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Abstract. Efficient online detection of similar patterns under arbitrary time 
scaling of a given time sequence is a challenging problem in the real-time ap-
plication field of time series data mining. Some methods based on sliding win-
dow have been proposed. Although their ideas are simple and easy to realize, 
their computational loads are very expensive. Therefore, model based methods 
are proposed. Recently, the segmental semi-Markov model is introduced into 
the field of online series pattern detection. However, it can only detect the 
matching sequences with approximately equal length to that of the query pat-
tern. In this paper, an improved segmental semi-Markov model, which can 
solve this challenging problem, is proposed. And it is successfully demonstrated 
on real data sets. 

1   Introduction 

In recent years, online series pattern detection technique has attracted increasing in-
terest in time series data mining communities, as it plays an important role in many 
applications such as endpoint detection in plasma etch processes and pattern detection 
in medical data. Efficient online detection of similar patterns under arbitrary time 
scaling of a given time sequence (see Fig. 1) is a challenging problem in the real-time 
application field of time series data mining. For example, persons reproduce the same 
tune or motions at different speeds [1, 2], and many financial time series also contain 
such similar patterns [3]. Readers are referred to [4] for details. 

Some methods based on sliding window have been proposed to solve this problem. 
Although their ideas are simple and easy to realize, their computational loads are very 
expensive. So model based methods are proposed. Recently, the segmental semi-
Markov model [5, 6] is introduced into the field of online series pattern detection. 
However, it can only detect the matching sequences with approximately equal length 
to that of the query pattern [7-9]. In this paper, an improved segmental semi-Markov 
model, which can solve this challenging problem, is proposed. And it is successfully 
demonstrated on real data sets. 
                                                           
* This research is supported partly by Science and Technology Project of Zhejiang 

(2006C21001). 
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First, some symbols to be used throughout this paper are summarized in Table 1. 

Then the online pattern detection can be described as follows. Given a real-time time 

series D and a query time series Q which is acquired by prior knowledge 

(where QD >> ), and a scaling factor l , 1≥l  , which represents the maximum 

allowable stretching and shrinking ofQ by l and1 l respectively, the matching se-

quences ofQ inD for any scaling range specified by l are located.  

Table 1. Summary of symbols 

Symbols Definitions 
D  Real-time time series  
Q  Query pattern 
| |X  Length of sequenceX  

[ ]X i  The i-th entry of sequence (1 )X i X≤ ≤  

[ ... ]X i j  Subsequence ofX ,including entries from the i-th to the j-th 

l  Scaling factor, 1l ≥  
 

(a) (b)
 

Fig. 1. Similar patterns under different time scaling. (a)Uniform scaling. (b)Arbitrary scaling. 

2   Online Pattern Detection Methods Based on Sliding Window  

Sliding window is a typical approach for online detection of similar patterns. The 
approach begins at the initial position ofD , gets a window of minimum size minW  

(where minW is the lower scaling bound specified by l , ⎣ ⎦lQW /min = ), then checks 

whether min[1... ]D W  matchesQ under some similarity measure. With the left side of 

the window anchored at [1]D , each subsequence [1... ]D k is scanned orderly in a simi-

lar manner to check if it matchesQ for all maxmin WkW ≤≤  (where maxW is the upper 

scaling bound specified by l , ⎡ ⎤lQW ⋅=max ). Repeat the same procedure with the 

window anchored at position [2]D , then [3]D  etc., until end of D . 

There are many methods proposed to match similar patterns under time scaling. 
Keogh et al [2] use uniform scaling and Euclidean distance to match similar patterns. 
This method can only deal with the similar patterns under uniform scaling, as shown 
in Fig. 1(a). Similarly, the limitation also holds for the “CD-Criterion” technique [10]. 
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Dynamic time warping (DTW) [11] distance compares sequences of different 
lengths by stretching them, so it can be used to measure the similar patterns under 
arbitrary time scaling. But some disadvantages have been found in practice, e.g., it 
may introduce fault matching patterns due to local over-scaling, and its time complex-
ity is ( )3 2 2| | | | ( 1/ )O D Q l l⋅ ⋅ − , which is unsuitable for the real-time application. 

Fu et al [4] utilize scaled and warped matching (SWM) and its corresponding lower 
bounding technique to look for similar patterns under arbitrary time scaling. Consid-
ering the left side of the window anchored at [ ]D i , the lower bounding technique 

starts by calculating the lower bounding distance between Q and all subsequence 

beginning with [ ]D i in the range specified by l . If the distance exceeds the user-

specified tolerance, we can be sure that there are no matching patterns of Q starting 

at [ ]D i , and the left side of the window can slide to [ 1]D i + ; otherwise, using SWM to 

check whether there exists subsequence similar to Q . We call this method SWM_LB 

for short. The pruning power P describes the effectiveness of lower bounding tech-
nique, which is defined as follows [4]: 

And the time complexity of SWM_LB is ( ) ( )( )( )( )2 3| | ( 1/ ) | | (1 ) | | 1/D l l Q P QO l lρ ρ⋅ − + ⋅ + − ⋅ ⋅ ⋅ − , 

where ρ is the fraction of | |Q  (the time warping constraint | |r Q ρ= ⋅ ). Note that the 

larger P becomes, the more efficient the algorithm would be. As far as we know, 
SWM_LB is best for online series pattern detection in all sliding window based meth-
ods, so we empirically compare it to our approach in Section 5. 

3   Segmental Semi-Markov Model 

The basic theory of Hidden Markov Model (HMM) was proposed by Baum and his 
colleagues in the late 1960s and early 1970s [12]. For a HMM with the transition 
probability 1( | )t t ijP s j s i A−= = = , once in state i , the system will stay in it for d time 
units, where d has an implicit geometric distribution: 1( ) (1 )d

ii iiP d A A−= − . During the 
stay in state i , the system generates d observations, which are conditionally independ-
ent and identically distributed. 

The segmental semi-Markov model is an extension of the standard HMM. It was 
originally proposed in the speech recognition literature [5, 6], then Ge et al [8] intro-
duced it into the field of online series pattern detection. The segmental semi-Markov 
model improves the standard HMM by introducing explicit state duration distribu-
tions [5] and segment observation models [6]: 

a. The duration d can have an explicit distribution that may be non-geometric, e.g., 
Gauss distribution, Poisson distribution. 

b. The observations of every state can have an explicit distribution to model the 
dependence among them. 

| |
P

D
= Number of objects that do not require full SWM  
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4   Improved Segmental Semi-Markov Model 

4.1   Model Construction 

The segmental semi-Markov model is a good solution to detect the matching se-
quences with approximately equal length to that of the query pattern. However, the 
corresponding segmental observations of similar patterns under arbitrary time scal-
ing may differ considerably, as shown in Fig. 2 (left), so it can not solve the prob-
lem mentioned in Section 1. In this section, we propose an improved segmental 
semi-Markov model which modifies the existing model from the following three 
aspects: 

1. Introducing the offset distribution to replace the observation distributions. 
Assume the subsequence of the thi segment is 1 2, , nY y y y= …, , and its corresponding 

sequence generated by linear regression function is ' ' ' '
1 2, , nY y y y= …, .The offset iR of 

the thi segment is defined as the root mean squared errors between Y and 'Y : 

' ' ' 2
1 1

1

1
( , ) ( )

n

i n n i i
i

R y y y y y y
n =

= −∑… …  . (1) 

The offset iR describes the fitting degree between the subsequences of the thi seg-

ment and its regression line. Form Equation (1) we know that, for any similar pat-
terns, the offset iR is independent of other segmental observations. Hence, the differ-

ence between the observations of corresponding segments is allowable (see Fig. 2).  

iR is governed by ( | )
ii RP R θ , where

iRθ is the set of parameters for the distribution. 

We use Gaussian distribution to describe the form of ( | )
ii RP R θ : 

2

2

( , ) ,   
( | )

( ,   ) ,   

i i i

i

i i

R R i R

i R

i R i R

N R
P R

N R R

μ σ μ
θ

σ μ

⎧ ≥⎪∝ ⎨
<⎪⎩

 . (2) 

with parameters 2{ , }
i i iR R Rθ μ σ= . 

2. Introducing the amplitude (Y coordinate) difference distribution. 
Without the segmental observation distributions, the shape of a segment can not be 
modeled, so we introduce the amplitude difference distribution to perform this task. 

Assume the time ( X coordinate) of the endpoint of the thi segment is t , and the 
number of data points in the segment is id . Let us call the amplitude difference of 

the thi segment iYΔ , and we define it as 1ii t t dY y y − +Δ = − , as shown in Fig. 2(right).  

iYΔ is governed by 1( | )
i it t d yP y y θ− +− , where

iyθ is the set of parameters for the dis-

tribution. The actual form of 1( | )
i it t d yP y y θ− +− depends on the specific application. 

Usually it would be the following Gaussian distribution: 

2
1( | ) ( , ) 

i i i it t d y y yP y y Nθ μ σ− +− ∝  . (3) 

with parameters 2{ , }
i i iy y yθ μ σ= . 
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3. Introducing an extra state—pre-pattern state, and proposing a method to compute 
its classification and transition probabilities. 
The pre-pattern state (state 0) models the data before the query pattern. Introducing 
this state is mainly to meet the needs of the online pattern detection, and it is first 
mentioned by Ge and Smyth [7]. However, it is difficult to determine the classifica-
tion probability that any data belongs to the pre-pattern state ([7] does not specify it). 
Here we propose a method to solve this problem. We first specify the probabilities of 
the data belonging to states1 K… (assume the model has K states), and then recalcu-
late their values according to Equation (4), where query

ip is the probability of the data 

belonging to state i , which is the endpoint of the query pattern’s thi segment: 

1...i
i query

i

p
p i K

p
= =　  . (4) 

Then compute the probability of the data belonging to the pre-pattern state: 

0
1

1
K

i
i

p p
=

= − ∑  . (5) 

Finally we normalize the probabilities: 

0

0 ,1, ...i
i K

j
j

p
p i K

p
=

= =
∑

　

 . 
(6) 

For transition probability of pre-pattern state, we set 0,0 0A = and 0,1 1A = . 

           

ΔY ΔY'

 

Fig. 2. (left) The second segmental observations of the two similar patterns differ considerably. 
(right) Two curves from the two similar patterns’ second segments have equal amplitude differ-
ence, that means 'Y YΔ = Δ , and both fit their regression lines well. 

4.2   Modeling the Query Pattern 

First dividing Q into K segments, then estimating the parameters as follows. For tran-

sition matrix A , we set , 1 1i iA + = , and , 0i jA = if 1j i≠ + except ,0 1KA = . Given scaling 

factor l , the state duration distribution ( )iP d is defined as following distribution: 

( )
1

,   /
/( )

0                                     ,      

query query
i i iquery query

i ii

d l d d l
d l d lP d

⎧ ⎢ ⎥ ⎡ ⎤≤ ≤ ⋅⎪ ⎣ ⎦ ⎢ ⎥⎡ ⎤ ⎢ ⎥⋅ −∝ ⎨ ⎢ ⎥ ⎣ ⎦
⎪
⎩

 . (7) 

     otherwise
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where query
id is the length of Q ’s thi segment. The offset distribution is set to be the 

form as Equation (2), and its parameters
iRμ and 2

iRσ are set to be query
iR and 0.2 query

iR re-

spectively, where query
iR is the offset of the thi segment of Q . For the amplitude differ-

ence distribution, we usually use Equation (3) to model the pattern with
iyμ be-

ing query
iYΔ and 2

iyσ being 0.2 query
iYΔ , where query

iYΔ is the amplitude difference of 

the thi segment of the query pattern. 

4.3   Online Pattern Detention 

Now we can apply the improved segment semi-Markov model to detect arbitrary 
scaling similar patterns. Let us call the detection algorithm ISSMM for short. Accord-
ing to the model, for D at each time t , the algorithm first calculates the quan-

tity ( )ˆ t
ip that represents the probability of the data belonging to each state i , 1 i K≤ ≤ . 

The recursive function for calculating ( )ˆ t
ip is  

( )-( )

- 1
ˆ ˆmax max ( | ) ( - | ) ( | )i

i i i i
i

t dt

i j ji i d t t d y i R
j d

p p A P d P y y P Rθ θ θ+= ⎡ ⎤⎣ ⎦  . (8) 

Then computes the probability of pre-pattern state and finally normalize the results. 
The state i and the time it d− for the maximum value ( )ˆ t

ip are recorded in ( , )PREV i t , 

then we can trace back from ( , )PREV i t through the table PREV to get the most likely 
state sequence. Fig. 3(left) summarizes this procedure in pseudo-code. The algorithm 
chooses the state with maximum value as the state of the data. If the state is K , we 
declare that one similar pattern has been found, as shown in Fig. 3(right). 

Note that it takes constant time to calculate ( | )
ii dP d θ  and 1( | )

i it t d yP y y θ− +− ; and 

in order to calculate ( | )
ii RP R θ , it must take ( )iO d  time to calculate the offset iR first. 

So according to Equation (8) we can deduce that the time complexity of ISSMM 

is ( )2 2 2| | | | | | ( 1/ )D K Q l lO ⋅ ⋅ ⋅ − , which is lower than other methods mentioned in 

Section 2 when KQ >> . 

5   Experiment Results 

In this section, we perform our experiments on two real data sets (available from 
http://www.cs.ucr.edu/~eamonn), which are normalized with mean being 0. Both 
ISSMM and SWM_LB are used to detect the similar patterns in the same time series. 

1. Results on Motion Capture data set 
The Motion Capture data set was distilled from several hours of recording with Vicon 
(an optical motion capture system), using 124 sensors [2]. We randomly select a se-
quence from the data set to use as the query pattern, and then randomly choose 10 
other similar sequences and 10 dissimilar sequences to form a time series acting as D , 
see Fig. 4. The scaling factor l is set to 1.2. Table 2 shows the comparative results.  
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Fig. 3. Pseudo-code for ISSMM algorithm. (left) Pseudo-code for AMLSS(finding the most 
likely state sequence 1 2 ts s s…  for data sequence 1 2 ty y y… ). (right) Pseudo-code for DETECT. 

Because the similar patterns differ from the other patterns considerably, the lower 
bounding technique helps a lot to save running time for SWM_LB, and the pruning 
power P reaches to 0.827. Nevertheless, ISSMM still beats SWM_LB in terms of 
running time, though the precision of SWM_LB is as good as that of ISSMM. 

2. Results on Gun Problem data set 
The Gun Problem data set comes from the video surveillance domain. The data set 
has two classes, and all instances were created using one female actor and one male 
actor in a single session. The two classes are Gun-Draw and Point, as shown in Fig. 5. 

We conduct our first experiment on this data set as follows. We randomly select a 
sequence from the Gun-Draw class to use as the query pattern, see Fig. 6(top). From 
Fig. 5, we see the amplitude difference of different actors may differ a lot in the 2nd  
and 8th segments. So we use the following uniform distribution instead of the Gaus-
sian distribution to model the query pattern for these two segments (see Fig. 6(top)): 

1
,   0.5 2

2 0.5( )

0                                ,           

query query
i i iquery query

i ii

Y Y Y
Y YP Y

⎧ Δ ≤ Δ ≤ Δ⎪ Δ − ΔΔ ∝⎨
⎪⎩

 . (9) 

Then we randomly choose 10 other Gun-Draw and 10 Point sequences, performed 
by the same actor performing the query pattern, to form a long time series acting 
as D , see Fig. 6(middle). The scaling factor l is set to 2.5. Table 3 shows the  
results. 

The overall motions of both classes differ subtly, so the lower bounding technique 
is less efficient, and the pruning power P is only 0.085. ISSMM beats SWM_LB in 
both precision and speed.  

We conduct our second experiment on the data set as follows. We use the same 
query pattern as the one used in the first experiment. However, we randomly pick out 
10 other Gun-Draw sequences performed by both actors, where half by each, and  
 

procedure 1 2( )tDETECT y y y… …  

1. 1. 1t = ; 
2.  1 2 1 2( )t ts s s AMLSS y y y=… … ; 

3.  if ( )ts K==  

4.       declare ‘found’; 
5.  else 
6.  1t t= + ; 
7.  goto 2; 
8.  end if 

function 1 2 1 2( )t ts s s AMLSS y y y=… …
1. for each state  (1 )i i K≤ ≤  
2.    Compute ( )ˆ t

ip , ( , )PREV i t ; 

3.   
( )

( ) ˆ
ˆ

t
t i

i query
i

p
p

p
=  

4. end for 

5. ( ) ( )
0

1

ˆ ˆ1
K

t t
ip p= −∑ ; 

6. normalize ( )ˆ t
ip   

7. ( )ˆarg max ( )t
i ij p= ; 

8. return;

     otherwise
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Fig. 4. The experiment data on Motion Capture data set. (top) The query pattern represented by 
the solid curve is divided into 4 linear segments. (bottom) The time series to be detected, and 
the occurrences of the similar patterns are tagged by the dashed rectangles. 

Table 2. The experiment results on Motion Capture data set 

 Fault detection rate Missing detection rate Running time (second) 
ISSMM 0 0 343.33 

SWM_LB 0 0 428.94 
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Fig. 5. (left)Some examples from Gun-Draw data. (right)Some examples from Point data. 
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Fig. 6. The experiment data on Gun Problem data set. (top) The query pattern represented by 
the solid curve is divided into 9 linear segments. Especially the 2nd and 8th segments are 
marked in bold line. (middle) The time series to be detected in the first experiment, and the 
occurrences of the similar patterns are tagged by the dashed rectangles. (bottom) The time 
series to be detected in the second experiment, and the occurrences of the similar patterns are 
tagged by the dashed rectangles.  

Table 3. The first experiment results on Gun Problem data set 

 Fault detection rate Missing detection rate Running time (second) 
ISSMM 0 20% 2417.8 

SWM_LB 33.3% 20% 27992 
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Table 4. The second experiment results on Gun Problem data set 

 Fault detection rate Missing detection rate Running time (second) 
ISSMM 9% 0 2042.4 

SWM_LB 25% 70% 16461 

similarly we pick out 10 Point sequences. Then we concatenate these 20 sequences to 
form a long time series acting as D , see Fig. 6(bottom). The scaling factor l is also 
set to 2.5. Table 4 shows the comparative results.  

Owing to arbitrary time scaling, the amplitudes of Gun-Draw patterns performed by 
different actors differ sharply after normalization, but their shapes are similar. 
SWM_LB miss all the Gun-Draw patterns performed by the other actor who is differ-
ent from the one performing the query pattern, while ISSMM can detect all of them. 

6   Conclusion and Future Work 

In this paper, based on the existing segmental semi-Markov model, we modify it in 
several aspects. The improved model is applied to online detect arbitrary scaling simi-
lar patterns. And it is successfully demonstrated on real data sets. 

In future work, we will consider using the model in the noisier environment to 
widen the application scope of the model. 
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