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ABSTRACT 

Noise reduction is always an active research area in image 
processing due to its importance for the sequential tasks such 
as object classification and detection. In this paper, we de
velop a sparse representation based noise reduction method 
for hyperspectral imagery, which is dependent on the assump
tion that the non-noise component in the signal can be approx
imated by only a small number of atoms in a dictionary while 
noise component has not this property. The main contribution 
of the paper is in introducing nonlocal similarity and spectral
spatial structure of hyperspectral imagery into sparse repre
sentation. Non-locality means the self-similarity of image, by 
which the whole image can be partitioned into some groups 
containing similar patches. The similar patches in each group 
is sparsely represented with shared atoms making the signal 
and noise more easily separated. Sparse representation with 
spectral-spatial structure can exploit spectral and spatial joint 
correlations of hyperspectral imagery also making the signal 
and noise more distinguished, in which 3-D blocks are in
stead of 2-D patches for sparse coding. The experimental re
sults indicate that the proposed method has a good quality of 
restoring the true signal from the noisy observation. 

Index Terms- Hyperspectral imagery, noise reduction, 
sparse representation, nonlocal similarity, spectral-spatial 
structure 

1. INTRODUCTION 

Hyperspectral imagery is acquired by a new imaging tech
nique, and draws many attentions from various application 
fields. It can provide much information about spectral and 
spatial distributions of distinct objects owing to its numer
ous and continuous spectral bands. The noise of hyperspec
tral imagery comes from sensor, photon effects, and calibra
tion error. Meanwhile, the increased spatial, spectral, and 
radiometric resolutions of hyperspectral imaging lead to an 
increased impact of noise on the results extracted from this 
kind of imagery. Recently, smoothing filters, anisotropic dif
fusion, multi-linear algebra, and wavelet shrinkage methods 
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have been exploited for noise reduction of hyperspectral im
agery [1, 2]. In this paper, we focus on sparse representation 
based noise reduction with spectral-spatial structure. 

Sparse representation is one of powerful denoising meth
ods, which typically assumes that the true signal can be well 
approximated by a linear combination of few basis elements 
[3]. That is, the signal is sparsely represented in the trans
form domain. Some of existing sparse representation based 
image denoising methods imply that the whole image has the 
same properties of signal and noise in everywhere, which can 
be considered as a global filter ignoring the local details of 
an image. To overcome this drawback, adaptively sparse rep
resentation based on the neighborhood property is proposed, 
which can be considered as a local filter [2]. However, the 
information provided by the neighborhood is too limited to 
preserve the true structure, details and texture of an image. 

Since the original nonlocal means algorithm was pro
posed for image denoising [4], non-locality or self-similarity 
became to be an very popular strategy for adaptively estimat
ing statistical and geometric structures of signal and noise. 
Non-locality based denoising algorithms make use of the 
high degree of self-similarity of any natural image, i.e., every 
small patch in a natural image has many similar patches in the 
same image. Inspired by non-locality, a nonlocal sparse rep
resentation based noise reduction algorithm is introduced [5], 
in which sparse representations of the similar patches are re
covered via a linear regularized regression model with shared 
constraint of sparsity, or called multi-task sparse representa
tion. This method is based on the fact that the true signals in 
these similar patches can be represented by the same subset 
of basis elements while the noise lacks this consistence of 
representation. 

Most of noise reduction techniques for hyperspectral im
agery are based on band-by-band or pixel-by-pixel process
ing, i.e., they process each band image separately or each 
pixel's spectral signature separately [6]. But this may lead 
to loss of correlation between bands or between pixels. In 
order to further exploit spectral-spatial joint correlations of 
hyperspectral imagery, we construct the sparse representation 
of 3-D block instead of 2-D patch or I-D line segment, which 
is based on the assumption that the true hyperspectral imagery 
is generally characterized by a strong spectral and spatial cor-
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relation, and conversely, noise sources are commonly to be 
independent from one another in spectral-spatial domain. 

In the section 2, the proposed denoising method called 
non local sparse representation with spectral-spatial structure 
is introduced, and its implementation is also discussed. Sec
tion 3 shows the experimental results on the real hyperspectral 
data sets. Conclusions are drawn in section 4. 

2. ALGORITHM AND IMPLEMENTATION 

2. 1. Denoising Model and Sparse Coding 

The generic noisy observation model has the form 

z(x) = y(x) + TJ(x) (1) 

where x is the position in the signal domain, z (x) is the ob
served signal, y(x) would be the true signal, and TJ(x) is the 
noise perturbation. 

For each 3-D block zk, the sparse representation based 
denoising model can be defined as 

yk = DWk (2) 

Wk = argmin �llzk - DWkll� + AIIWkill (3) 
wk 2 

where D is the dictionary of basis elements, Wk is the vector 
of coefficients corresponding to the basis elements. The last 
term in Equation 3 is the sparsity norm of Wk, and A controls 
the degree of sparsity. yk is the recovered 3-D block from the 
noisy observation zk. 

This model considers every 3-D blocks independently, re
gardless of their correlation. Non-locality indicates there is 
similarity between these overlapped blocks, and exploiting 
the similarity will benefit the denoising [5]. Therefore, the 
nonlocal sparse representation is introduced based on the idea 
that similar blocks should share the same set of basis ele
ments. Suppose we have K noisy signals zk to be denoised 
by sparse representation, and the size of dictionary is P (the 
number of basis elements). Each signal yk has a linear sparse 
coding 

P 

yk = DWk = LDpW; (4) 
p=l 

A group of similar signals has a multi-task sparse coding 

where W is a P x K matrix of coefficients, Wk is its kth 
column, and Wp is its pth row. The constraint of sparsity in 
Equation 5 is a h/l2 combined norm. 

The difference between independent and nonlocal sparse 
representation is shown in Fig. 1, where Y = [y 1, Y2, ... , Y K]' 
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(a) Independent sparse representation 
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(b) Multi-task sparse representation 

Fig. 1. Independent and nonlocal sparse representation 

In matrix W, the white small squares correspond to zero 
coefficients and the gray ones correspond to non-zero co
efficients. The similar sparse structure can be derived via 
nonlocal sparse representation. 

Furthermore, a single dictionary is always not enough to 
support a sparse representation for complicated structures. 
For example, the cosine transform dictionary is not effec
tive in representing impulsive transitions and singularities, 
whereas wavelet transform dictionary do poorly for textures 
and smooth transitions. Therefore, it is natural to use several 
complementary dictionaries for achieving a sparse repre
sentation over general signal. Here two dictionaries of 3-D 
biorthogonal Daubechies wavelet and 3-D cosine are used, 

Le., D = Dwavelet U Dcosine. 
The denoising algorithm of non local sparse representation 

with spectral-spatial structure can be summarized as: 

1. Divide a whole hyperspectral cube into overlapping 
3-D blocks with the size of n x n x n, and each voxel 

(i,j, k) has a block N(i,j, k) whose center is this 
voxel. The overlapping division can avoid blocking 
effect. 

2. Partition the blocks into several groups by affine propa
gation (AP) clustering algorithm according to their sim
ilarity [7]. The similarity is measured by Euclidean dis
tance between a pair of blocks 

s(i,j,k,i',j',k') = IIN(i,j,k) -N(i',j',k')II; (6) 

3. Apply nonlocal sparse representation model for each 
group of blocks, and estimate the true signals for all 
blocks in one group by Equations 4 and 5. 



4. Calculate the denoised value of each voxel in the hy
perspectral cube via weighted average method, as there 
are several blocks surrounding one voxel. 

2.2. Implementation 

Two problems should be highlighted in implementation of the 
algorithm. The first is concerned about step 2. As the number 
of blocks that is equal to the size of a hyperspectral cube be
cause every voxel has their own subcube, is too large to AP or 
C-means clustering algorithm. To reduce the computational 
burden of the clustering algorithm, the grouping is performed 
within a three-dimensional window of size S x S x S cen
tered at the coordinate of the current reference cube. Then we 
use AP algorithm again for these groups for merging similar 
groups, in which each group is represented by a data point. 
This divided-and-conquer scheme is very effective to real ap
plications. 

The second is the optimization problem of nonlocal sparse 
representation in step 3. The non-smoothness of the £2,1-
norm regularization in Equation 5 makes the optimization be a 
challenging problem. In this paper, we use a fast optimization 
algorithm proposed by Liu and et al [8]. Consider a general 

£2,1 regularized minimization problem 

(7) 

where f(·) is a differentiable loss function and IIW112,1 is the 

£2,1 norm. The vector of coefficients W' is obtained via it
eratively applying accelerated gradient descent and proximal 
operator (see Algorithm 1). 

Algorithm 1 £2,1 regularized minimization 

Input: 

loss function f ( . ) 
regularization parameter A 
step size to and affine combination parameter 13° 

Output: 

vector of coefficients W' 
I: k+-k + 1; 
2: Compute the search point via affine combination: 

S(k) = W(k) + j3(k)(W(k) _ W(k-1»); 
3: Calculate the gradient descent point U(k+1) with adap

tive step size: 
U(k+1) = S(k) - t(k)V f(S(k»); 

3: Apply the proximal operator to calculate wk+ 1: 
W(k+1) = arg min �IIW - U(k+1)11� + t(k) AIIWI12,1; 

w 
4: Update tk+1 and j3k+1 for next iteration. 
s: Repeat the above steps until the difference between 

W(k+1) and W(k) is smaller than a threshold; 
6: return W· = W(k+1). 
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(a) Original-band-l03 (b) Original-band-200 

(e) Denoised-band-I03 (d) Denoised-band-200 

Fig. 2. Denoised results on Indian Pine data set. 

3. EXPERIMENTAL RESULTS 

We will show some experimental results on two real hyper
spectral data sets. The first data set was acquired by NASA 
AVIRIS instrument over the Indian Pine Test Site in North
western Indiana in 1992. The image size is defined as 145 x 

145, and the number of bands is 220. The size of 3-D block is 
5 x 5 x 5, and the parameter of sparsity is A = � Vm where 
m is the number of blocks in a group. 

We evaluate the proposed method by visually comparing 
the denoised hyperspectral imagery with the original imagery, 
and quantitatively comparing the classification results based 
on original and denoised images separately. It can be found 
from Fig.2 that the noise is reduced and the details are well 
preserved. Moreover, Fig.3 gives the classification results be
fore and after noise reduction. This hyperspectral imagery 
contains 16 land-cover classes and 10366 labeled pixels. We 
randomly selected and 5% and 25% labeled pixels from each 
class for training, and use the rest for test. It can be clearly 
seen that the denoised data yield a much better classification 
performance. 

The second data set was acquired by a hyperspectral cam
era on the ground with a high spatial resolution of 1280 x 960, 

and there are 58 spectral bands in total. This data set contain 
more details than the first one. Due to the high resolution, we 
use a relatively large block size 9 x 9 x 9. Other parameters 
remain the same as the first experiment. The denoised results 
on band 58 are shown in Fig 4. We can find our method works 
well in both of edge/detail preservation and noise removal. 



(a) Classification on original (b) Classification on denoised 

data with 5% training samples data with 5% training samples 

(OA=74.84%) (OA=88.65%) 

(c) Classification on original (d) Classification on denoised 

data with 25% training samples data with 25% training samples 

(OA=89.34%) (OA=97.42%) 

Fig. 3. Classification results on Indian Pine data set. OA is 
overall accuracy. 

(a) Original-band-58 (b) Denoised-band-58 

(c) Part of original-band-58 (d) Part of denoised-band-58 

Fig. 4. Denoised results on a hyperspectral data set acquired 
by a ground-based camera 
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4. CONCLUSIONS 

In this paper, we developed a novel sparse representation 
based denoising method for hyperspectral imagery, which 
combines nonlocal sparse coding with spectral-spatial struc
ture to better separate the true signal and noise. Nonlocal 
sparse coding generates the sparse representations for several 
similar signal making them share the same basis elements in 
the dictionary. It considers the consistence of true signals and 
the randomness of noises so that the obtained sparse repre
sentation can more precisely recover the true signals. Instead 
of I-d line segments or 2-D patches, 3-D blocks are used for 
sparse representation, which enables the sparse representation 
to make the most of the correlations between spectral bands 
and spatial neighbors of true signal. Experimental results 
on the real hyperspectral data sets show the effects of the 
proposed method in noise reduction. 
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