resolution of the image. 6 different
stereoscopic images are used in this dataset, which is composed
of the 6 reference images (undistorted) and 16 distorted
versions of each sources generated from 3 different distortion
types (JPEG, JP2K, BLUR) symmetrically to the stereopair images.
5.2. Results and analysis

5.2.1. Proposed CNN models for stereoscopic IQA
As usual [8], SROCC, LCC, and RMSE are used to evaluate the

performance of different quality metrics. Larger SROCC and LCC
values indicate better performance, while smaller RMSE value
represents better performance. As shown in Tables 3–5, the FR
metric Gorley [29] performs the worst. One reason is that the



Table 5
RMSE of IQA metrics in predicting stereoscopic image quality on LIVE phase-I
dataset.

Type Algorithm JP2K JPEG WN BLUR FF ALL

FR Benoit et al. [30] 4.4266 5.0220 6.3076 4.5714 8.2578 7.0617
You et al. [33] 6.2066 5.7097 5.6216 5.6798 8.4923 7.7463
Gorley and Holliman
[29]

11.324 6.212 10.198 7.562 11.569 14.635

MS-SSIM [35] 5.581 5.320 5.216 4.822 7.837 6.533

RR Hewage [28] 5.5300 5.5431 7.4056 8.7480 9.2263 9.1393
Wang et al. [32] 5.1890 5.3741 6.7772 4.1777 7.7245 7.4081
Ma et al. [45] 5.1294 4.5229 6.7843 5.5105 7.3411 6.9542

NR Akhter et al. [37] 5.483 4.273 7.092 11.387 9.332 14.827
Chen et al. [50] 5.402 4.523 6.433 5.898 8.322 7.247
Proposed one-
column CNN

6.000 5.926 6.107 6.839 6.135 6.148

Proposed three-
column CNN

4.986 4.396 5.676 5.539 6.049 5.336

Table 6
LCC of IQA metrics in predicting stereoscopic image (with symmetric distortion)
quality on LIVE phase-II dataset.

Type Algorithm JP2K JPEG WN BLUR ALL

2D SSIM [72] 0.8162 0.6770 0.9749 0.8325 0.7326
FSIM [65] 0.8183 0.8456 0.9630 0.8638 0.8301
GSMD [66] 0.8749 0.8443 0.9613 0.9279 0.9245

3D Bensalma et al. [64] 0.6897 0.5514 0.9359 0.9527 0.8232
Chen et al. [35] 0.6704 0.6013 0.9463 0.9178 0.8135
Shao et al. [53] 0.9032 0.8732 0.9170 0.9773 0.9119
Proposed three-column CNN 0.9212 0.9270 0.9571 0.8992 0.9121

Table 7
SROCC of IQA metrics in predicting stereoscopic image (with symmetric distortion)
quality on LIVE phase-II dataset.

Type Algorithm JP2K JPEG WN BLUR ALL

2D SSIM [72] 0.7261 0.7180 0.9452 0.7704 0.7003
FSIM [65] 0.8243 0.8406 0.9365 0.8495 0.9086
GSMD [66] 0.8669 0.8380 0.9269 0.8356 0.9102

3D Bensalma et al. [64] 0.6078 0.5475 0.9243 0.8461 0.8046
Chen et al. [35] 0.6617 0.6304 0.9070 0.8450 0.8372
Shao et al. [53] 0.9043 0.9102 0.9365 0.9113 0.8966
Proposed three-column CNN 0.8974 0.9424 0.9407 0.4897 0.9145
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method treats the left and right view images independently.
Another reason is that the method is based on PSNR, which has
been demonstrated to be limited in perceptual evaluation. Also,
the disparity or depth information is not considered, which is vital
in the stereoscopic IQA. For the other FR metrics, Benoit et al. [30]
and You et al. [33] incorporated the depth and disparity infor-
mation for stereoscopic IQA. Chen et al. [35] constructed the
cyclopean image and then performed 2D quality assessment. As
such, the depth and disparity information is considered, and better
performance is achieved compared to the metric in [29]. The MS-
SSIM [35] performs the best. The reason can be attributed to that
SSIM presents powerful abilities for capturing the structural
similarities. For the RR metric of [28], its performance is better
than the FR metrics of [33,29], which demonstrates that the edge
pixels are very sensitive to quality perception of stereoscopic
images. Compared to FR and RR metrics, the NR method is more
difficult. Therefore, the NR metrics of [37,53,50,54] present worse
performances than FR metrics of [35,30] and RR metrics of [32,45].

The proposed one-column CNN and three-column CNN models
outperform the other metrics when evaluating all the distorted
images together. Specifically, our models give higher SROCC and
LCC values. One reason is that the difference image is well
exploited to generate perceptual quality. Another reason is that we
employ the CNN to learn the structures of the stereoscopic images
rather than using the handcrafted features for quality assessment.
This shows the promising abilities of CNN for stereoscopic IQA.

The core idea of three-column CNN is to use the difference
image between stereopair and 2D images to predict the quality.
Hence, three-column CNN can take fully consideration of the
specific structure of stereo image pair by training the three image
patches from the left image, right image, and difference image
simultaneous. As shown in Tables 3–5, the three-column CNN
performs better than the one-column CNN. It can be concluded
that the three-column model contains not only the independent
information of stereo image pair, but also the joint information
between these two views.

As discussed in the introduction, our constructed one-column
and three-column CNNs are end-to-end networks, which take the
image patch as input and generate the quality index for the pro-
vided image patch. Therefore, it is unsurprised that CNN per-
formed better than existing methods, as demonstrated by the
experimental results. First, benefiting from the rich image data-
sets, CNN can learn features from the raw images effectively and
automatically for stereoscopic image quality assessment, instead
of relying on handcrafted features as previous work. Second, when
training CNN, feature extraction and quality assessment are com-
bined together into one optimization process. Moreover, we
include the difference image into the proposed one-column and
three-column CNNs. As such, the disparity and depth information
is explicitly considered, which is proved to be important for the
stereoscopic image quality perception.

5.2.2. Performances on different distortions
Breaking down the performance by distortion types, a sig-

nificant improvement over other quality metrics can be observed
for all distortion types as shown in Tables 3–5. Moreover, it can be
observed that the proposed CNN models achieve the best perfor-
mances on the distortion type of WN and the worst performance
on the type of JPEG. This is due to that the distortions of JPEG
images are less perceptually separated, and thus are more chal-
lenging to be assessed [50].

5.2.3. Cross dataset test
In this section, we examine the generalization capability of our

proposed CNN model. We follow the protocol of [44] to investigate
cross dataset performance by training our proposed three-column
CNN on LIVE phase-I and testing on LIVE phase-II and IVC datasets,
respectively.

Cross dataset test on LIVE stereoscopic image dataset phase-II: For
fair comparison, only the images with four types of distortions
(JPEG, JP2K, BLUR, and WN) from the LIVE phase-II dataset are
used for testing and comparison. The LCC and SROCC values of
IQAs on LIVE phase-II are given in Tables 6–9. More specifically,
Tables 6 and 7 illustrate the LCC and SROCC values on the images
with symmetric distortions, while Tables 8 and 9 demonstrate the
LCC and SROCC values on the rest images with asymmetric dis-
tortions. Three 2D IQAs, specifically SSIM [72], FSIM [65], and
GSMD [66], as well as three 3D IQAs, specifically the metrics of
Bensalma et al. [64], Chen et al. [35], and Shao et al. [53] are tested
and compared. It should be noted that only the metric of Shao
et al. [53] works in a NR manner. The other IQAs are all FR quality
metrics, which require the original stereoscopic images for quality



Table 8
LCC of IQA metrics in predicting stereoscopic image (with asymmetric distortion)
quality on LIVE phase-II dataset.

Type Algorithm JP2K JPEG WN BLUR ALL

2D SSIM [72] 0.6755 0.6845 0.8230 0.8403 0.7497
FSIM [65] 0.7846 0.7963 0.9410 0.8879 0.6775
GSMD [66] 0.8680 0.8690 0.9160 0.7411 0.6533

3D Bensalma et al. [64] 0.6194 0.6305 0.9325 0.8621 0.7432
Chen et al. [35] 0.7220 0.5636 0.9449 0.6918 0.6337
Shao et al. [53] 0.7893 0.7052 0.9235 0.8547 0.5651
Proposed three-column CNN 0.7821 0.5825 0.7955 0.9236 0.7625

Table 9
SROCC of IQA metrics in predicting stereoscopic image (with asymmetric distor-
tion) quality on LIVE phase-II dataset.

Type Algorithm JP2K JPEG WN BLUR ALL

2D SSIM [72] 0.7237 0.7144 0.8821 0.8068 0.7193
FSIM [65] 0.8064 0.8050 0.9521 0.8501 0.6610
GSMD [66] 0.8536 0.8758 0.9366 0.8877 0.6420

3D Bensalma et al. [64] 0.6194 0.6779 0.9409 0.8402 0.6968
Chen et al. [35] 0.7220 0.6359 0.9292 0.6912 0.6108
Shao et al. [53] 0.7893 0.6961 0.9235 0.8031 0.5244
Proposed three-column CNN 0.7928 0.5805 0.7797 0.8653 0.7078

Table 10
LCC and SROCC of IQAs on IVC stereoscopic image database.

Type Algorithms LCC SROCC

2D PSNR 0.5843 0.5554
Carnec et al. [31] 0.7874 0.7304
Skeikh et al. [61] 0.7051 0.6135
MS-SSIM [35] 0.7676 0.6919
Venkata et al. [62] 0.6816 0.5973
SSIM [32] 0.6817 0.6478

3D Ryu et al. [67] 0.7579 0.6869
Campisi et al. [69] 0.7873 0.7295
Proposed three-column CNN 0.7917 0.7644

Table 11
SROCC, LCC and RMSE with different kernel sizes.

Measurement Kernel size JP2K JPEG WN BLUR FF ALL

SROCC 3�3 0.931 0.693 0.946 0.909 0.834 0.943
5�5 0.921 0.650 0.932 0.900 0.870 0.932
7�7 0.911 0.632 0.924 0.889 0.802 0.926

LCC 3�3 0.926 0.740 0.944 0.930 0.883 0.947
5�5 0.923 0.710 0.932 0.914 0.865 0.933
7�7 0.909 0.663 0.920 0.909 0.854 0.925

RMSE 3�3 4.986 4.396 5.676 5.539 6.049 5.336
5�5 4.496 4.792 5.796 5.734 6.293 5.462
7�7 5.055 5.062 6.087 5.769 6.423 5.569
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assessment. It can be observed that our proposed three-column
CNN performs the best on both symmetric and asymmetric dis-
tortions. SSIM [72] performs similarly on the images with sym-
metric or asymmetric distortions. It is based on a top-down
assumption that the HVS is highly adapted for extracting struc-
tural information from the scene, and therefore a measure of
structural similarity should be a good approximation of perceived
image quality. However, the SSIM index is a single-scale approach.
The right scale depends on viewing conditions (e.g., display reso-
lution and viewing distance). On the contrary, GMSD only uses the
gradient magnitude information, which produced the best results
among 2D IQAs on symmetric part, but performs the worst on
asymmetric images. The main reason is that it ignores how the
difference between left and right views influences the quality.
FSIM employs the image gradient magnitude and the phase con-
gruency with a pooling strategy, and provides a good performance
on symmetric distortions. For asymmetric distortions, FSIM per-
forms poorer compared with our proposed CNN, even it requires
the original stereoscopic images as a reference.

For the 3D quality metrics, Shao et al. [53] perform better than
Bensalma et al. [64] and Chen et al. [35] on the images with
symmetric distortions, even though it performs on an NR manner.
Shao et al. [53] demonstrate poorer performances on the images
with asymmetric distortions. Since this scheme does not need the
reference images and human opinion scores, as a result, the
objective scores among four distortion types show less correla-
tions. When breaking down to the distortion types, Bensalma et al.
[64] perform closely to our proposed metrics on asymmetric
images. The reason can be attributed to that it develops a model
allowing to reproduce the binocular signal generated by simple
and complex cells, and to estimate the associated binocular
energy, which has shown a high correlation with the human
judgement for different impairments. Additionally, Bensalma et al.
[64] and Shao et al. [53] show better on WN and BLUR distortion
types, and worse on JP2K and JPEG distortion types on asymmetric
images.

Cross dataset test on IVC stereoscopic image dataset: From
Table 10, it can be observed that the proposed metric performs the
best among 2D and 3D IQAs. Carnec et al. [31], extracting the
structure features (orientation, length, width and contrast) of
original images in HVS, perform slightly poorer than our proposed
three-column CNN. Skeikh et al. [61] present an information
fidelity criterion for image quality assessment that relates the
image quality with the amount of information shared between a
reference and a distorted image. Venkata et al. [62] formulate a
nonlinear quasi-local processing model of the HVS by modifying
the contrast pyramid, which describes the importance of HVS
sensitivity to different visual signals, such as the luminance, the
contrast, the frequency content, and the interaction between dif-
ferent signal components. For the 3D IQAs, Campisi et al. [69]
conduct a preliminary test on the acuity difference between dif-
ferent eyes, where the metric making use of reliable 2D metrics
applied on both the left and the right views is proposed. However,
the depth information has not been taken into consideration. Ryu
et al. [67] propose an extended version of the SSIM index based on
a binocular model, in which luminance, contrast, and structural
similarities are computed for original and distorted stereo images.
Afterwards, the binocular perception models compute the bino-
cular perceptual luminance, contrast, and structural similarities.
However, the two IQAs work on the FR manner, which require the
whole original stereoscopic images for quality assessment.

5.2.4. Effects of convolution kernel size
In this section, we will examine how the kernel size affects the

performance. The kernel size is not only related to the structures
learned from the convolution processes but also has great influ-
ence on the number of parameters. Therefore, different kernel
sizes may produce different IQA performance. The performance
with different kernel sizes is illustrated in Table 11. Such testing is
conducted on the three-column CNN, where the network structure
stays the same and only the kernel size varies. Specifically, the
kernel size varies from 3� 3 to 7� 7. From these experimental



Table 12
SROCC, LCC and RMSE with and without transferring.

Measurement Algorithm JP2K JPEG WN BLUR FF ALL

SROCC One-column
CNN without
transferring

0.702 0.691 0.873 0.577 0.930 0.899

One-column
CNN with
transferring

0.889 0.693 0.909 0.877 0.843 0.925

LCC One-column
CNN without
transferring

0.692 0.755 0.863 0.624 0.928 0.886

One-column
CNN with
transferring

0.898 0.740 0.923 0.928 0.845 0.926

RMSE One-column
CNN without
transferring

10.394 9.363 6.524 5.490 6.856 7.673

One-column
CNN with
transferring

6.000 5.926 6.107 6.839 6.135 6.148
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results, it can be observed that the 3� 3 kernel size yields the best
performances, while the 7� 7 kernel size is the worst. This shows
that the convolution process with 3� 3 kernel size can better
extract the local structures from the stereoscopic images for
quality assessment. Another possible reason is that the CNN net-
work with 3� 3 kernel size requires a smaller number of para-
meters, and thus can be well trained with limited training
samples.

5.2.5. Effects of transfer from 2D images to stereoscopic images
In this section, we examine the effects of transferring

parameters learned from 2D natural images to stereoscopic IQA.
Specifically, we import the difference image patches into the
one-column CNN without any initialization. Another testing is
conducted with the initialization of the parameters learned from
2D images before training on the difference image patches. As
shown in Table 12, the performance of the IQA with transferring
from 2D images is improved considerably. One possible reason is
that the number of difference images is limited. So it is hard to
train a satisfied CNN model if with no transferring from the 2D
natural images. Another possible reason is that the parameters
learned from 2D natural image can somewhat capture the image
structures, which are also important for stereoscopic perception.
Hence, after transferring these parameters to the difference image,
not only the disparity/depth information but also the 2D image
contents from the left and right views can be learned for
stereoscopic IQA.
6. Conclusions

In this paper, we presented an NR IQA metric for stereoscopic
images based on convolutional neural networks. With multiple
layers of convolution and max-pooling, the local structures can be
learned and composed to high level representations. An MLP layer
is employed to summarize the representation as a final value to
indicate the perceptual quality. Experiments on the public LIVE
phase-I, LIVE phase-II, and IVC stereoscopic image datasets
demonstrated the superiority of the proposed metric to the state-
of-the-art metrics.
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