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Abstract In this chapter, two aspects of database systems, namely database man-
agement and data mining, for the smart grid are covered. The uses of database man-
agement and data mining for the electrical power grid comprising of the interrelated
subsystems of power generation, transmission, distribution, and utilization are dis-
cussed.

1 Introduction

Since the smart grid reply on modern information and communication technology
(ICT) infrastructure, database systems, which are one of the vital components of
ICT, are indispensable in the smart grid. Database systems allows the data in the
smart grid to be stored in a systematic manner and enable them to be retrieved,
processed and analyzed either immediately (i.e., online data processing/analysis) or
later (i.e., historical data processing/analysis).

Because of the involvement of database systems, the smart grid is no longer a
business dominated by utility companies and electricity hardware companies alone.
Several big software companies in data-centric business such as Teradata [10], Ora-
cle [6], SAS [8], SAP [7], IBM [4], Microsoft [5], and Google [3] are active players
in the smart grid arena now.

There are two main aspects of a database system, namely database management
(data storage, transaction processing, and querying), and data mining (analysis of
data to gain certain knowledge or facilitate certain decision making). These two as-
pects are naturally interrelated and are like the two sides of a coin. Both are essential
for the business process of the smart grid’s operations.
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In this chapter, we will cover the applications of database management and
data mining in the smart grid for power generation, transmission, distribution, and
utilization (consumption). Again, these four application areas are interrelated and
somewhat overlapping especially because of the interconnected nature of the smart
grid.

The development of smart grid is an evolutionary process. During the smart grid’s
introduction phase, the two generations of technologies will coexist [24]. For ICT
components (both software and hardware), a majority of legacy systems are first to
be integrated into the smart grid and later phased out and replaced by the newer
technologies. However, for power system components, the introduction of smart
gird will not even drastically change the basic mechanisms of the power system’s
mechanical and electrical equipment (except that they will now be more intelligent
and responsive because of incorporation of ICT). For example, a gas turbine will
still operate just in the same way to convert natural gas into electrical power as it
did in the old non-smart grid — albeit it may now use less amount of gas because of
a more intelligent control system. So, a database recording the operations of such a
gas turbine will be more or less the same in both the traditional grid and the smart
grid.

For the aforementioned reasons, we believe that both the earlier systems for sys-
tematic power grid data management/mining even before the word smart grid was
coined as well as the newer systems which were explicitly proposed for the smart
grid are worth covering. As such, in this chapter, we will include the literature on
power grid database systems both before and after the concept of the smart grid was
conceived.

In the following two sections, database management and data mining for power
grids will be respectively covered.

2 Power Grid Database Management

In this section, we will cover the database management technologies in general and
then the applications of database management for a power grid in its four subsys-
tems: generation, transmission, distribution, and utilization.

2.1 Database Management Technologies

In modern days, management of data in an ICT system is centered around a proper
database management system (DBMS) or sometimes simply a file system (FS). In
both cases, the basic operations of data management are:

• Schema creation: defining format of data and relationships among data.
• Data insertion: populating the database/files with data.
• Data maintenance: updating or deleting existing data.
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• Querying and reporting: retrieval of stored data as per users’ business require-
ments.

• Performance optimization: making the retrieval process faster by using indexes,
etc.

• User account management: defining which user has a right to do which opera-
tions on which data.

• Backup and recovery: preventing accidental loss of data.

For DBMS, relational database (composing of tables which are mathematically
termed “relations”) is the most common standard. Some commonly used relational
DBMS are Oracle (proprietary), Microsoft SQL Server (proprietary), IBM DB2 and
Informix (proprietary), SAP Sybase (proprietary), MySQL (open source), and Post-
greSQL (open source). Structured query language (SQL) is a common interface to
retrieve data from relational DBMS.

Recently, post-relational database systems called NoSQL (Not only SQL) [76]
become more and more common. NoSQL database systems include document-
oriented databases (e.g., MongoDB), XML databases (e.g., BaseX) graph databases
(e.g., InfiniteGraph), key-value stores (e.g., Apache Cassandra), multi-value databases
(e.g., OpenQM), object-oriented databases (e.g., db4o), RDF (resource descrip-
tion framework) databases (e.g., Meronymy SPARQL), tabular databases (e.g.,
BigTable), tuple databases (e.g., Jini), and column-oriented databases (e.g., c-store).
NoSQL database systems use conventional programming languages like C++, C#,
Java, and Erlang, or XQuery in the case of XML databases in order to interface and
retrieve data from the databases.

In addition to NoSQL databases, parallel and distributed file systems such as
Apache Hadoop [1] and Google MapReduce [75] become increasingly popular.
Since the smart grid by its own nature is distributed and the resources (like smart
meters, meter data concentrators, substation transformers, etc.) in it are geographi-
cally scattered, distributed file systems can potentially be very useful for the smart
grid.

Generally, databases are stored on centralized or distributed magmatic hard disk
drives. However, new paradigms of databases stored on main memory (such as
voltDB) and solid state drives (such as [59]) are emerging because of the increased
availability of high-capacity main memory and solid state equipment at low costs.

Another increasing popular approach nowadays is to store databases in the cloud.
Cloud computing and cloud database [71] are also the emerging trends that are much
relevant to the smart grid. A cloud database can be in the form of either a virtual ma-
chine instance which can be purchased for a limited time or a database as a service
in which the service provider installs and maintains the database, and application
owners pay according to their usage. Amazon’s DynamoDB and SimpleDB are ex-
amples of database as a service.

“Big data” (meaning several tera- to peta-bytes of data) is one of the current hot
topics. Big data is a crucial issue for the smart grid it since an enormous volume of
data is expected to be generated from its large number of connected devices and sen-
sors at every short time interval. IBM Netezza is one of the examples of DBMS that
can handle big data. The parallel/distributed data management techniques of Hadoop
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and MapReduce are also highly relevant to deal with big data because usually the
big data is not centralized but distributed among several computing resources.

Finally, data integration is an important issue for complex systems with multiple
components like the smart grid. Data from different sources, probably by different
vendors, having different formats and semantics are to be systematically integrated
to form a single uniform data source, which can be either virtual or physical. Such
an integrated data source can facilitate an integrated information system that stream-
lines various business processes in a utility company. Most common data integration
techniques are data warehousing, XML, and ontology-based techniques.

A high-level diagram illustrating the interrelationships among the various mod-
ern database management technologies and their applications in the different areas
of power grid data management is shown as Figure 1.
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2.2 Generation Data Management

Power plants generate electrical power from traditional sources such as natural gas,
petroleum, coal, nuclear, or hydro power as well as modern renewable sources such
as wind or solar power. Database systems for power plants have different structures
and contents depending on the type of the energy source.

Li et al. [45] describes a database system for a coal-based power plant which
records and processes the data specific to coal-operated stream turbines (such as
main steam pressure, feed water temperature, reheater spray, flue gas temperature,
excess air coefficient, and condenser vacuum).

Huang et al. [36] discusses data management systems for a hydro power plant,
particularly the automatic generator tripping and load shedding system installed at
the Churchill Falls hydro power plant in Labrador, Canada by Hydro-Quebec.

Swartz et al. [66] proposes a wireless sensors network-based data collection and
management system for wind farms to provide information about the dynamic be-
havior of the wind turbines and their response to loading.

2.3 Transmission and Distribution Data Management

After the power has been generated, it is transformed into high-voltage electricity
using step-up transformers, and is transmitted along the transmission lines to mul-
tiple substations. At a substation, the electricity’s voltage is transformed again to a
level suitable for consumption by using a step-down transformer. Then, the electric-
ity is distributed to the consumers for utilization.

Early examples of database systems for power transmission/distribution systems
in the literature are [15] and [56].

Generally, distributed control system (DCS) and supervisory control and data
acquisition (SCADA) are employed to operate various equipment used in power
transmission and distribution. DCS and SCADA are usually proprietary systems
from big industrial players in the power industry such as GE [2] and Siemens [9].
Being proprietary systems, they are closed and sometimes can be legacy systems.
In some cases, the data format they provide can be non-standard (especially for old
legacy systems). Thus, acquiring data from all these systems to build a common
database system can be sometimes difficult. In the worst cases, manual data entry
can be required [64].

It is not uncommon to have systems from multiple vendors in a single power
facility. In order to provide a standardized interface and allow easy exchange of
data among different prices of software by different vendors, common information
model (CIM) [72, 63], generic substation events [74], and substation configuration
language (SCL) [78] have been proposed.

Depending on the nature of application, the data generated by various pieces of
power system equipment have to be stored in different formats [51]. They are:
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• Raw waveforms (voltage and currents) sampled at relatively high sampling fre-
quencies.

• Pre-processed waveforms (e.g., RMS) typically sampled at low sampling fre-
quencies.

• Status variables (e.g., if a relay is opened or closed) typically sampled at low
sampling frequencies.

A number of white papers and research articles on the database systems for power
transmission/distribution systems exist in the literature. Some examples, which are
by no means complete, are as follows.

Simpson [64] describes a power system database recording transformer name
plate data, single line diagrams, measured data, protective device coordination,
harmonic analysis, transistent calculation, load flow calculation, and short circuit
calculation. Martinez et al. [49] gives detailed descriptions about comprehensive
archiving and management of power system data for real-time performance mon-
itoring using CERTS (Consortium for Electric Reliability Technology Solutions)
architecture. Qiu et al. [57] proposes a system of real-time and historical (archived)
databases to allow operations, controls, and analysis of power transmission and dis-
tribution. An example of a practical database schema to be used for in transmission
utility enterprise-wide framework using ArcGIS, ArcSDE, Microsoft SQL Server
and .NET is given in [55]. In [47] and [65], the issues of data integration in power
systems are discussed. In [81], Zheng et al. proposes a cloud computing and cloud
database framework for substations of the smart gird. Rusitschka et al. [60] dis-
cusses the use of cloud data management for outage management [77] and virtual
power plant [14].

A comprehensive list of monitoring subsystems whose measurement data are to
be collected and stored in the database for a modern power transmission/distribution
system of the smart grid is provided by Kaplan et al. [38]. These collected data al-
lows advanced tools to analyze system conditions, perform real-time contingency
analysis, and initiate a necessary course of action as needed. These monitoring sub-
systems as described in [38] are:

• Wide-area monitoring system: GPS (global positioning system)-based phasor
monitoring unit (PMU) that measures the instantaneous magnitude of voltage or
current at a selected grid location. This provides a global and dynamic view of
the power system.

• Dynamic line rating technology: measures the ampacity of a line in real time.
• Conductor/ compression connector sensor: measures conductor temperature to

allow accurate dynamic rating of overhead lines and line sag, thus determining
line rating.

• Insulation confirmation leakage sensor: continuously monitors leakage current
and extracts key parameters. This is critical to determining when an insulator
flashover is imminent due to contamination.

• Backscatter radio: provides improved data and warning of transmission and
distribution component failure.
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• Electronic instrument transformer: replaces precise electromagnetic devices
(such as current transformers and potential transformers) that convert high volt-
ages and currents to manageable, measurable levels.

• Other monitoring systems:

– Fiber-optic, temperature monitoring system.
– Circuit breaker real-time monitoring system.
– Cable monitor.
– Battery monitor.
– Sophisticated monitoring tool: combines several different temperature and

current measurements.

2.4 Utilization Data Management

The distributed electricity is utilized (consumed) at the consumers’ end. Consumers
may be of several types: residential (e.g., individual houses and apartment build-
ings), commercial (e.g., banks), industrial (e.g., factories) , transportation (e.g., sub-
ways), emergency services (e.g., hospitals), and governmental services (e.g., police),
etc. Obviously, power utilization is most visible aspect of a power grid for the public.

In the old traditional grid, a traditional meter on customer’s premises is read by
a meter reading staff at a regular interval (e.g., once a month), and the meter read-
ings (utilization data) are manually entered into the database system in the utility
company. This utilization data is quite passive and is mainly used for the purpose
of billing. It has no or little use in real-time monitoring and control of the power
system in operation because of a very long time lag (e.g., up to one month) between
actual power utilization and data gathering.

However, in the era of the smart grid, smart meters are installed in consumers’
premises. Among its many functionality, the main function of a smart meter is to
record and transmit the utilization data to the utility company at relatively short
time intervals (e.g., every 5, 10, or 15 minutes). The utilization data can be either
fine-grained (separate data for individual appliances or groups of appliances in the
same electrical circuits) or coarse-grained (aggregated data for the whole premises).
A smart meter may he equipped with a small local storage (e.g., SD card) to store
some intermediate utilization data.

The data collection is hierarchical in nature. The power utilization data from a
number of smart meters are first transmitted to a data concentrator, and a number of
data concentrators relay the data to the central server at the utility company where
the data is stored in the utilization database covering a large number of consumers.

The above process of data collection is called automatic meter reading (AMR)
[70]. It is a one-way communication process in which the data is transmitted from
the smart meter end to the server end through the data concentrator. Later AMR is
improved into a more sophisticated system named advanced metering infrastructure
(AMI) [69, 32]. AMI allows two-way communication between the smart meter and
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the server end. The server can send messages regarding real-time pricing, control
commands to switch on/off certain appliances, etc. to the smart meter.

In a smart home environment, where modern technologies such as smart appli-
ances, intelligent heating, ventilation, and air conditioning (HVAC), roof-top solar
generation, and electric/hybrid vehicles coexist, a smart meter alone will not be able
to handle all the data regarding the operations and interactions among those equip-
ment. In addition to the smart meter, there requires a local PC/server to host an
integrated information management platform. Its purpose is to store, process, and
manage the data from all those smart installations and to communicate with the util-
ity to exchange the relevant information regarding them. Lui et al. [48] describes in
detail such a platform namely Whirlpool Integrated Services Environment (WISE),
which is a proprietary system.

Since every customer connected to the smart grid is expected to generate a large
volume of data from his/her smart meter as well as from the other multiple smart
equipment, there is a pressing need for the smart grid to handle the big data (as also
discussed above in Section ). In [37], the application of IBM’s big data technologies
for smart meters is discussed.

Kaplan et al. [38] provides the following detailed list of customer-focused ap-
plications (for each of which the relevant utilization data are needed to be recorded
and processed).

• Consumer gateway:

– Bi-directional communications between service organizations and equipment
on customer premises.

– Advanced meter reading.
– Time-of-use and real-time pricing (RTP).
– Load control.
– Metering information and energy analysis via website.
– Outage detection and notification.
– Metering aggregation for multiple sites and facilities.
– Integration of customer-owned generation.
– Remote power-quality monitoring and services.
– Remote equipment performance diagnosis.
– Theft control.
– Building energy management systems.
– Automatic load controls integrated with RTP.
– Monitoring of electrical consumption of total load and, in some cases, various

load components.
– Functions embodied in meters, cable modems, set-top boxes, thermostats, etc.

• Residential consumer network: subset of consumer gateway concept.

– Reads the meter, connects controllable loads, and communicates with service
providers.
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– End-users and suppliers monitor and control the use and cost of various re-
sources (e.g., electricity, gas, water, temperature, air quality, secure access,
and remote diagnostics).

– Consumers monitor energy use and determine control strategies in response
to price signals.

• Advanced meter:

– Employs digital technology to measure and record electrical parameters (e.g.,
watts, volts, and kilowatt hours).

– Communication ports link to central control and distributed loads.
– Provides consumption data to both consumer and supplier.
– Switches loads on and off in some cases.

At the utility side, billing is the most important application for the utilization data.
Arenas-Martinez et al. [12] developed a smart grid simulation platform to study
the pros and cons of different database architectures for massive customer billing.
These architectures are single relational database, distributed relational database,
key-value distributed database storage, and hybrid storage (DBMS and FS).

Another utility-side application replying on the utilization data is real-time pric-
ing to facilitate demand response by having the consumers reduce their demand at
critical times or in response to market prices [23].

3 Power Grid Data Mining

In this section, we will cover the data mining technologies in general and then ap-
plications of data mining for a power grid in its four subsystems: generation, trans-
mission, distribution, and utilization.

3.1 Data Mining Technologies

The purpose of data mining is to uncover the knowledge or interesting patterns
of data that lie within a large database and use them for decision support at vari-
ous levels (strategic, tactical, or operational). Data mining is also known by other
names such as data analytics, knowledge discovery, and statistical data analysis.
Data mining is closely related to database management, machine learning, artificial
intelligence and statistics.

The most common data mining tasks are:

• Frequent pattern mining: to discover some sub-patterns or motifs that occur
frequently in a dataset. (Note: a dataset means a collection of data organized
in rows and columns. It can be a table in relational DBMS or just a comma-
separated values (CSV) file in FS. A row represents an instance and a column
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represents an attribute.) Some well-known frequent pattern mining algorithms
include a priori, FP-tree, and Eclat.

• Association rule mining: to uncover which causes usually lead to which effects
in a dataset. The association rules can generally be derived from the frequent
patterns described above.

• Classification: to classify instances in a dataset into pre-defined groups (called
class labels). Classification is a supervised learning process in which we first
have to train the classifier with instances whose class labels are know. Then, we
use this training classifier to predict the class labels of the new instances whose
labels are not know yet. Some popular classification algorithms are decision tree,
naive Bayes, artificial neural networks, hidden Markov model, support vector
machine, and k nearest neighbors.

• Clustering: to organize similar instances in a dataset into groups which are not
predefined. Clustering is an unsupervised learning process in which we do not
know the class labels of all the instances in the data set in advance. The number
of groups (clusters) may or may not be pre-defined depending on the clustering
algorithm. Some widely-used clustering algorithms are k-means, fuzzy c-means,
expectation maximization, DBSCAN, BIRCH, and hierarchical clustering.

• Regression: to predict the value of the target attribute (called dependent variable)
of an instance based on the values of other attributes (independent variables). Re-
gression is also a type of supervised learning which works in the similar way as
classification. Their main difference is that while the outputs of classification are
class labels (discrete values), those of regression are real numbers (continuous
values). Some common regression algorithms are Gauss-Newton algorithm, lo-
gistic regression, neural network regression, and support vector regression, and
autoregressive integrated moving average (ARIMA).

• Outlier detection: to identify anomalous instances, which might be interesting
or indicate errors and require further investigation. It can be supervised, unsuper-
vised, or semi-supervised learning. Some popular methods are local outlier fac-
tor, single-class support vector machine, replicator neural networks, and cluster
analysis.

Data can rarely be mined in their raw forms as originally stored in the DBMS or
FS. We usually need to perform one or more of the following data processing tasks
[31] before performing a data mining task.

• Data cleaning: to fill in missing values, smooth noisy data, identify or remove
outliers, and resolve inconsistencies.

• Data integration: to integrate multiple databases, data cubes, or files.
• Data reduction: to obtain reduced representation in volume but produces the

same or similar analytical results. It may be in the form of dimensionality reduc-
tion, numerosity reduction, or data compression. Data reduction is usually done
for the sake of efficiency and/or better generalization.

• Data transformation and discretization: to normalize data, aggregate data, and
generate concept hierarchy.
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After the data mining task has been performed, the result can be optionally pre-
sented in a visual format in order to better facilitate decision making by the user.

Some popular data mining software are SAS Enterprise Miner (proprietary), IBM
SPSS Modeler (proprietary), Oracle Data Mining (proprietary), Microsoft Analysis
Services (proprietary), Weka (open source), RapidMiner (open source), and ELKI
(open source).

In addition to the traditional data mining paradigm on static and centralized data,
the new paradigms of distributed data mining [67], data stream mining [29], and
time-series data mining [41] are much relevant to the smart grid because of its very
nature of distributiveness and having to deal with numerous data streams and time
series data from various data sources: smart meters, sensors, and power system ma-
chinery.

Privacy is one of the top concerns in the smart grid’s deployment especially from
consumer’s perspective [43]. Thus, privacy preserving data mining techniques [46]
are much relevant for mining the data in the smart grid. An example of a proposed
framework for privacy-preserving data integration and subsequent analysis for the
smart grid is [40].

A high-level diagram depicting the interrelationships among the various data
mining technologies and their applications in the different subsystems of power
grids is shown as Figure 2.

3.2 Data Mining for Generation

In a similar manner as discussed above in Section 2.2, the data mining applica-
tions for power generation can be quite diverse because of the different natures of
power sources. Li et al. [45] proposes a fault diagnosis system for a coal-based
power plant using association rule mining. In [44], the operational performance and
the efficiency characteristics for photovoltaic power generation are analyzed against
various environmental conditions using statistical analysis.

For fossil fuel-based power plants where the amount of power produced can
be fully controlled, the amount of generation (supply) is much dependent on the
amount of electricity load (demand). So, forecasting the future load enables them
to plan for the required fuel accordingly, and consequently, accurate forecasting can
save utility companies millions of dollars a year [22]. Also, for renewable energy
generations, load forecasting can help the utilities to plan ahead to shave the peak
load by means of demand response mechanisms [23] so that the demand will not
exceed the available power output from the renewable source.

Load forecasting can be for very-short term (24 hours ahead of the present time),
short term (∼2 weeks), medium term (∼3 years), and long term (∼30 years) [34].
Some examples of load forecasting methods in the literature are: Deng and Jiruti-
tijaroen [19] using the time series models of multiplicative decomposition and sea-
sonal ARIMA, Hong [34] using multiple linear regression, Zhang et al. [80] using
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Fig. 2 Data mining technologies and their applications in power grids.

artificial neural network, and Aung et al. [13] using least-square support vector re-
gression. Taylor [68] provides a good survey and evaluation of several existing load
forecasting methods.

3.3 Data Mining for Transmission and Distribution

The prospects and challenges of data mining for the smart grid, particularly in the
areas of transmission, distribution, and utilization are highlighted in [39]. Similarly,
Ramchurn et al. [58] discusses the uses of artificial intelligence and data mining
solutions to provide “smartness” to the smart grid.

There exists a number of papers in the literature regarding the application of data
mining for power transmission and distribution systems. Some examples, which are
by no means exhaustive, are as follows.
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Dissolved gas analysis (DGA) [73] is the study of dissolved gases in transformer
oil (insulating oil which is stable at high temperatures and possesses excellent elec-
trical insulating properties). The information about the gases being generated by a
particular transformer unit can be very useful in fault detection and maintenance.
Sharma et al. [62] provides a survey on artificial intelligence and data mining tech-
niques for DGA.

Power system state estimation provides an estimate for all metered and un-
metered quantities throughout the whole power system. It is useful in ensuring the
stability of the grid and preventing blackouts. Chen et al. [17] describes compu-
tation of power system state estimation using weighted least-square method on a
high-performance computing platform. Zhong et al. [82] tries to solve a more spe-
cific problem of state assessment for transformer equipment using association rule
mining and fuzzy logic.

Islanding detection is also important for the stability of a grid in which multiple
small distributed renewable energy generation sources are integrated into the main
grid. Islanding occurs when part of the network becomes disconnected from the
grid, and is powered by one or more distributed generations only. Such an event can
potentially lead to problems in the grid. Samantaray et al. [61] proposed an island-
ing detection system using a rule-based approach that employs fuzzy membership
functions. In [53], naive-Bayes classifier is used to solve the problem of islanding
detection.

Again, fault identification and fault cause identification are obviously important
problems for power systems. Calderaro et al. [16] uses Petri Nets to solve the fault
identification problem. Xu et al. [79] tries to identify fault causes in a power distri-
bution system using a fuzzy classification algorithm.

Contingency analytics is to understand the impact of potential component fail-
ures and assess the power system’s capability to tolerate them. Adolf et al. [11]
develops a filtering technique based on multi-criteria optimization to address it.

Power quality is another important issue in the power system especially in the
smart grid era. Common problems that can disturb the quality of power are sags
(undervoltages), harmonics, spikes, and imbalances [38]. He et al. [33] proposes
a self-organizing learning array system for power quality classification based on
wavelet transform. Hongke and Linhai [35] describes a practical data analysis plat-
form for power quality using Microsoft SQL Server and OLAP (Online Analytical
Processing).

The reliability of the power distribution network is an important issue especially
for the old networks that were first setup nearly a century ago. Gross et al. [30] de-
velops a support vector machine-based model to rate the feeder lines in New York
City for their reliability and identify the ones that needs maintenance or replace-
ment.

Morais et al. [51] presents a good survey of 13 research articles on data min-
ing for power systems for various purposes such as fault classification and location,
detection and diagnosis of transient faults, power quality detection for power sys-
tem disturbances, etc. Similarly, Mori [52] provides a list of 42 research papers on
various applications of data mining for power systems.
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Apart from the physical power system, the logical energy market draws much
attention recently especially after its deregulation. Price forecasting is an indispens-
able tool for both the energy wholesaler and the retailer in such a market. Arenas-
Martinez et al. [50] presents a price forecasting model using local sequence patterns,
while Neupane et al. [54] tackles price forecasting by means of artificial neural net-
works.

3.4 Data Mining for Utilization

At the power utilization (demand) side, load forecasting for large commercial and
residential buildings plays a crucial role. Building load forecasting is an integral part
of a building management system. It enables the building operator to plan ahead,
shave loads if required, and carry out fault identification and diagnosis in the build-
ing’s electrical system if necessary. Fernandez et al. [27] presents a study on build-
ing load forecasting using autoregressive model, polynomial model, neural network,
and support vector machine. Edwards et al. [20] compares the performance of seven
machine learning/data mining methods for load forecasting in buildings.

Customer profiling is also related to the demand-side load forecasting task men-
tioned above. It is useful both for customer behavior prediction for appliance
scheduling automation and dynamic pricing of electricity to suit individual cus-
tomers’ usage patterns. Proposed research works for customer profiling using data
mining techniques include [18], [26], and [28].

Finally, security is one of the major concerns for the smart grid’s deployment at
the customer side [42]. To partially address this problem, Faisal et al. [21] presents
an intrusion detection system for advance metering infrastructure (AMI) using data
stream mining methods. Fatemieh et al. [25] applies classification techniques to
improve the attack resilience of TV spectrum data fusion for AMI communications.

4 Conclusion

Database systems are one of the keystones of the ICT infrastructure that provides
smartness to the smart gird. In this chapter, we have discussed both the conventional
and the state-of-the-art database systems technologies regarding database manage-
ment and data mining and their applications to the smart grid. We hope our chapter
to be useful as a reference material for both the researchers and the practitioners of
the smart grid.
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