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Abstract

Data-driven phenotype discoveries on Electronic Health Records (EHR) data
have recently drawn benefits across many aspects of clinical practice. In the
method described in this paper, we map a very large EHR database con-
taining more than a million inpatient cases into a low dimensional space
where diseases with similar phenotypes have similar representation. This
embedding allows for an effective segmentation of diseases into more homo-
geneous categories, an important task of discovering disease types for pre-
cision medicine. In particular, many diseases have heterogeneous nature.
For instance, sepsis, a systemic and progressive inflammation, can be caused
by many factors, and can have multiple manifestations on different human
organs. Understanding such heterogeneity of the disease can help in address-
ing many important issues regarding sepsis, including early diagnosis and
treatment, which is of huge importance as sepsis is one of the main causes
of in-hospital deaths in the United States. This study analyzes state of the
art embedding models that have had huge success in various fields, applying
them to disease embedding from EHR databases. Particular interest is given
to learning multi-type representation of heterogeneous diseases, which leads
to more homogeneous groups. Our results show evidence that such repre-
sentations have phenotypes of higher quality and also provide benefit when
predicting mortality of inpatient visits.

Keywords: EHR databases, Phenotyping, Neural embedding models,
Sepsis, Discovery of disease types
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1. Introduction

Large-scale Electronic Health Records databases (EHRs) are an impor-
tant source of detailed patient information that can potentially be used for
more effective computational and statistical modeling aimed towards im-
proved disease characterization and intervention [1, 2]. For example, benefits
of big EHR analytics were evident in improving precision medicine by reduc-
ing uncertainty in decision-making and in design of preventive and therapeu-
tic strategies [2, 3], in discovering novel relationships between human pheno-
types and genotypes [4], and in improving overall healthcare by unearthing
deeper medical insights. EHR modeling has been the focus of many studies
aimed to improve healthcare [5, 6, 7, 8]. In clinical practice, these studies can
allow medical practitioners to obtain novel insights in the patients’ conditions
and therapeutic processes, thus improving treatment and accelerating medi-
cal research. Such discoveries are especially important for infectious diseases
such as influenza or Ebola that can spread rapidly and for complex diseases
with fast progression such as sepsis that are insufficiently understood [9].
An emphasis has recently been placed on the effective mining of those big
EHR databases in order to obtain actionable insights for improving health-
care, a concept often termed “data driven healthcare” [10, 11]. However,
mining such data comes with challenges as it is often sparse, heterogeneous,
noisy and biased due to different hospital and insurance company polices and
non-standardized physician practices [12].

Large-scale efforts for generating and sharing phenotypes were estab-
lished recently [13, 14]. The initial result of these initiatives is that many
phenotypes are now shared via Electronic Medical Records and Genomics
(eMERGE) Network [15] or the Observational Medical Outcomes Partner-
ship (OMOP) [16]. However, many of EHR-derived phenotypes are based
on supervised, rule-based or heuristic-based approaches and often require a
consensus of medical experts, thus limiting their scalability [12]. Necessary
human annotations require substantial time, effort, and expert knowledge
to develop, and these limitations further complicate phenotyping approaches
[3]. A potential method of mitigating this issue is using active learning ap-
proaches to compensate for the lack of labeled samples [17, 18]. However, this
approach falls short when a large number of labels are necessary to model
noisy EHR data. Nevertheless, the state-of-the-art is far from being optimal,
as the labeling process can be tedious, and models require a large number of
labels to achieve satisfactory performance on noisy EHR data [12]. To create
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a scalable phenotyping environment applicable to large databases, the phe-
notyping process needs to minimize human supervision and should be more
automated [12].

Recently, promising approaches, known as computational or electronic
phenotyping, have been proposed for data-driven phenotyping [19]. Com-
putational phenotyping refers to the process of mapping raw patient EHRs
into meaningful medical concepts, which can be seen as a feature selection
process [20, 21]. It is worth noting that this is typically done on tens of thou-
sands of EHRs although there are tens of millions available [22]. Data-driven
healthcare approaches differ in their general objectives and data used for
their research. However, the main contribution of such a body of work can
be seen as learning useful representations of human interactome 1, whether
that be a phenotype network of human diseases [23, 24, 4], network of human
genes and proteins [25, 26], temporal networks of hospital records [8, 27, 20],
or general tensor representations for discovering latent dimensions of the con-
cepts involved [6, 7, 3, 28, 19]. Most of these approaches can be unified by
their aim to exploit available EHR data [1] in order to develop representa-
tions of medical concepts for their further utilization in precision medicine
by improving the understanding of disease etiology.

Causes of health and wellness span multiple body systems and physiologic
processes, thus the complexity of the phenotyping process is increased. This
creates a nonlinear relationship among observed measurements, making the
process of learning robust representations of human physiology challenging
[19]. The discovery of disease types can benefit both the practice and sci-
ence of medicine [29]. For physicians, having defined disease types of good
quality can decrease uncertainty in diagnosing and monitoring patients’ well-
ness resulting in improved treatment decisions. It can also aid in prognosis
of, i.e. treatment outcome or expected cost of care [30]. For researchers
in medical science, it can provide a novel lens allowing for more focused
analysis. Furthermore, it is in the interest of many researchers to discover
segments of diseases in order to better understand more homogeneous sub-
sets [31, 32, 33]. Previously studied disease segmentation approaches often
consisted of observing metabolic, genetic or proteogenomic interactions, thus
differing from the purely EHR-based approach proposed in this study. Our

1Human interactome is defined as all interactions(connections) of diseases, genes, and
proteins discovered on humans.

3



  

goal is to automatically detect such segments of diseases from large EHR
databases by exploiting disease comorbidity information contained in patient
discharge records.

To provide evidence of benefits from using the proposed disease multi
modal embedding approach, we conducted a case study discovering segments
for all sepsis related diagnoses. Sepsis is a potentially life-threatening compli-
cation of pathogen infection that triggers the systemic inflammatory response
[34, 9]. Such systemic and progressive inflammation can lead to multiple or-
gan dysfunction syndrome and even death [35]. It can occur due to many
reasons (i.e. infection from bacteria, fungi, viruses, or other organisms on
different organs, etc.) and it has a wide range of symptoms. Hence, sepsis
is not a yet fully understood condition while treatments are still far from
optimal; it is often diagnosed too late, which can result in a mortality rate
as high as 30–50% in the case of septic shock [36, 34].

It is a disease that afflicts a large population [37] and was the largest
cause of death in the state of California from 2003 to 2011 (Figure 1). Fur-
thermore, sepsis is recognized as one of the main causes of in-hospital deaths
in the United States [38], with more than 750,000 cases annually [39], and
it contributes to 1 in every 2 to 3 deaths [40]. In addition to overwhelm-
ing presence of the sepsis, hospital costs of over $20 billion in 2011 in the
United States [41] provide a huge motivation for research in fields of under-
standing, diagnosing and treating such condition, as the incidence of sepsis
is rising [42]. Therefore, complicated coding techniques are applied by the
physicians to discriminate between different sepsis cases while documenting
patients’ discharge records [43]. In this study, we aim to exploit such infor-
mation recorded in a large EHR database in order to automatically build
multi modal representations of sepsis diagnoses with the purpose of propos-
ing a system for improving sepsis diagnostics and potentially aiding in early
prediction of outcomes.

The proposed novel, multi modal neural embedding model [44, 45] is
adapted for use in medical records for disease embeddings [30], following
from the major success of such models in the field of Natural Language Pro-
cessing (NLP) and other fields [46, 47, 48]. Unsupervised neural embeddings
have shown promising disease modeling capabilities from EHR data [30], out-
performing representatives of other state-of-the-art approaches on predicting
hospital quality indicators such as length of stay, total charges and mortality.
The goal of these models is to learn low dimensional distributed represen-
tations of diseases by utilizing context from inpatient diagnoses and learn
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Figure 1: Admission (blue) and mortality (red) trends of sepsis diagnoses in California for
the period 2003-2009

multiple type-specific embeddings for diseases of interest that would differ
in the embedded space according to differences in contexts. The models for
such tasks are described in Section 3. Such embeddings were shown to be
able to capture disease-disease and disease-procedure relations, while also be-
ing very useful in further analyses in preventative and responsive medicine.
This study further improves representational power of neural embeddings
for learning distributed disease representations by allowing them to capture
disease heterogeneities and automatically discover disease types. As dis-
cussed earlier, this is of great importance for highly heterogeneous diseases
such as sepsis. Disease embedding approaches are described in Section 3.2,
while novel type-specific approaches are described in Sections 3.2.2 and 3.2.3.
Their benefits are evaluated and discussed in detail in Section 4 followed by
conclusions in Section 5.
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2. Large Electronic Health Records Database from California

The rapid growth in the development of healthcare information systems
has led to an increased interest in utilizing the patient Electronic Health
Records (EHR) in attempts to better understand human diseasome.

2.1. Healthcare Cost and Utilization Project (HCUP) data

For the purpose of this study, the State Inpatient Database (SID)2, an
archive that stores the inpatient discharge abstracts from a number of data
organizations, is explored. The data is provided by the Agency for Healthcare
Research and Quality and is included in the Healthcare Cost and Utilization
Project (HCUP). In particular, the SID California database, which contains
35,844,800 inpatient discharge records over a period of 9 years (from January
2003 to December 2011) in 474 different hospitals, is utilized. SID data
provides discharge records for each inpatient, which may contain up to 25
diagnosis codes in an International Classification of Diseases coding schema
that were applied during this particular admission of the patient. This coding
schema3 originates from the 9th revision of the International Classification of
Diseases (ICD9), a hierarchical coding scheme that is a part of standard
diagnostic tools for epidemiology, health management, and clinical practice.
Additionally, the SID database contains demographic information about each
inpatient (e.g., age, birth year, sex, and race), as well as detailed information
about a hospital stay, including length of stay, total charges, type of payment,
insurance type, discharge month, and survival information. In total, the SID
California database covers 13, 004 unique disease codes (out of around 14, 000
present in the ICD9 schema).

2.2. Sepsis inpatient discharge records dataset

We sample only discharge records containing one of the sepsis related
codes from the SID CA database. Among the conditions considered we have
included Systemic inflammatory response syndrome (SIRS), sepsis, and sep-
ticemia (names and ICD-9 codes given in Table 1). SIRS is defined as a
clinical response to an insult, infection, or trauma that includes a systemic

2HCUP State Inpatient Databases (SID). Healthcare Cost and Utilization Project
(HCUP). 2005–2009. Agency for Healthcare Research and Quality, Rockville, MD.
www.hcup-us.ahrq.gov/sidoverview.jsp

3http://www.who.int/classifications/icd/en/, accessed May 2016
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Table 1: ICD-9 codes related to septic inpatients

Diagnosis code Diagnosis name

995.90 Systemic inflammatory response syndrome, unspecified
995.91 Sepsis
995.92 Severe sepsis
995.93 Systemic inflammatory response syndrome due to

noninfectious process without acute organ dysfunction
995.94 Systemic inflammatory response syndrome due to

noninfectious process with acute organ dysfunction
785.52 Septic shock
038.9 Unspecified septicemia

inflammation as well as elevated or reduced temperature, rapid heart rate,
rapid respiration, and elevated white blood cell count. Sepsis is addition-
ally defined as SIRS due to infection without organ dysfunction, while severe
sepsis is defined as SIRS due to infection with organ dysfunction. Please
note that terms septicemia and sepsis are often used interchangeably, but
are not considered synonyms in the ICD-9 coding. Septic shock is defined as
a systematic disease associated with the presence of pathogenic microorgan-
isms within the blood stream only. The selected sepsis targeted subset of the
entire SID CA database constitutes 1, 127, 114 discharge records, comprising
3.14% of total discharge records over the state of California from 2003 to
2011.

The process of coding sepsis in the EHR databases is tedious work, even
under the most obvious circumstances, and requires proper application of the
AHA Coding Clinic guidelines [49] and the Official Guidelines for Coding and
Reporting for inpatient care [50], as well as well documented physician notes
[43]. SIRS can be diagnosed with fairly easily, as there are strict physiological
parameters that need to be satisfied. The EHR data records are represented
by at least two codes, one for the underlying cause of infection (i.e., 038.xx,
. . . ) and another for the sepsis subcategory (995.9x). Severe sepsis requires
a minimum of three codes: a code for systemic infection (i.e., 038.xx, . . . ),
the code 995.92 and the code for the associated organ failure. Septic shock
is defined as severe sepsis with circulatory system failure, and in coding it
only differs from severe sepsis in the second code where 995.92 is changed to
785.52. Finally, unspecified septicemia, code 038.9, is used when there is not
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enough information in the doctors’ notes and other diagnoses do not show a
clear sign of the state of the patient’s inflammation [43]. As can be seen from

Figure 2: Prevalence of sepsis related diagnoses in SID California database

Figure 2, the SIRS conditions are the least prevalent, including virtually no
cases where codes 995.90, 995.93 and 995.94 were used. On the other hand,
the difficulty in properly diagnosing septic patients as described above is
manifested, with the most dominant diagnosis being unspecified septicemia
(0389) which was registered in around 36% of patient that were septic.

The discharge record containing a sepsis-related diagnosis is expected to
have more than 2 diagnoses related to sepsis. Moreover, in the selected subset
of the SID CA database, 16 diagnoses are observed on average per inpatient
case. Thus, the context of one’s inpatient stay includes other conditions
observed in the record, which may provide additional insight in analyzing
septic patient cases.

3. Methodology

We propose a new approach for the task of EHR phenotyping, motivated
by the recent success of distributed language models [47, 51]. In NLP, dis-
tributed models were able to learn word representations in a low-dimensional
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continuous vector space using a surrounding context of the word in a sen-
tence, where in the resulting embedding space, semantically similar words are
close to each other [47]. Previously, in the medical domain, such approaches
have been applied to help understand physician notes or medical texts [52],
while our goal is to apply them directly on the structured medical records
(as described in Section 2.2), in order to learn meaningful low-rank disease
representations. The advantage of such an approach is that diseases do not
have to co-occur within same discharge record for the model to learn their
connection, rather, their surrounding diseases, or disease context, has to be
similar. Disease context is, as discussed before, governed by the proposed
guidelines, and as such has a certain ‘grammar’ of diseases, which distributed
language models can potentially exploit. However, there are aggravating fac-
tors when dealing with EHR records, i.e., inpatient diagnoses records vary
in terms of both, type and physical system location, which increases hetero-
geneity of the data, but allows for discoveries of novel and interesting medical
concepts. Such an approach would allow identifying similar diseases by trivial
K-nearest-neighbor search in the new embedding space. Finding the near-
est neighbor disease of a query disease will be referred to as phenotyping in
this study, as neighboring diseases in the embedded space should have fairly
similar traits. One shortcoming of such an approach is that each disease will
be assigned a single vector, thus ignoring the heterogeneity present in the
discharge records and resulting in a representation of lower quality.

In this paper, these issues are addressed by the applications of two state-
of-the-art distributed language models [47] for learning disease representa-
tion, followed by two extensions aiming to learn multiple types [53] for se-
lected diseases. We show that novel type-specific approaches are capable of
learning more meaningful phenotypes, as well as aiding in patient mortality
prediction.

3.1. Problem definition

We are given a set P of patient discharge records, where a patient’s
discharge record pi = (di1, . . . , diMi

) ∈ P is defined as a sequence of Mi

diagnosed diseases di ∈ D at the end of the hospital stay. The objective is to
find the D-dimensional real-valued representation vd ∈ RD of each disease d
such that diseases with similar phenotypes have similar representation.
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3.2. Low-dimensional disease embeddings

Background. Neural language models take advantage of word order, and state
the same assumption of n-gram language models that words closer in the
word sequence are statistically more dependent. Typically, a neural lan-
guage model learns the probability distribution of the next word given a
fixed number of preceding words, which act as the context. More formally,
given a word sequence (w1, w2, . . . , wT ) in a training data, the objective of
the model is to maximize the average log-likelihood,

L =
1

T

T∑
t=1

log Pr(wt|wt−n+1 : wt−1), (1)

where wt is the t-th word, and wt−n+1 : wt−1 is a sequence of successive
preceding words (wt−n+1, . . . , wt−1) that act as the context to the word wt.
The probability distribution Pr(wt|wt−n+1 : wt−1) is typically approximated
using a neural network [54] trained to predict a word wt by projecting the
concatenation of vectors for context words (wt−n+1, . . . , wt−1) into a latent
representation with multiple non-linear hidden layers and the output softmax
layer [54]. More recently, novel approaches have shown great improvements
in representational power and training speed compared to the traditional
neural embedding models [46]. Their representatives are discussed below.

3.2.1. Disease2vec disease representation

The method learns representations of diseases in a low-dimensional space
using each patient discharge record as a “sentence” and the diseases within as
“words”, to borrow the terminology from the Natural Language Processing
(NLP) domain. The diseases in each record are ordered by their importance
with principal diseases coded at the beginning of the record. The disease2vec
model has two architectures, differing in the independence assumption in the
observed context.

CBOW disease2vec representation. In a continuous bag of words (CBOW)
disease2vec approach disease representations are learned by maximizing the
objective function L over the entire set P of records, as

L =
∑
p∈P

∑
dm∈p

log Pr(dm|dm−b, dm−1, . . . , dm+1, dm+b). (2)
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(a) CBOW disease2vec (b) SkipGram disease2vec

Figure 3: Graphical representations of disease2vec models

Probability Pr(dm|dm−b : dm+b) of observing a center disease dm given its
disease context dm−b : dm+b is defined using the soft-max function,

Pr(dm|dm−b : dm+b) =
exp(v>v′dm

)∑D
d=1 exp(v>v′d)

, (3)

where vd and v′d are the input and output vector representations of D-
dimensional disease d, and 2b is the length of the context for disease records.
v is obtained by averaging input vector representation of all diseases in ob-
served context,

v =
1

Tc

Tc∑
c=1

vdc (4)

As illustrated in Figure 3a and equation 3, CBOW disease2vec repre-
sentation uses surrounding Tc = 2b diseases dm−b : dm+b to predict central
disease dm for each disease dm in the discharge record. Thus, diseases that of-
ten co-occur and diseases with similar contexts (i.e., with similar neighboring
diseases) will have similar representations.

SkipGram disease2vec representation. In SkipGram-based representation, cen-
tral disease dm is used to predict b diseases that occur before and b diseases
that occur after it in the discharge record, as illustrated in Figure 3b and
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equation 6. The SkipGram model introduces an additional assumption that
neighboring diseases are independent of each other. Disease representations
are learned by maximizing the objective function L over the entire set P of
records, as

L =
∑
p∈P

∑
dm∈p

∑
−b≤i≤b,i 6=0

log Pr(dm+i|dm). (5)

The probability Pr(dm+i|dm) of observing a “neighboring” disease dm+i given
disease dm is defined using the soft-max function,

Pr(dm+i|dm) =
exp(v>dm

v′dm+i
)∑D

d=1 exp(v>dm
v′d)

, (6)

where vd and v′d are the input and output vector representations of disease
d with dimensionality D, and 2b defines the length of the context for disease
records.

3.2.2. Multi-type disease2vec disease representation

A major limitation of previously described models is that they assume a
single vector representation for each disease. Such a disease representation
is aimed to capture global trends in the discharge records, but it will not
be able to represent the heterogeneity of each disease appropriately. For ex-
ample, sepsis is a heterogeneous disease triggered by pneumonia, abdominal
infection, kidney infection, bloodstream infection or other causes, and mani-
fested on multiple organs, with different severity. Multi-type representations
for such a complex disease can result in a more appropriate low-dimensional
representation.

The multi-prototype approach for vector space models, which uses mul-
tiple representations to capture different senses and usages of a word is suc-
cessfully used in the field of NLP [53] and a related approach is also applied
to neural language models [44]. Here we also extend disease2vec models to
a model using multiple types, which we call t-CBOW and t-SkipGram. In
particular, we represent each discharge record by a sum of vectors of diag-
noses found in that record. This global context representation dataset of
inpatient visits is then clustered using K-means algorithm [53, 55] to obtain
types of patient records that contained sepsis as a diagnosis. Finally, each
sepsis occurrence in the discharge data is re-labeled to its associated cluster.
Due to known heterogeneity of the discharge records data, sepsis types are
obtained by clustering inpatient visit representation rather than observed
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disease contexts as in [44]. New vectors of sepsis types are initialized as its
global vector, and updated on the dataset such that the original sepsis disease
spans a larger portion of the embedded space (via its types) thus capturing
novel, previously undiscovered relationships.

This approach works globally for the entire dataset, in the form of a
pipeline. However, it is possible to make disease2vec automatically model
multiple types for each disease, specifically SkipGram, by locally discrim-
inating contexts of each disease using either the MaxOut method or the
K-means model and then deciding on the type vector update [45]. Such an
approach is described in the following section.

3.2.3. Multi-sense SkipGram disease representation

This model, based on multi-sense SkipGram (MSSG) [45] (Figure 4), is
capable of learning multiple types for each disease by locally discriminat-
ing contexts of each disease by either the MaxOut method or the K-means
model. It performs multi-modal learning by clustering the embeddings of
context around each disease. For each disease, clusters are maintained, and
once the cluster is predicted the disease context representation for a disease
type is updated. The difference between this and a multi-type disease2vec
approach is that local contexts are clustered to decide the type of the disease
and that the entire process is performed jointly by predicting the sense of the
disease using the current parameter estimates. In the MSSG model, a global
vector vg(d) is assigned to each disease d ∈ D and each type of the disease
has a separate embedding vs(d, k) (k = 1, 2, . . . , K), as well as a context
cluster with center µ(d, k) (k = 1, 2, . . . , K). Clustering is performed in the
following manner. First, for each disease d, a context vector is obtained by
vcontext(cd) = 1

Tm

∑Tc

c=1 vg(dc), where cd is context of disease d, and Tc is the
size of the context. For context representation global vectors vg are used
rather than type-specific vectors to avoid additional computational complex-
ity. Context representation vcontext(cd) is then used to predict the type of
the disease d. In previous work [45], two approaches are discussed. Type of
the disease sk can be determined either by the MaxOut method:

sk = argmax︸ ︷︷ ︸
k=1,2,...,K

(vs(d, k)>vcontext(cd)), (7)

or by K-mean clustering:

sk = argmax︸ ︷︷ ︸
k=1,2,...,K

sim(µ(d, k),vcontext(cd)). (8)
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Figure 4: Graphical representations of the disease2vec MSSG model

Here the cluster center µ(d, k) is the average of all the context representation
observed that belong to that cluster. For sim, cosine similarity is used in our
experiments.

Finally, the objective function is obtained as in the SkipGram model
(Eq. 5), with addition that the softmax function (Eq. 6) is conditioned on
the cluster in which disease d belongs.

4. Experimental evaluations

In this section we describe experimental setups and the results obtained
from such experiments. Mortality prediction results on sepsis-diagnosed pa-
tients using both type-specific and global embedding models are shown and
an analysis of discovered types of sepsis related diagnoses is conducted.

All models were trained on 1, 127, 114 sepsis diagnosed discharge records
using a machine with 32GB of RAM memory and 4 cores. Diseases were
mapped into D = 200 dimensional space. The value of parameter D was
decided based on model complexity, and resulting model performance, where
larger values marginally improved accuracy for mortality risk prediction of
all models while making discovered types more overlapped and thus more
difficult to interpret, while smaller values had worsen the accuracy of all
models significantly. The context parameter b was varied in a set {2,4,16},
where 2 and 4 are determined with respect to coding patterns described in
Section 2.2, and 16 was chosen to observe larger heterogeneous context as 16
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was the average number of diagnoses in the dataset. We used 25 negative
samples in each vector update for negative sampling, following a previously
proposed approach for efficient learning [47]. The number of types K is
considered in the range 1 to 15, where 15 is the number of reported different
underlying infections causing sepsis according to potential causes listed in
ICD-9 coding for 038.xx diagnoses4. The results reported in this section are
obtained for K = 5 types based on the accuracy in mortality prediction.

4.1. Mortality prediction

In this section we evaluate the representational power of the discovered
disease types. Feature vectors are learned in the embedded space for each
disease and can be used for predictive tasks as such. Specifically, we used
discovered sepsis types to predict patient survival probability, taking into
consideration learned representations of diagnosed conditions and compared
benefits of a type-specific approach versus predicting mortality based on
global features of sepsis. The hypothesis evaluated in this experiment was
that the multi-type sepsis vectors carry more information about mortality
(some causes/effects can be more fatal than others) than the ones learned via
global embedding models. We compared embeddings learned by four models
from the family of type-specific embeddings (t-CBOW, t-SkipGram, MSSG
MaxOut and MSSG K-means) to two global embedding models (learned by
CBOW and SkipGram).

Features learned by those 6 embedding models were the input to the
Logistic Regression algorithm used for mortality prediction (similar results
were obtained by running SVM and neural network based classifiers). The
model is trained on different subsets using 10% to 90% of data obtained
as a balanced random sample and 10-fold validation for each sample size
to remove any sampling bias. Learned models were then evaluated on the
remaining EHR data. The results show stable performance (low variance
of the obtained results from 10-fold validations) of both accuracy and F1
measure, as well as its components sensitivity and specificity, with respect to
the entire range of training data sizes. The mentioned metrics are defined in
terms of true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) of binary classification results. Accuracy is computed

4http://www.icd9data.com/2013/Volume1/001-139/030-041/038/, acc. May 2016
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Table 2: Accuracy, F-1 measure, Sensitivity and Specificity aggregated over 90 experiments
for Logistic Regression model used on features learned by 6 embedding models: 4 type-
specific and 2 global, for three values of hyperparameter b. The best results are bolded.

Accuracy F1-measure

b=2 b=4 b=16 b=2 b=4 b=16

t-CBOW 77.2% 77.2% 76.1% 77.7% 77.9% 76.0%
t-SkipGram 76.6% 76.9% 74.7% 77.1% 77.5% 74.3%
MSSG K-kmeans 67.9% 68.0% 69.3% 69.0% 69.2% 71.0%
MSSG MaxOut 67.9% 68.0% 69.1% 69.0% 69.2% 69.9%
CBOW 56.0% 56.1% 67.1% 58.3% 59.6% 67.8%
SkipGram 55.0% 55.4% 67.1% 57.0% 57.6% 69.8%

Sensitivity Specificity

b=2 b=4 b=16 b=2 b=4 b=16

t-CBOW 79.4% 80.1% 78.2% 75.1% 74.4% 73.5%
t-SkipGram 79.1% 79.5% 76.2% 74.0% 74.4% 71.6%
MSSG K-kmeans 71.3% 72.0% 73.9% 64.5% 63.9% 64.9%
MSSG MaxOut 71.3% 72.0% 72.7% 64.5% 63.9% 64.7%
CBOW 59.3% 59.4% 70.5% 52.4% 51.9% 62.0%
SkipGram 58.2% 58.2% 71.6% 51.5% 51.2% 62.0%

as

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

F1 measure =
2TP

2TP + FN + FP
, (10)

and its components sensitivity and specificity as

Sensitivity =
TP

TP + FN
, and Specificity =

TN

TN + FP
. (11)

Therefore, Table 2 aggregates the evaluation results (accuracy, F-1 measure,
sensitivity and specificity) of 6 models on 90 experiments from 10 validations
on 9 different training-test sizes. Additionally, the influence of the context
window size defined by parameter b on the overall predictive accuracy is
examined, where b is chosen from a set {2,4,16}.
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Figure 5: In the embedded space (here displayed 2D reduced space) each of seven sepsis-
related ICD-9 diagnoses is partitioned to five types marked in different colors.

All type-specific embedding based sepsis mortality models were more ac-
curate than the global models, where the best performing algorithm was the
proposed t-CBOW model described in Section 3.2.2. The results were sta-
ble with respect to the parameter b when shorter context is used (b = 2
or 4), while larger context (b = 15) resulted in slightly decreased accuracy
for t-CBOW and t-SkipGram models. The proposed multi-type approaches
were more robust to the context window size. Larger context allows partial
learning of broader concepts in a single type, which is why CBOW and Skip-
Gram were more accurate with larger window size b. As the accuracy was
fairly stable for multi-type models, but highly increased for global models
for b = 16 (when compared to lower values of this parameter), phenotyping
results are shown for the embedding with this parameter in Table 3 – 7. Fi-
nally, this experiment provides evidence that discovered sepsis segmentation
is clinically relevant.

4.2. Disease types and their phenotypes

In this section we discuss sepsis disease phenotypes discovered by both
global and type-specific embeddings. Here, phenotypes are defined as query
disease’s nearest neighbors in the embedded space. For the type-specific
models, we discuss phenotypes found by the t-CBOW model, as it was the

17



  

best competing model for mortality prediction, and the CBOW model for the
global embeddings, as there was no significant difference from the SkipGram
model on the same task. Parameter b is fixed to be 16 in this section for both
models, as results on mortality prediction gave the most balanced accuracy
performance over all models examined.

We show the 5 embedded disease-types for each of the 7 sepsis diagnoses
in Figure 5. The five discovered disease types emancipated cluster-like group-
ings in the new embedded space. Furthermore, we observe that all diagnoses
in the same type share similar phenotype properties. Concrete findings will
be discussed in more details below. Another interesting finding is the outlier
type (upper right corner of Figure 5). The observed type we refer to as the
outlier type has low prevalence, with less than a thousand cases in our dataset
(or less than 1% of the discharge records). As such, it will be removed from
further discussion, even though it forms the purest phenotype cluster, given
that the main focus of this study are prevalent phenotypes, while analysis of
outliers will be left for future work.

Additionally, we have observed that SIRS conditions also have much lower
prevalence than sepsis (less than 1% as shown in Figure 2). Thus, the analysis
reported in this paper is focused on segmenting four types for each of four
sepsis diagnoses as shown in Figure 6. Analysis of disease type records shows
that each of the remaining four discovered types of diseases occur in at least
10% of discharge records (Figure 6), and therefore, are well represented in
the dataset.

In Table 3, we list five nearest non-sepsis diseases to the sepsis diagnosis
995.91 in the embedded space representation learned by the global embed-
ding model. Sepsis global phenotype shows heterogeneous properties where
most similar diagnoses are infections on different parts of organs, but also
abortion or fracture related diagnosis, which are known as possible sepsis
causes or effects [56, 57]. For each of the five most similar diseases in the
Sepsis global phenotype, their rankings by the type-specific models are pro-
vided in columns type 1- type 4 (for each of the types). Globally relevant
diseases are not particularly close in the embedded space for most homo-
geneous types of sepsis, which can also be concluded from Figure 5. Note
that ICD-9 codes provide disease coding on a very fine scale. For instance,
the same condition can be present in multiple locations of an organ, and
there are multiple codes for such a disease. Fine scale disease coding is the
cause of low ranks of globally relevant diseases in type-specific phenotypes as
other similar but type-specific conditions are ranked higher, demonstrating
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Figure 6: Fraction of disease types 1-4 from Figure 5 in four sepsis-related ICD-9 diagnoses
code groups (995.91, 995.21, 038.9 and 785.52)

the limitations of the global embeddings. Additionally, for each of the types,
there is one (bolded) globally relevant disease that is higher ranked in that
type than other diseases in the same type. For example, in sepsis disease
type 4, which is represented in majority by the urinary related phenotype,
the closest condition is the urinary tract infection, while the other conditions
are at least three times lower ranked. In case of patients with sepsis and a
urinary tract infection, physicians often use the term urosepsis [43] due to
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Table 3: Sepsis (995.91 code) vector and its 5 nearest neighbors in the embedded global
disease space vs 4 type-specific embedded disease space. For each of the types, there is one
(bolded) globally relevant disease that is higher ranked in that type than other diseases
in the same type.

Rank for (995.91 ) : global type 1 type 2 type 3 type 4

Closed fracture of 1 5990 9118 604 4965
lower and of forearm unspec.

Acute upper respiratory 2 637 6746 1993 881
infections of unspec. site

Urinary tract infection 3 5845 8185 91 274
site not specified

Leukocytosis uspec. 4 4643 4649 1408 761

Legaly induced abortion 5 9230 350 8770 2797
with other spec. complications

its prevalence, giving evidence of interpretability of obtained phenotypes.
Four discovered types of Sepsis (diagnosis 995.91) will be referred to as

Sepsis type 1 to Sepsis type 4 and will be labeled as 995.911 to 995.914. For
each of the types, five most similar diseases in the embedded space repre-
sentation were listed in Table 4 as obtained based on the t-CBOW model
for 995.91. The global rank for each of the listed diseases is also shown as
obtained by the global CBOW embedding model.

As compared to the global phenotypes, sepsis type-specific phenotypes
are more homogeneous. For example, sepsis in pregnant and postpartum
women can develop as the result of many complications, such as miscarriages
(spontaneous abortions) or induced abortions, prolonged or obstructed labor,
ruptured membranes, cesarean sections, infection following a vaginal delivery,
etc. [58, 59]. Some of these causes related to delivery (i.e., prolonged labor
or ruptured membranes) are found in Sepsis outlier type, while causes related
to abortions are found in Sepsis type 1. Both types have these causes ranked
highly (they are close to sepsis vector in the embedded space) by the t-CBOW
model, whereas the global ranking model assigns low ranks (e.g 1963, 2919,
8583), which shows the better representational ability of the proposed model
over the global embedding.

Sepsis can cause a lot of damage in a person that is affected by this
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Table 4: Four segments of Sepsis (995.91 code) and their 5 nearest neighbors in the
embedded disease space

5 most related diagnoses in the embedded space to Sepsis (995.91 ) Rank by Global
types rank

Sepsis type 1 (995.911 ) [36.36%]

Transient arthropathy shoulder region 1 1104
Tension headache 2 525
Unspec. abortion 3 786
Unspec. abortion complicated by damage to pelvic organs 4 2919
Paratyphoid fever A 5 566

Sepsis type 2 (995.912 ) [33.41%]

Variations in hair color 1 1410
Other persistent mental disorders 2 933
Paralysis agitans 3 913
Senile dementia uncomplicated 4 1525
Unspec. senile psychotic condition 5 4091

Sepsis type 3 (995.913 ) [16.11%]

Open skull fracture with cerebral laceration and contusion 1 3684
Nervous system complications from surg. implanted device 2 7486
Inclusion conjunctivitis 3 5704
Malignant neoplasm of other and unspec. testis 4 8215
Anemia of mother unspecified 5 8164

Sepsis type 4 (995.914 ) [14.09%]

Hypertensive chronic kidney disease (stage V) 1 7013
End stage renal disease 2 4992
Infection and inflammatory reaction due to oth. vascular device 3 1418
Complic. due to renal dialysis device implant and graft 4 7142
Hypertensive heart and chronic kidney disease 5 5254

disease and its treatment can also leave different consequences. The kidneys
are often among the first organs to be affected by sepsis and published studies
report that between 32% and 48% of acute kidney injury cases were caused
by sepsis [60]. Therefore, it is not surprising that Sepsis type 4 is very related
to kidney diseases (not just for sepsis, but also for the other sepsis diseases
shown in Tables 5 - 7).

Another category of sepsis consequences consists of mental and stress-
related disorders, which are found in Sepsis type 2. It is reported that 17%
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Table 5: Four segments of Severe Sepsis (995.92 code) and their 5 nearest neighbors in
the embedded disease space

5 most related diagnoses in the embedded space Rank in Global
to Severe Sepsis (995.92 ) type rank

Severe sepsis type 1 (995.921 ) [17.49%]

Hemicrania continua 1 1650
Chronic Eustachian salpingitis 2 1604
Other nongonococcal urethritis unspecified 3 3562
Other manifestations of yaws 4 9435
Acute pyelonephritis without lesion of renal medullary necrosis 5 466

Severe sepsis type 2 (995.922 ) [41.64%]

Chondrocalcinosis due to pyrophosphate crystals upper arm 1 9054
Meningitis in sarcoidosis 2 7550
Other persistent mental disorders due to conditions classified 3 933
Hyperosmolality and-or hypernatremia 4 6337
Paralysis agitans 5 913

Severe sepsis type 3 (995.923 ) [29.54%]

Burn involving 50-59 % of body surface w 3. degree burn 40-49% 1 8730
Letterer-siwe di. unspec. site extranodal and solid organ sites 2 8584
Pneumococcal peritonitis 3 9546
Defibrination syndrome 4 9352
Tuberculosis of intestines peritoneum and mes. glands tubercle bacilli 5 6584

Severe sepsis type 4 (995.924 ) [11.32%]

Hypertensive chronic kidney disease ( V or end stage renal dis.) 1 7013
Nephrotic syndrome in diseases classified elsewhere 2 7728
End stage renal disease 3 4992
Diabetes with renal manifestations type II ... 4 5307
Other complications due to renal dialysis device implant and graft 5 7142

of elderly sepsis survivors developed dementia and around 40% experienced
nervous system damage and could not walk without assistance in the years
after [61]. It has also been reported that sepsis patients can develop large
amounts of stress molecules [62], i.e. cortisol which is known to accumulate
in human hair thus leading to color changes. Stress related conditions for
sepsis survivors are becoming more evident as they reportedly experience
stress disorders, including Post-Traumatic Stress Disorder (PTSD), as a re-
sult of prolonged treatments in Intensive Care Units (ICUs) [63]. Conditions
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described above are highly ranked by t-CBOW in Sepsis type 2.
Sepsis type 3 covers diseases related to serious brain tissue injuries and

nervous system complications from surgically implanted devices, which can
both lead to septic inflammation [64] and reproductive system related causa-
tions of sepsis [65]. Since, Sepsis type 1 covers a large fraction of impatient
record cases (36.6%), it is expected that this phenotype is the most heteroge-
neous among all. Therefore, in addition to abortion cases, we observe other
possible causes and effects of this disease.

Discovered phenotypes of global and type-specific embeddings of severe
sepsis, septic shock, and septicemia diagnoses are presented in Tables 5,
6, 7, respectively. We observe that disease types show similar traits, as
anticipated from Figure 5. The phenotypes discovered for the three diseases
are consistent with the sepsis types: type 4 sepsis diseases are related to
kidney and urinal tract problems, type 2 sepsis diseases are related to nervous
system inflammations, while type 1 and type 3 sepsis diseases are related to
external irritations such as burns, fractures and different inflammations. As
expected, severe sepsis and septic shock phenotypes share 65% of the closest
diseases, as they are considered the same condition, with septic shock being
a severe sepsis with circulatory system failure.

5. Conclusions

Neural embedding models have shown great promise in many fields, but
they have not been used yet in the field of electronic phenotyping. Hence, this
paper studied low-dimensional models for disease type discovery from large
EHR databases. Such low-dimensional embedding can be very useful not
only for disease phenotyping but also for more accurate diagnostics. In this
study, several approaches were proposed for addressing disease phenotyping
challenges related to disease heterogeneity. As a case study, the proposed
methodology is applied to phenotype characterization of sepsis, which is a
highly heterogeneous disease and one of the main causes of death in the
US hospitals. Conducted experiments provide evidence that the proposed
approach can effectively discover informative phenotypes for sepsis. The
discovered phenotypes for identified homogeneous groups were more relevant
as compared to global vectors for the same diseases. Benefits were also
evident for a mortality prediction task, where an increase in accuracy and
prediction quality was observed when using multi-type disease embedding
rather than single global embedding. In our experiments, we have compared
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Table 6: Four segments of Septic Shock (785.52 code) and their 5 nearest neighbors in
the embedded disease space

5 most related diagnoses in the embedded space Rank in Global
to Septic Shock (785.52 ) type rank

Septic shock type 1 (785.521 ) [15.65%]

Chronic Eustachian salpingitis 1 1604
Other nongonococcal urethritis unspecified 2 3562
Cocaine dependence episodic 3 2459
Encounter for removal of intrauterine contraceptive device 4 7827
Inconclusive mammogram 5 3110

Septic shock type 2 (785.522 ) [39.76%]

Chondrocalcinosis due to pyrophosphate crystals upper arm 1 9054
Meningitis in sarcoidosis 2 7550
Hyperosmolality and-or hypernatremia 3 6337
Closed lateral dislocation of elbow 4 5474
Paralysis agitans 5 913

Septic shock type 3 (785.523 ) [33.98%]

Defibrination syndrome 1 9352
Pneumococcal peritonitis 2 9546
Letterer-siwe disease unspec. site extranodal and solid organ sites 3 8584
Burn involving 50-59 % of body surface w 3. degree burn 40-49% 4 8730
Acute and subacute necrosis of liver 5 9741

Septic shock type 4 (785.524 ) [10.61%]

Hypertensive chronic kidney disease (V or end stage renal dis.) 1 7013
End stage renal disease 2 4992
Other complications due to renal dialysis device implant and graft 3 7142
Nephrotic syndrome in diseases classified elsewhere 4 7728
Hypertensive heart and chronic kidney disease w. heart failure 5 8387
and chronic kidney disease stage V or end stage

two approaches for disease type discovery, a global clustering approach and
an automatic approach, where disease types are learned within the model
itself. Although easier to use, an automatic approach failed to outperform
global clustering (t-models). However, it was better than the original single
vector approach. Discovering disease types has shown great promise as a
future research direction in electronic phenotyping, and further efforts will
be taken to further the understanding of the discovered disease types as
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Table 7: Four segments of Septicemia (038.9 code) and their 5 nearest neighbors in the
embedded disease space

5 most related diagnoses in the embedded space Rank in Global
to Septicemia (038.9 ) type rank

Septicemia type 1 (038.91 ) [25.53%]

Basal cell carcinoma of scalp and skin of neck 1 2172
Inappropriate diet and eating habits 2 1703
Screening for other disorders of blood and blood-forming organs 3 9037
Impairment of auditory discrimination 4 778
Other arthropod infestation 5 451

Septicemia type 2 (038.92 ) [41.79%]

Loose body in joint other specified sites 1 1337
Other circadian rhythm sleep disorder 2 1901
Meningitis in sarcoidosis 3 7550
Other persistent mental disorders due to conditions classified elsewhere 4 933
Variations in hair color 5 1410

Septicemia type 3 (038.93 ) [21.92%]

Burn involving 50-59 % of body surface w 3. degree burn 40-49% 1 8730
Congenital anomalies of corneal size and shape 2 6577
Open fracture of mandible alveolar border of body 3 9357
Open skull fracture, cerebral laceration, contusion, loss of consciousness 4 3684
Subarachnoid hemorrhage, open intracranial wound, loss of consciousne 5 5619

Septicemia type 4 (038.94 ) [10.75%]

Hypertensive chronic kidney disease (V or end stage renal dis.) 1 7013
End stage renal disease 2 4992
Nephrotic syndrome in diseases classified elsewhere 3 7728
Hypertensive heart and chronic kidney disease w. heart failure 4 5254
and chronic kidney disease stage V or end stage
Other ectopic pregnancy without intrauterine pregnancy 5 1951

well as to build effective models capable of jointly using existing medical
knowledge and big data to discover disease embeddings of higher quality.
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