
1

Extending Flash Lifetime in Secondary Storage
Chengjun Wang, and Sanjeev Baskiyar

Abstract—Unlike magnetic disks, NAND flashes can be written a limited number of times. As flash memory densities increase and cell
sizes shrink, further decreases in write endurance is expected. Although some mitigation is achieved by wear leveling, write endurance
remains a concern for write intensive applications. In this research, we use a DRAM cache to filter write traffic to flash by coalescing
and merging overwrites. To handle integrity of data upon power failure, we use a supercapacitor to provide short duration backup
power during which DRAM data can be retired to flash memory. The effectiveness of such a mechanism is not obvious considering
that a large file-system cache already exists which also merges overwrites. We investigated: (i) a DRAM and a flash disk cache combo
within a magnetic disk controller and (ii) a DRAM only cache when flash is a full secondary storage. Our simulations show that using
a medium sized DRAM cache, flash lifetime doubles with lazy updates compared to early update policy. Moreover, miss ratio and
average response times decrease as well. With little effort, our technique can be extended to improve the usable life of other emerging
non-volatile memories, such as PCM and MRAM.

Index Terms—Disk cache, flash lifetime, secondary storage.

F

1 INTRODUCTION

THE performance gap between the processor and stor-
age of computers is widening with approximately

60% and 10% annual improvement in the processor and
hard disk drives (HDDs) respectively [1]. The trend is
becoming more marked with the advent of multi-socket,
multi-core processor architectures. The I/O performance,
especially I/O operations per second (IOPS), has not
caught up with the corresponding improvements in
processor performance. The processor utilization stays
low due to the need to wait for the data being fed from
the storage system [2]. Therefore, storage performance is
becoming the bottleneck of a computer system.

Fortunately, there are emerging memory technologies
that try to bridge the growing performance gap, such as
flash memory, Phase Change RAM (PCM), and Magnetic
RAM (MRAM). Noticeable among them is flash memory,
which has been the most widely used nonvolatile mem-
ory. There are two types of flash: NOR flash and NAND
Flash. NOR flash is byte addressable while NAND flash
is page addressable. In this paper, we are only concerned
about NAND flash, which is referred to as flash for
short hereafter. Not only has flash been widely used on
portable devices as storage media, but also flash-based
Solid State Drives (SSDs) are being installed into data
centers.

SSDs can provide as much as 3,300 write IOPS
and 35,000 read IOPS, consuming 2.5 watts of power,
whereas even the best HDDs (15K RPM drives) can
only offer 300-400 IOPS while consuming 15-20 watts

• C. Wang is with the Department of Computer Information Systems,
Vermont Technical College, Randolph Center, VT, 05061.
E-mail: cwang@vtc.edu

• S. Baskiyar is with the Department of Computer Science and Software
Engineering, Auburn University, Auburn, AL 36849.
E-mail: baskisa@auburn.edu

of power[2]. In comparison, the processor can offer
1,000,000 IOPS. Performance in term of IOPS is critical
for enterprise applications serving a large number of
users, like web servers, email servers, cloud computing,
and cloud storage. The common method used to close
the gap is to deploy multiple HDDs working in parallel
to support peak workloads. In order to meet the IOPS
requirement, more HDDs are added, which results in en-
vironments that have underutilized storage (well below
50% of their useful storage capacity). The extra storage
in turn will incur power and cooling waste.

However, flash can only be written a limited number
of times, ranging from 10K to 100K depending on the
type of flash used. Traditional solutions to limited life-
time of flash focused on the algorithms used within Flash
Translation Layer (FTL), which spread the writes evenly
across the medium. It is referred to as wear leveling,
in which no single cell fails ahead of others. Although
wear leveling mitigates the lifetime issue to some extent,
it remains a concern for write intensive applications.

In this paper, we focus on:
• Using DRAM as a cache for flash memories rather

than HDD unlike previous works. Since DRAM
does not have read penalty unlike HDD, the perfor-
mance needs investigation. Read penalty impacts re-
sponse time and throughput. By introducing HDDs
into SSDs, the device as a whole will lose its ad-
vantages in terms of acoustic levels, mechanical
reliability, susceptibility to environmental factors,
weight and size, and power consumption.

• Determining whether a small DRAM (15-60MB)
can effectively reduce write traffic. Although ear-
lier works [8] have used relatively larger size (91-
2,728MB) HDD as a cache for SSDs, the effectiveness
in using smaller size caches have not been investi-
gated. Using a small size cache is important. Upon
power failure, DRAM contents need to be retired

2

to permanent store using a supercapacitor, whose
size will be small for retiring the contents of a small
DRAM. Thus, the super-capacitor can be practically
implemented in a reasonable space.

• Comparing the retirement policy for entries of
DRAM, i.e. early vs. lazy retirement, in terms of
traffic, response time, miss ratios and DRAM sizes.

• Determining the effectiveness of employing DRAM
in increasing lifetime of the flash cache used in HDD
controllers. We see that with a medium sized DRAM
cache, flash lifetime doubles with lazy updates com-
pared to early updates. Moreover, miss ratio and
average response times decrease as well.

The rest of the paper is organized as follows: Section
2 presents the the motivation. Section 3 briefly reviews
related work. In Section 4, we talk about the system
architecture. Section 5 discusses the methodology we
used. In Section, 6, we show the simulation results when
flash acts as disk cache. In Section 7, we present the
simulation results when flash is used as major store.
Finally, in Section 8, we conclude the paper.

2 MOTIVATION
2.1 Flash Memory
As mentioned above, one of flash drawbacks is write
endurance. The endurance issue stems from cell degra-
dation caused by each burst of high voltage (10V) across
the cell. The problem shows no imminent sign of van-
ishing. As flash goes into Multi-Level Cell (MLC), write
endurance becomes worse compared with Single Level
Cell (SLC). For example, the write cycles of 2X MLCs
drop to 10,000 from 100,000 (SLC). Furthermore, write
endurance becomes worse as cells become smaller.

In order to mitigate the flash drawbacks, a Flash Trans-
lation Layer (FTL) has been proposed to manage how the
flash resources are used [3]. FTL keeps mapping tables
between logical and physical address spaces. When an
update to a file is issued, FTL writes the file to a blank
page and marks the old page as invalid. FTL updates
the mapping tables accordingly. A technique called wear
leveling attempts to evenly use entire memory cells.

In spite of all these efforts, endurance is still a concern
for flash based storage systems. The flash lifetime over
I/Os per second is shown in Fig. 1 [4]. The lifetime
drops as the number of I/Os increases. As Kim et al.
[4] put it, “Although MTTFs for HDDs tend to be of the
order of several decades, recent analysis has established
that other factors (such as replacement with next, faster
generation) imply a much shorter actual lifetime and
hence we assume a nominal lifetime of 5 years in the
enterprise.” As we can see from the figure, when the
number of I/Os exceeds approximately 50 IOPS, the
lifetime of flash is less than 5 years. For example, the
OpenMail workloads we used have 98 I/Os per sec-
ond, which corresponds to a lifetime less than 2 years.
Therefore, the endurance issue is one of the factors that
would hinder the further applications of flash-based

storage systems to a heavy write-intensive workload
environment like some embedded or enterprise systems,
where the storage system needs to work 24/7 with heavy
write traffic. Therefore, enhancing the flash endurance is
demanded.

2.2 Flash Trends
According to [5], flash trends can be expressed as: big-
ger, faster, and cheaper, but not better. Bigger: Flash
component densities are doubling at a rate greater than
Moore’s Law. Faster: A single operation is needed for
programming an entire page or erasing an entire block.
Cheaper: As the densities are going up, price is going
down. Not better: “Better” means more reliable in terms
of endurance and data retention. Data retention is de-
fined as the length of time a charge remains on the
floating gate after the last program. The cells are worn
out over program/erasure and make it more difficult to
keep the electrons in place. Therefore, there is an inverse
relationship between endurance and data retention —
the more program/erasure, the shorter the data reten-
tion. As NAND manufactures are struggling for lower
cost per bit, they keep sacrificing endurance and data
retention. The most renowned trade-off is in MLC vs.
SLC, in which 2:1 or 3:1 cost benefit is obtained through
10:1 reduction in rated endurance.

According to Hutchby et al. [6], Flash has been classi-
fied as “mature nonvolatile memory”. Most importantly,
flash will not disappear in the short run [7]. Although
there are emerging memories, such as PCM (PCRAM),
and MRAM, they have not reached the maturity level
to replace flash. Flash will coexist with the emerging
memories for 5-10 years. Therefore, the lifetime issue of
flash deserves the efforts of research.

2.3 Limitations of Existing Solutions
There are two basic methods to solve or mitigate the
short flash lifetime 1) efficiently use cells, 2) reduce the
write traffic to flash. Most research uses the first method,
e.g., wear leveling. Since flash lifetime is directly related
to cycles of program/erase, reducing write traffic to flash
will extend the flash lifetime. However, little research has
employed the second method. We did find Soundarara-
jan et al.’s paper [8] using the second method. However,
they use disk-based write cache instead of DRAM cache
to save write traffic. Their research was based on a
much larger cache size (90MB-2728MB). The cache size
of 15MB to 60MB was not investigated. Therefore, their
conclusions do not apply to a DRAM cache. In addition,
they used a log file, which results in read penalty and
affects performance and response time. By using HDDs
in SSDs, SSDs will lose their benefits in power consump-
tion, weight and size, which will prevent its wide use.
RAM buffer has been proposed to improve the flash
performance. Park et al. [9] reduce writes by evicting
clean data first. Jo et al. [10] propose a flash aware buffer
management scheme to decrease the number of erase

3

operations by choosing victims based upon page utiliza-
tion. Kim et al. [11] use three key techniques, block-level
LRU, page padding, and LRU compensation to improve
random write performance. Gupta et al. [12] enhance
random write performance by selectively caching page-
level address mappings. However, the above studies
except Soundararajan’s work did not concentrate on the
lifetime issue although Kim et al. mentioned the erase
counts in their papers. Next, a common problem of using
DRAM is the fault tolerance issue inherent in the volatile
memory. Although Kim et al. [11] suggested using a
small battery or capacitor to delay shutdown until the
RAM content is backed up to flash, both batteries and
capacitors have their limitations. Batteries have short
lifetime, which require maintenance and replacements
during the lifetime of devices while capacitors of a
reasonable size do not have enough energy sustaining
enough time, during which the data is transferred to
flash. Finally, flash as a disk cache has not been studied
in their research.

In this paper, we focus on solving the flash lifetime
issue. We propose to use flash as a victim device of the
DRAM cache with a supercapacitor backup power to
prolong the flash lifetime. Unlike traditional solutions,
our method uses the second method to decrease the
traffic to flash.

As an integrated part of HDDs, flash will affect the
whole device in terms of lifetime, reliability, and per-
formance. Unlike DRAM and HDDs, flash lifetime is
limited by the number of erases performed. Moreover,
as the write cycles increases, the flash becomes less
reliable. Therefore, error correction code (ECC) must be
employed to correct increasing errors. Lifetime is critical
for write workloads since flash-based cache is sensitive
to write traffic due to the endurance issue.

2.4 Contributions
Intuition tells us that DRAM disk cache can reduce
writes by coalescing and merging multiple writes into
a single write. However, on second thought, we doubt
that it would be effective given that there is a larger
file system cache in main memory above the device
level which already merges writes. For example, typical
DRAM disk cache size in HDDs is 16MB/32MB whereas
file system cache can be 512MB or all free memory for a
PC with 4GB main memory as shown in Fig. 2. Thus, it
is far from clear whether such a small DRAM disk cache
at device level could indeed reduce traffic to persistent
storage.

Moreover, researchers are reluctant to use DRAM in
the disk-cache for this purpose because [8] DRAM is
volatile memory and thus could cause loss of data
upon power failure. Yet, whether DRAM is suitable for
reducing traffic depends on the following factors:

• How much write traffic would be reduced by using
DRAM cache?

• What is the minimal size of DRAM cache to be
effective as a traffic saver?

• How would flash size impact the traffic savings?
• What sort of update policy should be used?
In this paper, we attempt to answer these questions.

3 RELATED WORK
Reducing Write Traffic: Usually, a non-volatile write
cache or log region is employed in front of the flash
medium to catch the write traffic so that less write traffic
would reach the flash medium. Some works [13] [14]
use the emerging memory technologies (e.g., PCM) as
the non-volatile log region. Unlike flash, PCM supports
in-place updating. In addition, PCM is faster than flash.
Due to the front end PCM log region, traffic to the flash
is decreased.

Soundararajan et al. [8] even use disk-based write
caches to extend SSD lifetimes. Their design is based on
the following observations. First, there are many over-
writes of a small set of popular blocks at the block device
level. Second, thanks to the file system cache, there
will be not many immediate reads following a write.
Finally, HDDs are excellent at sequential writes and
reads. Therefore, HDDs fit log-structured write cache
perfectly.

Qureshi et al. [15] have proposed using a DRAM
buffer to lazy-write to PCM in order to improve write
performance as well as lifetime of PCM. However, their
target is at the system level rather than at the device
level. Additionally, they did not deal with the power
failure issue. Therefore, our research is complementary
to theirs.

Using DRAM cache with supercapacitor backup
power to save write traffic does not need many extra
efforts since DRAM is an indispensable part in almost all
flash controllers. A little larger DRAM might be needed
to be used as a traffic saver. The prices of DRAM have
been dropped to the point that adding, for example, 15-
60 MB DRAM to the SSD drives does not cost much to
the total prices of the devices.

4 SYSTEM ARCHITECTURE
There are three major usage models of flash memory:

1) System memory model
2) Disk caches
3) Storage devices (SSDs)

Since our focus is on secondary storage, the system mem-
ory model is beyond the scope of this paper. Therefore,
we deal with two usages for flash: as disk caches in
Hybrid Hard Drives (HHD) and as an independent Solid
State Drive (SSD). For both categories, we propose to use
a DRAM cache to filter write traffic. The use of DRAM
in the first category, i.e. in hybrid hard drive, is shown
in Fig. 3. It shows a DRAM interface to flash; the flash
is used as a cache for the HDD in this case. The DRAM
is used to minimize the traffic to the flash used as a disk
cache. This design is further elaborated in Fig. 5. In Fig.
5, the evictions from the DRAM are retired to the flash

4

through the controller. The functioning of this unit for
reads and writes, with early and lazy updates, is further
elaborated through the flowcharts in Figures 8, 9, 18 and
19. The second category is shown in Fig. 4. There is only
one level of disk cache. Like the first category, flash is
updated only when the data is evicted from the DRAM
cache. The main purpose for doing that is to reduce write
traffic to flash thereby extending the lifetime of flash.

4.1 Comparison of Traffic Mitigation Techniques
The idea of traffic mitigation is to have a non-volatile
cache in front of the flash medium. Apart from our
solution (DRAM with a supercapacitor backup power),
such kind of cache can be:

• Battery-backed DRAM
• SLC as a write cache for MLC
• PCM as a write cache
• HDDs
Since a thorough comparative analysis of all the op-

tions is beyond the scope of this paper, we briefly
describe a few other designs and compare them qual-
itatively with our solution.

4.1.1 Battery-backed DRAM as a write cache
The difference between battery-backed DRAM and our
solution lies only in the way the backup power is
supplied. As calculated in Section 4.2, a period of 10
seconds is long enough for the contents in DRAM to
be transferred into flash. Therefore, we do not need
a long last power supply in the presence of flash. A
supercapacitor backup power is a perfect fit. It does not
suffer from many drawbacks of batteries, such as regular
maintenance or replacement, limited charge/discharge
cycles, slow charge, degrade with shallow discharge.

4.1.2 SLC as a write cache for MLC
SLC can be a write cache for MLC due to the fact that
each SLC block has more write cycles. However, SLC
is expensive. To be feasible, the size of SLC must be
small. The problem with SLC is that SLC also suffers
from write endurance although write endurance is 10
times better than MLC. Therefore, SLC endurance should
be taken into account as a design constraint along with
MLC endurance. Since SLC has 10 times the endurance
of MLC, to reach the same lifetime, SLC can be a tenth
as large as MLC. According to Soundararajan et al. [8],
if SLC receives twice as many writes as MLC (where
MLC receives 50% write savings), SLC should be a fifth
as large as MLC. Hence, the larger the backing MLC
SSD, the larger the SLC cache. For example, a 80GB MLC
SSD, 16GB SLC is needed. It is believed that 16GB SLC
will continue to be expensive enough for a 80GB MLC
SSD to afford. In contrast, the size of primary store in
our solution has little impact on the size of cache, i.e.,
the size of cache alone determines the write savings no
matter how large the primary store is.

4.1.3 PCM as a write cache
Phase-change memory (also known as PCM, PRAM,
PCRAM, etc.) is a type of non-volatile computer memory.
According to ITRS [7], it is in the status of develop-
ment underway and at the border of qualification/pre-
production. PCM is one of a number of new memory
technologies competing in the non-volatile role with the
almost universal flash memory. PCM is a potential choice
to be a write cache for SLC/MLC due to the following
characteristics [16]:

• Nonvolatile
• Fast read speeds: Access times comparable to

DRAM.
• Fast write speeds: Significant write speed improve-

ment over NOR and NAND flash and no erase
needed.

However, The write speed of PCM is far less than
that of DRAM. Additionally, PCM still suffers from write
endurance issues (108) although it improves a lot over
SLC/MLC. It would still be a concern for write-intensive
applications. It is not yet clear that how the future
of PCM will be in terms of price and the production
readiness. Only time will tell. However, our study does
not exclude the use of PCM.

4.1.4 HDDs as a write cache
HDDs have been proposed to be a write cache for flash
to take advantage of the fact that a SATA disk drive
can deliver over 80 MB/s of sequential write bandwidth.
Two observed characteristics support the use of HDDs
as a write cache. First, at block level, there are many
overwrites of a small set of popular blocks. Second, reads
do not follow writes immediately, which gives the write
cache a grace period to flush the contents into flash
before reads. There are two competing imperatives: On
one hand, data should stay longer in write cache in order
to catch more overwrites. On the other hand, data should
be flushed into flash in advance to avoid expensive read
penalty from HDDs. Therefore, many triggers to flush
must be designed to achieve the goal of more overwrites
with less read penalty, which makes it quite complicated.
In contrast, data in our solution can stay as long as the
capacity of the DRAM cache allows since there is no read
penalty.

Flash-based SSDs have many advantages over HDDs
in terms of:

• Acoustic levels: SSDs have no moving parts and
make no sound unlike HDDs.

• Mechanical reliability: SSDs contain no moving
parts thereby virtually eliminating mechanical
breakdowns.

• Susceptibility to environmental factors: Compared
to traditional HDDs, SSDs are typically less sus-
ceptible to physical shock. Additionally, they have
wider temperature ranges.

• Weight and size: The weight of flash memory and
the circuit board material are very light compared
to HDDs.

5

• Power consumption: High performance flash-based
SSDs generally require less power than HDDs.

• Magnetic susceptibility: SSDs are not concerned
about magnets or magnetic surges, which can alter
data on the HDD media.

By introducing HDDs into SSDs, the device as a whole
will lose its advantages in the above aspects. Therefore,
using HDDs as write cache of SSDs may hinder their
wider applications.

Our experimental results show no less write savings
using DRAM cache than using HDD cache although the
comparison may not be precise since we use different
workload traces from Soundararajan et al. [8].

4.1.5 Summary
The comparison between our research and several others
is presented in Table 1. As we can see from the table,
log-structure has been employed in [8] [13] [14]. As
mentioned in [8], log-structure is good at writing but
it incurs read-penalty.

4.2 Fault Tolerance Issue
There is a fault tolerance issue with DRAM cache since
DRAM is volatile memory, which will lose data when
the power is off. There is battery-backed DRAM. How-
ever, batteries have many issues, such as lifetime issue,
maintenance issue, recharge-time issue. In this paper, we
propose to use supercapacitors as backup power for the
controller and DRAM as shown in Fig. 5 (flash as disk
cache) and Fig. 6 (flash as major store).

Supercapacitor backup power has been used by Sea-
gate [17] in their SSDs and Sun Oracle [18] in their
storage systems, which approves that supercapacitors
can fit well in the 2.5-inch form factor. Although the
use of supercapacitors as a backup power source is not
new, we have not found it being used to solve the flash
lifetime issue.

4.2.1 What are Supercapacitors?
A supercapacitor (also known as ultracapacitor) is an
electrochemical capacitor that offers very high capac-
itance in a small package. The amount of energy a
capacitor can hold is measured in microfarads or µF.
(1µF = 10�6 Farad). While small capacitors are rated in
nano-farads (nF=10�9F) and pico-farads (1pF = 10�12F),
supercapacitors come in farads.

4.2.2 Why Supercapacitors not Batteries?
Unlike the electrochemical battery, there is very little
wear and tear induced by cycling and age does not affect
the supercapacitor much. In normal use, a supercapacitor
deteriorates to about 80 percent after 10 years, which
is long enough for most applications whereas a battery
needs many replacements during the lifetime of a device.
Additionally, supercapacitors do not need a full charge
detection circuit like rechargeable batteries. They take as

TA
B

LE
1

C
O

M
PA

R
IS

O
N

O
F

TR
A

FF
IC

M
IT

IG
AT

IO
N

TE
C

H
N

IQ
U

E
S

Te
ch

ni
qu

e!
K

im
et

al
.[

13
]

Su
n

et
al

.[
14

]
Q

ur
es

hi
et

al
.[

15
]

So
un

da
ra

ra
ja

n
et

al
.[

8]
O

ur
s

M
ed

ia
PC

M
PC

M
D

R
A

M
D

is
k-

ba
se

d
D

R
A

M
(s

up
er

ca
pa

ci
to

r)

Tr
af

fic
ha

nd
le

d
M

et
ad

at
a

M
et

ad
at

a
A

ll
da

ta
A

ll
da

ta
A

ll
da

ta

U
pd

at
e

sp
ee

d
Sl

ow
(P

C
M

)
Sl

ow
(P

C
M

)
Fa

st
(D

R
A

M
)

Sl
ow

(H
D

D
)

Fa
st

(D
R

A
M

)

R
ol

e
of

fla
sh

M
ai

n
st

or
ag

e
M

ai
n

st
or

ag
e

N
/A

M
ai

n
st

or
ag

e
D

is
k

ca
ch

e/
m

ai
n

st
or

ag
e

U
sa

ge
Em

be
dd

ed
de

vi
ce

s
Se

co
nd

ar
y

st
or

ag
e

M
ai

n
m

em
or

y
Se

co
nd

ar
y

st
or

ag
e

Se
co

nd
ar

y
st

or
ag

e

W
or

kl
oa

ds
Bl

oc
k

de
vi

ce
Bl

oc
k

de
vi

ce
M

ai
n

m
em

or
y

Bl
oc

k
de

vi
ce

Bl
oc

k
de

vi
ce

R
ea

d
pe

na
lty

Ye
s

Ye
s

N
o

Ye
s

N
o

D
at

a
lo

ss
up

on
N

o
N

o
Ye

s
N

o
N

o
po

w
er

fa
ilu

re
?

C
om

pa
ra

tiv
e

H
ig

h
H

ig
h

Lo
w

H
ig

h
Lo

w
ad

de
d

co
st

?

M
at

ur
ed

te
ch

no
lo

gy
N

o
(P

C
M

)
N

o
(P

C
M

)
N

o(
PC

M
)

Ye
s

(H
D

D
)

Ye
s

(D
R

A
M

)

6

much energy as needed. When full, they stop accepting
charges. There is no danger of overcharge or memory.

The supercapacitor offers high power density although
the energy density is far below that of the battery as
depicted in Fig. 7. Today, supercapacitors can store 5%-
10% as much energy as a modern lithium-ion battery of
the same size. What supercapacitors lack in range, they
make up in the ability to rapidly charge and discharge.
They can be charged in seconds rather than in minutes
or hours. Supercapacitors are already all over the places.
Millions of them provide backup power for the memory
used in microcomputers and cell phones. As mentioned
above, supercapacitors have been used in enterprise
SSDs.

4.2.3 How to calculate the Capacitance of Supercapac-
itors?
The value of a supercapacitor can be estimated [56] by
equating the energy needed during the hold-up period
to the energy decrease in the supercapacitor, starting at
V
wv

and ending at V
min

.
The energy (E

x

) needed during the hold-up period (t):

E
x

= I
V
wv

+ V
min

2
t (1)

The energy decrease (E
y

) as voltage drops from V
wv

to V
min

:

E
y

=
CV 2

wv

2
� CV 2

min

2
(2)

Since E
x

= E
y

, the minimum capacitance value that
guarantees hold-up to V

min

is:

C = I
V
wv

+ V
min

V 2
mv

� V 2
min

t (3)

When the main power is turned off for any reason, the
supercapacitor backup power needs to provide the tem-
porary power long enough for the controller to transfer
the dirty data into flash.

Suppose we use 64MB of DRAM cache, which is
large enough to have an effective write traffic savings.
We use Intel X-25M SSD drives [19] to estimate the
transfer time. The drive needs 5V (+/-5%) power and the
active power is 150mW (current is 0.15/5=0.03A). The
sustained sequential write speed is 70MB for 80 GB SSD
drives. Therefore, in less than one second, 64MB will be
moved into flash. We use 2 seconds to calculate the min-
imum capacitance value. Applying (3), we get C=0.12F.
According to Maxwell [20], supercapacitor prices will be
approaching $0.01 per farad in production volumes of
millions. Apart from supercapacitors, a power control
circuit should be added. However, the total cost would
not be high.

5 METHODOLOGY
Extensive experiments were conducted with a disk sim-
ulator. Our simulator was based on DiskSim 4.0 and
Microsoft SSD add-on, which were implemented in C.
In this Section, we describe the methodology we used in
this paper.

TABLE 2
WORKLOAD CHARACTERISTICS

Deva TIORb Reads IOPSc ARSd(KB)
OpenMail 080 51295 36373 (70%) 5.0/10.0/6.5

096 363789 119400 (32%) 98.29 7.8/7.3/7.5

097 366223 117530 (32%) 7.9/7.5/7.6

098 421270 219553 (52%) 3.6/5.6/4.6

099 424887 227744 (53%) 3.5/5.6/4.5

100 295536 152372 (51%) 3.5/5.4/4.4
UMTR 0 1439434 1439434 (100%) 5.27 15.2/-/15.2

Web3 1 1410370 1409113 (99%) 15/26/15

2 1410493 1410492 (99%) 15/8.0/15.5

3 489 487 (99%) 15/8.0/15

4 486 486 (100%) 15.1/-/15.1

5 434 434 (100%) 16.3/-/16.3
Synthetic 0 10000 6600 (66%) 40.05 6.4/6.2/6.3
workloads
a Device No
b Total I/O Requests
c I/O Per Second
d Average Request Size in KB

5.1 Simulator
We evaluated the proposed architecture using DiskSim
4.0 [21] with flash extension. DiskSim is a widely used
disk drive simulator both in academia and industry
alike. DiskSim is an event-driven simulator. It emulates
a hierarchy of storage components such as buses and
controllers as well as disks. In 2008, Microsoft research
implemented an SSD module [22] on top of DiskSim.
Based on that, we made some changes to the code to
reflect our architecture.

5.2 Workloads and Traces
Many studies of storage performance analysis use traces
of real file system requests to produce more realistic
results. The traces we used are from HP [23] [24] [25]:
OpenMail. In addition, we used disk traces from Uni-
versity of Massachusetts Trace Repository (UMTR) [26]
to test the impact of different update policies on the
disk behavior of enterprise level applications like web
servers, database servers, and web search. Since the
traces were recorded from the device level, they already
include the impact of the file system cache in the main
memory shown in Fig. 2. We also generate synthetic
workloads that represent typical access distributions
and approximate real disk usage. The characteristics of
workloads used in this paper are shown in Table 2.
We selected the first device (which can represent the
workload characteristics in class) within each trace to
report simulation results.

OpenMail [23]: It was a one-hour trace from five
servers running HP’s OpenMail, collected during the
servers’ busy periods. The trace was collected in 1999.

UMTR [26]: There are two kinds of traces: OLTP appli-
cation I/O and search engine I/O. The former includes

7

two I/O traces (Financial1.spc and Financial2.spc) from
OLTP applications running at two large financial insti-
tutions. The later includes three traces (Websearch1.spc,
Websearch2.spc, and Websearch3.spc) from a popular
search engine. These traces are made available courtesy
of Ken Bates from HP, Bruce McNutt from IBM and the
Storage Performance Council.

Synthetic workloads [21]: The synthetic workloads
were generated using DiskSim 4.0 workload generator.
The generator can be configured to generate a wide
range of synthetic workloads. In addition, probability-
distribution parameters can be set to uniform, normal,
exponential, Poisson, or twovalue.

5.3 Performance Metrics
Response time and throughput are generally two impor-
tant metrics in measuring I/O performance. Response
time starts from a request being issued until the re-
quest is served. Throughput measures the ability of a
system in a form of the number of I/Os per second.
The difference between Response time and Throughput is
whether we measure one task (Response Time) or many
tasks (Throughput). According to Hsu and Smith [1],
throughput is hard to be quantified for trace-driven
simulation in that the workloads are constant. How-
ever, they maintain that throughput can be estimated
by taking the reciprocal of the average service time,
which tends to be optimistic estimate of the maximum
throughput. Additionally, we examine the miss ratio of
the read cache and the write cache. The miss ratio is
the fraction of I/Os that need to access physical devices
(HDDs). Finally, flash endurance is measured using the
write traffic (Bytes) to the flash. To compare different
policies (early update policy and lazy update policy),
we introduce Relative Traffic �, which is defined as:

� =
�

↵
(4)

where

- � is the write traffic to flash.
- ↵ is the write traffic to device.
The ideal flash lifetime, which does not take write

amplification into consideration (write amplification will
be discussed later), can be expressed as:

⌘ =
�"

�
(5)

where

- ⌘ is the flash lifetime in days.
- � is the maximum of the flash write cycles (10K-

100K) depending on the type of flash.
- " is the capacity of the device.
- � is the write traffic per day.
As we can see from (5), flash lifetime is related to rated

write cycles � and the capacity of the device ". Since we
will use the same kinds of flash and same size of flash

to compare early update policy to lazy update policy,
we would like to eliminate these two factors from the
equation. In order to do so, we introduce relative lifetime
':

' =
⌘1

⌘2
=

�"

�1
�"

�2

=
�2µ

�1µ
=

�2

�1
=

�2
↵

�1
↵

=
�2

�1
(6)

where

- ⌘1 is the flash lifetime for early update policy.
- ⌘2 is the flash lifetime for lazy update policy.
- µ is the time in days the flash is used.
- �1 is the write traffic to flash per day for early

update policy.
- �2 is the write traffic to flash per day for lazy update

policy.
- �1 is the write traffic to flash for early update policy.
- �2 is the write traffic to flash for lazy update policy.
- ↵ is the total traffic to the device.
- �1 is relative traffic for early update policy.
- �2 is relative traffic for lazy update policy.
From (6), we see that relative lifetime ' can be ex-

pressed using relative traffic �. The advantage of using
relative traffic to compare relative lifetime is that the
rated write cycles � and the capacity of the device " are
taken out of the equation.

The flash lifetime in practice is smaller than the ideal
flash lifetime due to a factor, called write amplification.
Write amplification is referred to as the phenomenon
that n bytes of write traffic from a file system will be
translated into nm (m > 1) bytes of write traffic to flash.
There are several factors [27] that contribute to write
amplification. First, write amplification is caused by
wear leveling, where cold/hot data swapping consumes
extra write cycles. Second, garbage collection contributes
to write amplification. In garbage collection, in order
to reclaim invalid pages, the valid pages within the
reclaiming blocks need to be relocated, which consumes
extra write cycles. Write amplification varies for different
FTL. Usually, simpler FTLs own larger write amplifi-
cation while more complex FTLs have smaller write
amplification. Many efforts have been made to minimize
write amplification to extend flash lifetime. According to
Soundararajan et al. [8], flash lifetime can be an order of
magnitude worse than the optimum even for advanced
FTLs, such as Intel X25-M MLC SSD.

Due to the write amplification, it is not straightforward
to map between reduced write traffic and increased
lifetime. However, decreasing the write traffic in half
will at least double its lifetime because of reduced write
amplification [8].

5.4 DiskSim 4.0 modifications
In doing our research, we made some modifications on
DiskSim4.0. First, we added two trace formats: SRT 1.6
and SPC. In addition, we added a trace filter to control
what types of requests will be fed into our simulator.

8

Next, we added secondary flash cache on top of the
primary disk cache. Last, we fixed bugs with regard to
the incompatibility issue of Type 3 Smart Controller for
Microsoft SSD add-on.

5.5 Validation
DiskSim 4.0 comes with a set of validation tests (run-
valid), which are used to test the simulator. Runvalid
uses a series of validation data to validate the simulator.
The validation data were from a logic analyzer attached
to the SCSI bus. Validation was achieved by comparing
measured and simulated response time distributions.
Our modified version of DiskSim 4.0 produces the same
values as DiskSim 4.0 for all the validation tests.

6 TRAFFIC SAVINGS FOR FLASH AS A VICTIM
DISK CACHE

In this Section, we focus our research on flash being
as a victim disk cache, whose architecture was shown
in Fig. 3. There are two levels of disk caches: primary
DRAM disk cache and secondary flash disk cache. We
concentrated on the relationship between the two levels
of disk caches: when is the right time to update the flash
disk cache?

6.1 Early Update vs. Lazy Update
Early update means the flash is updated as soon as the
DRAM cache is updated. Lazy update is referred to as
the policy that the flash is updated only when the data is
evicted from DRAM cache. In other words, flash acts as
a victim device of the DRAM cache. Traditionally, early
update policy is employed. For examples, Bisson et al.
[28] and Kgil et al. [29] [30] [31] use early update policy.

6.2 Lazy Update Policy for Reads
When a read request arrives, DRAM cache is first
checked as shown in Fig. 8. If found in DRAM cache,
then the request can be served through DRAM cache. If
not, then check with flash. If it has an entry in it, the
request can be satisfied by flash. The data will also be
copied into DRAM cache. If the data is not in flash either,
then the data is fetched from HDDs and it is cached in
DRAM cache. But flash is not updated until the data is
evicted.

6.3 Lazy Update Policy for Writes
When a write request arrives, DRAM cache is first
checked as shown in Fig. 9. If found in DRAM cache, the
request will be merged. If not, allocate an entry in DRAM
cache. If there is no space, the least used clean data will
be evicted. The evicted data will be copied into flash. If
all data in DRAM cache are dirty, the write request has
to wait for the dirty data to be retired into HDDs.

6.4 The Benefits of Lazy Update Policy

Lazy update policy benefits from the fact that block
devices receive many overwrites of a small set of popu-
lar blocks. One cause for overwrites is that many file
systems enforce a 30-second rule [25], which flushes
buffered writes to disks every 30 seconds for the sake of
data integrity. Soundararajan et al. [8] have found that,
on average, 54% of the total overwrites occur within
the first 30 seconds, which confirms the role that 30-
second rule plays. Some file systems, such as ext2, flush
metadata more frequently (e.g., every 5 seconds) [32].
With lazy update policy, overwrites can be coalesced
thereby reducing the write traffic to flash significantly.

6.5 Experimental Results

We ran OpenMail, Synthetic, and Websearch3 workload
traces against early update policy and lazy update policy,
during which relative traffic, miss ratio, and average
response time were observed. We especially watched the
impact of DRAM size and flash size on relative traffic
savings. The simulation results are shown in Fig. 10
through Fig. 17. Several observations can be made from
these figures.

6.5.1 Write Traffic Savings

OpenMail (Fig. 10 and Fig. 11): relative traffic with lazy
update policy is 50% of that with early update policy
when DRAM size reaches 25MB (0.33 for lazy update
policy vs. 0.68 for early update policy).

Synthetic workload (Fig. 12 and Fig. 13): relative traffic
with lazy update policy is 50% of that with early update
policy when DRAM size reaches 60MB (roughly 0.5 for
lazy update policy vs. 1 for early update policy).

Websearch3 : relative traffic does not show improve-
ment with Websearch3 because Websearch3 is a read-
only workload. For read-only workloads, there is no
overwrite that can be coalesced using lazy update policy.

6.5.2 DRAM Size Need Not to be Very Large to be
Effective

DRAM size ranges from 15MB to 60MB depending on
the workloads, which is shown in Fig. 10 and Fig. 12.

6.5.3 Flash size has little effect on Write Traffic Savings

As can be seen from Fig. 11 and Fig. 13, flash size has
little impact on write traffic savings when compared to
varying DRAM size.

We see that the write traffic savings depend mainly
on DRAM size rather than flash size. This is a great
characteristic since a moderate size of DRAM cache
(< 60MB) can extend the flash lifetime significantly no
matter how large the flash is.

9

6.5.4 Summary
As we can see from the results, the write traffic savings
depend upon the DRAM size as well as the workloads
characteristics. The lazy update policy improvement
over early update policy for OpenMail and synthetic
workloads is presented in Fig. 14, Fig. 15, Fig. 16, and
Fig. 17 respectively.

Miss Ratio: we notice that miss ratio with lazy update
policy is slightly better than that with early update
policy.

Response Time: we observe that response time with
lazy update policy remains unchanged.

Traffic Reducing: although we see no big difference in
terms of miss ratio and average response time with lazy
update policy, the write traffic is significantly reduced.

7 TRAFFIC SAVINGS FOR FLASH AS A MAJOR
STORAGE MEDIUM

In this Section, we focus our research on flash used as a
primary store instead of a victim disk cache, whose ar-
chitecture was shown in Fig. 4. Unlike a disk cache, read
requests would not entail write traffic to flash. Moreover,
as a major storage medium, we assume the flash size
is much larger than a disk cache. We still concentrated
on the impact that update policies have on the lifetime
of flash. Compared with the early update policy, our
study shows that using flash as a victim device (which
corresponds to lazy update policy) can extend a lot of
lifetime. At the same time, the performance in terms of
response time improves as well.

7.1 Early Update for reads
When a read request arrives, DRAM cache is first
checked. If found, then the request is satisfied. Other-
wise, data is read from flash. Meanwhile, DRAM cache is
updated upon receiving data from flash. There is no need
for DRAM eviction when doing read in early update
policy, as there is no dirty data. If the data is not found
in the DRAM, it is read from the flash and the DRAM
data is simply overwritten without eviction.

7.2 Early Update for writes
When a write request arrives, search in DRAM cache
first. If found, merge the data. Otherwise, DRAM cache
is updated. Next, update flash with Write Counter incre-
mented.

7.3 Lazy Update for reads
The flowchart of lazy update for reads is shown in Fig.
18. When a read request arrives, search in DRAM cache.
If found, return the data. If not, read the data from flash.
Next, update DRAM cache with the new data. If a dirty
data entry is evicted from DRAM cache, update flash
with the Write Counter incremented.

7.4 Lazy Update writes
The flowchart of lazy update for writes is shown in
Fig. 19. When a write request arrives, search in DRAM
cache. If found, merge the data. Otherwise, DRAM cache
is updated. If dirty data is evicted from DRAM cache,
update the flash with the Write Counter incremented.

7.5 Experimental Results
We ran OpenMail, Synthetic, and Websearch3 workload
traces against early update policy and lazy update policy,
during which relative traffic and average response time
were observed. We especially watched the impact of
DRAM size on relative traffic savings. The simulation
results are shown in Fig. 20 through Fig. 23. Several
observations can be made from these figures.

7.5.1 Write Traffic Savings
OpenMail (Fig. 20): relative traffic with lazy update
policy is roughly 33% of that with early update policy
when DRAM size reaches 10MB (0.33 for lazy update
policy vs. 1 for early update policy).

Synthetic workload (Fig. 21): relative traffic with lazy
update policy is roughly 40% of that with early update
policy when DRAM size reaches 10MB (roughly 0.4 for
lazy update policy vs. 1 for early update policy).

Websearch3 : relative traffic does not show improve-
ment with Websearch3 because Websearch3 is a read-
only workload. For read-only workloads, there is no
overwrite that can be coalesced using lazy update policy.

7.5.2 DRAM Size Needs not to be Large to Be Effective
DRAM size larger than 10MB is effective to reduce write
traffic significantly, which is shown in Fig. 20 and Fig.
21.

7.5.3 Summary
The lazy update policy improvement over early update
policy for OpenMail and synthetic workloads has been
presented in Fig. 22 and Fig. 23 respectively.

Response Time: performance in terms of average
response time shows marked improvement.

Traffic Reducing: lazy update policy reduces write
traffic significantly with read/write workloads.

8 CONCLUSIONS

This paper introduced the following main contributions
that aim to extend the lifetime of flash:

• Extend the lifetime of flash in a new way: DRAM
cache has been used to improve performance in
terms of response time. Due to its volatile nature,
researchers are reluctant to use it to save write
traffic. Soundararajan et al. [8] put it this way,
“RAM can make for a fast and effective write cache,
however the overriding problem with RAM is that
it is not persistent (absent some power-continuity

10

arrangements).” The potential of DRAM cache being
a write traffic saver has been overlooked.

• Solve the data integrity: An Achilles’ heel is that
the data will be lost in case of power failure. A
common way to solve this issue is to have a bat-
tery backup power. However, batteries have limited
charge/discharge cycles and need regular mainte-
nance or replacements. Instead, we proposed to use
a supercapacitor backup power. Supercapacitors are
perfect at supplying short period of power in this
scenario.

We have demonstrated through simulation that a
medium-sized DRAM cache can save up to 50% write
traffic to flash, which is translated into at least doubling
the lifetime of flash. Meanwhile, performance in terms
of response time and miss ratio shows improvement
as well. Furthermore, our findings can be applied to
computer main memory to enhance data integrity of
computer systems.

9 FUTURE WORK
Our work in this paper is at device level. However, we
realize that the concept of supercapcitor backup power
can be applied to computer main memory to enhance
data integrity of computer systems as well.

A conventional practice to alleviate data loss due to
unexpected power failure is to enforce a 30-second flush
rule, as Unix operating systems do. The negative side
of the rule is that disk fragmentation is increased, which
will decrease its performance. Some important computer
systems are even equipped with Uninterruptible Power
Supply (UPS) to protect its data.

With a supercapacitor backup power, backing flash,
and controller, the content of main memory can be
backed up into flash on power loss. The data can be
recovered on power resuming. In this context, 30-second
flush rule is no longer needed, which would reduce
disk fragmentation and improve data integrity as well
as performance improvement.

In addition, future research should address the size
of DRAM cache for PCM/MRAM memories, retirement
policies and the size of super-capacitor needed for effec-
tive fault tolerance upon power failure.

ACKNOWLEDGMENTS
This work was supported in part by grants
DARPA/AFRL FA8750-09-1-0163 and NSF # 0966278

REFERENCES
[1] W. Hsu and A. J. Smith, “The performance impact of I/O opti-

mizations and disk improvements,” IBM J. Res. Dev., vol. 48, no. 2,
pp. 255–289, 2004.

[2] SolarisTM ZFSTM enables hybrid storage pools–
Shatters economic and performance barriers. [On-
line]. Available: http://download.intel.com/design/flash/nand/
SolarisZFS SolutionBrief.pdf

[3] “Understanding the flash translation layer (FTL) specification,”
Intel Corporation, Tech. Rep., 1998.

[4] Y. Kim, A. Gupta, and B. Urgaonkar, “MixedStore: An enterprise-
scale storage system combining Solid-state and Hard Disk Drives
,” The Pennsylvania State University, Tech. Rep., 2008.

[5] “NAND evolution and its effects on Solid State Drive (SSD)
useable life,” Western Digital, White paper WP-001-01R, 2009.

[6] J. Hutchby and M. Garner. Assessment of the
potential & maturity of selected emerging research
memory technologies. Workshop & ERD/ERM Working
Group Meeting (April 6-7, 2010). [Online]. Available:
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/
ERD ERM 2010FINALReportMemoryAssessment ITRS.pdf

[7] (2010) Process integration, devices & structures. The International
Technology Roadmap for Semiconductors. [Online]. Available:
http://www.itrs.net/Links/2010ITRS/Home2010.htm

[8] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and
T. Wobber, “Extending SSD lifetimes with disk-based write
caches,” in Proceedings of the 8th USENIX conference on
File and storage technologies, ser. FAST’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 8–8. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855511.1855519

[9] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee, “CFLRU:
a replacement algorithm for flash memory,” in Proceedings
of the 2006 international conference on Compilers, architecture
and synthesis for embedded systems, ser. CASES ’06. New
York, NY, USA: ACM, 2006, pp. 234–241. [Online]. Available:
http://doi.acm.org/10.1145/1176760.1176789

[10] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee, “FAB: flash-
aware buffer management policy for portable media players,”
Consumer Electronics, IEEE Transactions on, vol. 52, no. 2, pp. 485
– 493, May 2006.

[11] H. Kim and S. Ahn, “BPLRU: a buffer management scheme
for improving random writes in flash storage,” in Proceedings of
the 6th USENIX Conference on File and Storage Technologies, ser.
FAST’08. Berkeley, CA, USA: USENIX Association, 2008, pp.
16:1–16:14. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1364813.1364829

[12] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level
address mappings,” in ASPLOS ’09: Proceeding of the 14th interna-
tional conference on Architectural support for programming languages
and operating systems. New York, NY, USA: ACM, 2009, pp. 229–
240.

[13] J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng, “A PRAM
and NAND flash hybrid architecture for high-performance
embedded storage subsystems,” in Proceedings of the 8th ACM
international conference on Embedded software, ser. EMSOFT ’08.
New York, NY, USA: ACM, 2008, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/1450058.1450064

[14] G. Sun, Y. Joo, Y. Chen, D. Niu, Y. Xie, Y. Chen, and H. Li,
“A hybrid solid-state storage architecture for the performance,
energy consumption, and lifetime improvement,” in High Perfor-
mance Computer Architecture (HPCA), 2010 IEEE 16th International
Symposium on, 9-14 2010, pp. 1 –12.

[15] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable
high performance main memory system using phase-change
memory technology,” in Proceedings of the 36th annual international
symposium on Computer architecture, ser. ISCA ’09. New
York, NY, USA: ACM, 2009, pp. 24–33. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555760

[16] “The basics of phase change memory (PCM) technology,”
Numonyx White Paper. [Online]. Available: www.numonyx.
com/Documents/WhitePapers/PCM Basics WP.pdf

[17] Pulsar. Seagate. [Online]. Available: http://www.seagate.com/
staticfiles/support/disc/manuals/ssd/100596473a.pdf

[18] Sun Storage F5100 flash array. Sun Oracle.
[Online]. Available: http://www.oracle.com/us/products/
servers-storage/storage/disk-storage/043970.pdf

[19] Intel R� X18-M/X25-M SATA Solid State Drive-34 nm product
line. Intel Corporation. [Online]. Available: http://download.
intel.com/design/flash/nand/mainstream/322296.pdf

[20] A. Schneuwly, G. Sartorelli, J. Auer, and B. Maher. Ultracapacitor
applications in the power electronic world. Maxwell Technologies.
[Online]. Available: http://www.maxwell.com/ultracapacitors/
white-papers/power electronic applications.pdf

[21] J. S. Bucy, J. Schindler, S. Schlosser, G. R. Ganger, and Con-

11

tributors, The DiskSim simulation environment version 4.0 reference
manual, Carnegie Mellon University, Pittsburgh, PA, 2008.

[22] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in
USENIX 2008 Annual Technical Conference on Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2008, pp.
57–70. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1404014.1404019

[23] HP open source software. [Online]. Available: http://tesla.hpl.
hp.com/opensource/

[24] Block I/O traces from SNIA. [Online]. Available: http://iotta.
snia.org/traces/list/BlockIO

[25] C. Ruemmler and J. Wilkes, “Unix disk access patterns.” in
USENIX Winter’93, 1993, pp. 405–420.

[26] University of Massachusetts trace. [Online]. Available: http:
//traces.cs.umass.edu/index.php/Storage/Storage

[27] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka,
“Write amplification analysis in flash-based solid state drives,”
in Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference, ser. SYSTOR ’09. New York, NY, USA: ACM, 2009,
pp. 10:1–10:9. [Online]. Available: http://doi.acm.org/10.1145/
1534530.1534544

[28] T. Bisson and S. A. Brandt, “Reducing Hybrid Disk write latency
with flash-backed I/O requests,” in Proceedings of the 2007 15th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 402–409. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1474555.1475519

[29] T. Kgil and T. Mudge, “Flashcache: a NAND flash memory
file cache for low power web servers,” in Proceedings of
the 2006 international conference on Compilers, architecture and
synthesis for embedded systems, ser. CASES ’06. New York,
NY, USA: ACM, 2006, pp. 103–112. [Online]. Available: http:
//doi.acm.org/10.1145/1176760.1176774

[30] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND flash
based disk caches,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ser. ISCA ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 327–338. [Online].
Available: http://dx.doi.org/10.1109/ISCA.2008.32

[31] D. Roberts, T. Kgil, and T. Mudge, “Integrating NAND flash
devices onto servers,” Commun. ACM, vol. 52, pp. 98–103, April
2009. [Online]. Available: http://doi.acm.org/10.1145/1498765.
1498791

[32] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Analysis and evolution of journaling file systems,”
in Proceedings of the annual conference on USENIX Annual
Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 8–8. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1247360.1247368

Chengjun Wang received the BS degree in Radio Electronics from
Shandong University in 1988, the ME in Computer Engineering from
Chinese Academy of Sciences in 1992, the Ph.D. degree in Computer
Science from Auburn University in 2011. Currently, he is an assis-
tant professor in the Department of Computer Information Systems
at Vermont Technical College. His research interests are in computer
architecture, storage systems, and embedded computing.

Sanjeev Baskiyar received the BS degree from Indian Institute of Sci-
ence, Bangalore, MSEE and PhD degrees from University of Minnesota,
Minneapolis. Currently he is Associate Professor in the department
of Computer Science and Software Engineering at Auburn Univer-
sity, Auburn, AL. His research interests are in Computer Architecture,
Scheduling and Real-time and Embedded Computing.

12

Fig. 1. Lifetime of Flash

���

������	

������	

��
���
����
��
�
�����
�����	
�

�
������	

�����������	�

����� ��

 ���
���
!
�

�
!
�
��
!
�

Fig. 2. Memory hierarchy of computers

�������������

��	
����
������

����������

���	�������

��	

Fig. 3. System architecture of Hybrid Hard Drives (HHD)

�������������

		���
���

�� ����������

		�

Fig. 4. System architecture of Solid State Drives (SSD)

Device
Interface

Controller DRAM

Flash
Array

Disks

Supercapacitor

Fig. 5. Flash as disk cache with a supercapacitor backup
power

Device
Interface

Controller DRAM

Flash
Array

Flash Module

Supercapacitor

Fig. 6. Flash as major store with a supercapacitor backup
power

Fig. 7. Supercapacitor and rechargeable batteries

13

Read Requests

Data in DRAM?

Return

Yes

Data in Flash?

No

Yes

Read from Disk

No

Update DRAM

Evicted from
DRAM?Update Flash

Increment Flash
Write Counter

Return

No

Yes

Fig. 8. Lazy update for reads (HHD)

Write requests

In DRAM?

Merge

Yes

Return

In Flash?

No

Update DRAM

No

Invalid Flash Data
Entry

Yes

Evicted from
DRAM?

No

Update Flash
Yes

Increment Write
Counter

Fig. 9. Lazy update for writes (HHD)

�����

����

�����

����

�����

����

�����

����

�����

���	

�� �� �
� �
� ��� ��� ��� ���

��

�
���
��
��
��

�

�������������������

�
����������������
��

 ��
!
"��!

Fig. 10. Relative traffic for OpenMail (HHD)

����

�����

����

�����

����

�����

����

�� ��� ��� �	� �	� �
� �
�

��

�
���
��
��
��

�

�
������������������

�������������������

 ��
!
"��!

Fig. 11. Relative traffic for OpenMail (HHD)

��

����

����

����

����

����

���	

���

����

����

��

�� ��� ��� �	� ��� ���� ���� ����

�
��
���

��
��
��

�

�
�����������������

 ���������������!	���

"���#
$��#

Fig. 12. Relative traffic for Synthetic workload (HHD)

14

�����

�����

�����

�����

����	

����

�����

��

�� ��� ��� ��� ��� ��� ��� �	�

�
��
���
��
��
��

�

��������������������

�
 ������������!���

"���#
$��#

Fig. 13. Relative traffic for Synthetic workload (HHD)

��

���

���

���

���

����

�� �� ��� ��� ��� ��� �	� �	�

�
�

��
��

��
���

���
��

��
��

��
��

��
��

��
��

��
�

��
�

��
��

��
��

��
��

���
�

!
"

#$%&����'��(��� &)"

*��('����'��(���+	�&)

$��������,
�-�
&�((�$����

$�(���(��,���

Fig. 14. Improvement of lazy update policy over early
update policy for OpenMail (HHD)

��

���

���

���

���

����

�� ��� ��� ��� ��� �	� �	�
�
�

��
��
��
���
���
��
��
��
��
��
��
��
��
��
��
�

��
�

��
��
��
��
��
��
���
��
��
!

"��#$����$��#����%&!

'()%����$��#���*�%&

(��������+
�,�
%�##�(����

(�#���#��+���

Fig. 15. Improvement of lazy update policy over early
update policy for OpenMail (HHD)

��

���

���

���

���

����

�� ��� ��� ��� ��� ���� ���� ����

�	

�

�

�	

��
���

���
��

��
�

��
��

��
��

��
��

�

��

��
��

��
��

�
��

��
��

���
��

�

!"#$����%��&����$'

(��&%����%��&���)��$'

"�����
��*��+�
$�&&�"����

"�&
��&��*�	�

Fig. 16. Improvement of lazy update policy over early
update policy for synthetic workload (HHD)

��

���

���

���

���

����

�� ��� ��� ��� ��� �	� ��� �
���

�

��
��

��
���

���
��

��
�

��
��

��
��

��
��

��
��

��
��

��
��

�
��

��
��

���
��

� !
"

#��$%����%��$��� &'"

()*&����%��$���+�&'

)��������,��-�
&�$$�)����

)�$
��$��,���

Fig. 17. Improvement of lazy update policy over early
update policy for synthetic workload (HHD)

15

Read Request

In DRAM

Return

Yes Read from Flash

No

Update DRAM

Evicted from
DRAM?

Return

No

Dirty? No

Yes

Update Flash

Yes

Increment Write
Counter

Fig. 18. Lazy update for reads (SSD)

Write requests

In DRAM?

Merge

Yes

Update DRAM

Evicted from
DRAM?

return

No

Dirty?

Yes

Update Flash

Increment Write
counter

Yes

No

No

Fig. 19. Lazy update for writes (SSD)

����

����

����

����

����

���	

���

����

����

��

�� ��� ��� �	� ��� ���� ���� ����

�
��
���
��
��
��

�

�
�����������������

 ���!
"��!

Fig. 20. Relative traffic for OpenMail (SSD)

16

��

����

����

����

����

����

���	

���

����

����

��

�� ���� ���� ���� ���� ���� �	��

�
��
���
��
��
��

�

�
�����������������

 ���!
"��!

Fig. 21. Relative traffic for Synthetic workloads (SSD)

��

���

���

���

���

����

�� ��� ��� ��� ��� ���� ���� ����

�	

�

�

�	

��
���

���
��

��
�

��
��

��
��

��
��

�

��

��
��

��
��

�
��

��
��

���
��

�

!"#$����%��&����$'

"�����
��(��)�
"�&
��&��(�	�

Fig. 22. Improvement of lazy update policy over early
update policy for OpenMail (SSD)

��

���

���

���

���

����

�� ���� ���� ���� ���� �	�� ����

�
�

��
��

��
���

���
��

��
��

��
��

��
��

��
��

��
�

��
�

��
��

��
��

��
��

���
�

!
"

#$%&����'��(��� &)"

$��������*
�+�
$�(���(��*���

Fig. 23. Improvement of lazy update policy over early
update policy for synthetic workload (SSD)

