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ABSTRACT

Uncertainty about models and data is ubiquitous in the com-
putational social sciences, and it creates a need for robust so-
cial network algorithms, which can simultaneously provide
guarantees across a spectrum of models and parameter set-
tings. We begin an investigation into this broad domain by
studying robust algorithms for the Influence Maximization
problem, in which the goal is to identify a set of k nodes
in a social network whose joint influence on the network is
maximized.

We define a Robust Influence Maximization framework
wherein an algorithm is presented with a set of influence
functions, typically derived from different influence models
or different parameter settings for the same model. The
different parameter settings could be derived from observed
cascades on different topics, under different conditions, or
at different times. The algorithm’s goal is to identify a set
of k nodes who are simultaneously influential for all influ-
ence functions, compared to the (function-specific) optimum
solutions.

We show strong approximation hardness results for this
problem unless the algorithm gets to select at least a loga-
rithmic factor more seeds than the optimum solution. How-
ever, when enough extra seeds may be selected, we show
that techniques of Krause et al. can be used to approximate
the optimum robust influence to within a factor of 1 — 1/e.
We evaluate this bicriteria approximation algorithm against
natural heuristics on several real-world data sets. Our exper-
iments indicate that the worst-case hardness does not nec-
essarily translate into bad performance on real-world data
sets; all algorithms perform fairly well.

Categories and Subject Descriptors

[Human-centered computing]: Social networks

1. INTRODUCTION

Computational social science is the study of social and
economic phenomena based on electronic data, algorithmic
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approaches and computational models. It has emerged as
an important application of data mining and learning, while
also invigorating research in the social sciences. Computa-
tional social science is frequently envisioned as a foundation
for a discipline one could term “computational social engi-
neering,” wherein algorithmic approaches are used to change
or mitigate individuals’ behavior.

Among the many concrete problems that have been stud-
ied in this context, perhaps the most popular is Influence
Maximization. It is based on the observation that behav-
ioral change in individuals is frequently effected by influence
from their social contacts. Thus, by identifying a small set of
“seed nodes,” one may influence a large fraction of the social
network. The desired behavior may be of social value, such
as refraining from smoking or drug use, using superior crops,
or following hygienic practices. Alternatively, the behavior
may provide financial value, as in the case of viral mar-
keting, where a company wants to rely on word-of-mouth
recommendations to increase the sale of its products.

1.1 Prevalence of Uncertainty and Noise

Contrary to the “hard” sciences, the study of social net-
works — whether using traditional or computational ap-
proaches — suffers from massive amounts of noise inherent
in the data and models. The reasons range from the funda-
mental to the practical:

e At a fundamental level, it is not even clear what a “so-
cial tie” is. Different individuals or researchers oper-

ationalize the intuition behind “friendship”, “acquain-

tance”, “regular” advice seeking, etc. in different ways
(see, e.g., [4]). Based on different definitions, the same
real-world individuals and behavior may give rise to
different mathematical models of the same “social net-

work.”

e Mathematical models of processes on social networks
(such as opinion adoption or tie formation) are at best
approximations of reality, and frequently mere guesses
or mathematically convenient inventions. Furthermore,
the models are rarely validated against real-world data,
in large part due to some of the following concerns.

e Human behavior is typically influenced by many envi-
ronmental variables, many of them hard or impossible
to measure. Even with the rapid growth of available
social data, it is unlikely that data sets will become
sufficiently rich to disentangle the dependence of hu-
man behavior on the myriad variables that may shape
it.



e Observational data on social behavior is virtually al-
ways incomplete. For example, even if API restrictions
and privacy were not concerns (which they definitely
are at this time) and a “complete” data set of Twit-
ter and Facebook and e-mail communication were col-
lected, it would still lack in-person and phone interac-
tions.

e Inferring model parameters relies on a choice of model
and hyperparameters, many of which are difficult to
make. Furthermore, while for many models, param-
eter inference is computationally efficient, this is not
universally the case.

Since none of these issues are likely to be resolved anytime
soon, both the models for social network processes and their
inferred parameters must be treated with caution. This is
true both when one wants to draw scientific insight for its
own sake, and when one wants to use the inferred mod-
els to make computational social engineering decisions. In-
deed, the correctness guarantees for algorithms are predi-
cated on the assumption of correctness of the model and the
inferred parameters. When this assumption fails — which
is inevitable — the utility of the algorithms’ output is com-
promised. Thus, to make good on the claims of real-world
relevance of computational social science, it is imperative
that the research community focus on robustness as a pri-
mary design goal.

1.2 Modeling Uncertainty in Influence Maxi-
mization

We take an early step in this bigger agenda, studying ro-
bustness in the context of the well-known Influence Max-
imization problem. (Detailed definitions are given in Sec-
tion 3.) In Influence Maximization, the algorithm selects
a set So of seed modes, of pre-specified size k. The seed
nodes are initially exposed to a product or idea; we say that
they are active. Based on a probabilistic model of influence
propagation’, they cause some of their neighbors to become
active, who then cause some of their neighbors to become
active, etc.; this process leads to a (random) final set of ac-
tive nodes. The goal is to maximize the size of this set; we
denote this quantity by o(So).

The concerns discussed above combine to lead to signifi-
cant uncertainty about the function o: different models give
rise to very different functional forms of o, and missing ob-
servations or approximations in inference lead to uncertainty
about the models’ parameters.

To model this uncertainty, we assume that the algorithm
is presented with a set 3 of influence functions, and assured
that one of these functions actually describes the influence
process, but not told which one. The set ¥ could be finite or
infinite. A finite ¥ could result from a finite set of different
information diffusion models that are being considered, or
from of a finite number of different contexts under which
the individuals were observed (e.g., word-of-mouth cascades
for different topics or products), or from a finite number
of different inference algorithms or algorithm settings being
used to infer the model parameters from observations. An
infinite (even continuous) ¥ arises if each model parameter
is only known to lie within some given interval; this model

'We use the terms “influence propagation” and “diffusion”
interchangeably.

of adversarial noise, which we call the Perturbation Interval
model, was recently proposed in [19].

Since the algorithm does not know &, in the Robust In-
fluence Maximization problem, it must “simultaneously op-
timize” for all objective functions in 3, in the sense of max-
c;((?))’ where S € argmaxg &(S)
is an optimal solution knowing which function & is to be
optimized. In other words, the selected set should simulta-
neously get as close as possible to the optimal solutions for
all possible objective functions.

imizing p(So) = minsex

1.3 Our Approach and Results

Our work is guided by the following overarching questions:

1. How well can the objective p be optimized in principle?
2. How well do simple heuristics perform in theory?

3. How well do simple heuristics perform in practice?

4

. How do robustly and non-robustly optimized solutions
differ qualitatively?

We address these questions as follows. First, we show
(in Section 4) that unless the algorithm gets to exceed the
number of seeds k by at least a factor In|X|, approximating
the objective p to within a factor O(n'~¢) is NP-hard for all
e> 0.

However, when the algorithm does get to exceed the seed
set target k by a factor of In|X| (times a constant), much
better bicriteria approximation guarantees can be obtained.?
Specifically, we show that a modification of an algorithm of
Krause et al. [23] uses O(kIn |X]|) seeds and finds a seed set
whose influence is within a factor (1 — 1/e) of optimal.

We also investigate two straightforward heuristics:

1. Run a greedy algorithm to optimize p directly, picking
one node at a time.

2. For each objective function o € X, find a set S, (ap-
proximately) maximizing o (S, ). Evaluate each of these
sets under p(S,), and keep the best one.

We first exhibit instances on which both of the heuristics
perform very poorly. Next (in Section 5), we focus on more
realistic instances , exemplifying the types of scenarios under
which robust optimization becomes necessary. In the first
set of experiments, we infer influence networks on a fixed
node set from Twitter cascades on different topics. Individ-
uals’ influence can vary significantly based on the topic, and
for a previously unseen topic, it is not clear which inferred
influence network to use. In additional sets of experiments,
we derive data sets from the same MemeTracker data [25],
but use different time slices, different inference algorithms
and parametrizations, and different samples from confidence
intervals.

The main outcome of the experiments is that while the al-
gorithm with robustness as a design goal typically (though
not even always) outperforms the heuristics, the margin is
often quite small. Hence, heuristics may be viable in prac-
tice, when the influence functions are reasonably similar.
A visual inspection of the nodes chosen by different algo-
rithms reveals how the robust algorithm “hedges its bets”
across models, while the non-robust heuristic tends to clus-
ter selected nodes in one part of the network.

2A bicriteria algorithm gets to pick more nodes than the
optimal solution, but is only judged against the optimum
solution with the original bound k on the number of nodes.



1.4 Stochastic vs. Adversarial Models

Given its prominent role in our model, the decision to
treat the choice of & as adversarial rather than stochastic
deserves some discussion.

First, adversarial guarantees are stronger than stochastic
guarantees, and will lead to more robust solutions in prac-
tice. Perhaps more importantly, inferring a Bayesian prior
over influence functions in ¥ will run into exactly the type
of problem we are trying to address in the first place: data
are sparse and noisy, and if we infer an incorrect prior, it
may lead to very suboptimal results. Doing so would next
require us to establish robustness over the values of the hy-
perparameters of the Bayesian prior over functions.

Specifically for the Perturbation Interval model, one may
be tempted to treat the parameters as drawn according to
some distribution over their possible range. This approach
was essentially taken in [2, 17]: Adiga et al. [2] assume that
for each edge e independently, its presence/absence was mis-
observed with probability €, whereas Goyal et al. [17] assume
that for each edge, the actual parameter is perturbed with
independent noise drawn uniformly from a known interval.
In both cases, under the Independent Cascade model (for
example), the edge activation probability can be replaced
with the expected edge activation probability under the ran-
dom noise model, which will provably lead to the exact same
influence function o. Thus, independent noise for edge pa-
rameters, drawn from a known distribution, does not aug-
ment the model in the sense of capturing robustness. In
particular, it does not capture uncertainty in a meaningful
way.

To model the type of issues one would expect to arise in
real-world settings, at the very least, noise must be corre-
lated between edges. For instance, certain subpopulations
may be inherently harder to observe or have sparser data
to learn from. However, correlated random noise would re-
sult in a more complex description of the noise model, and
thus make it harder to actually learn and verify the noise
model. In particular, as discussed above, this would apply
given that the noise model itself must be learned from noisy
data.

2. RELATED WORK

Kempe et al. [21] formally defined the problem of finding a
set of influential individuals as a discrete optimization prob-
lem, proposing a greedy algorithm with a 1 — 1/e approxi-
mation guarantee for the Independent Cascade and Linear
Threshold models. A long sequence of subsequent work fo-
cused on more efficient algorithms for Influence Maximiza-
tion (both with and without approximation guarantees) and
on broadening the class of models for which guarantees can
be obtained [3, 7, 9, 21, 22, 28, 34, 35]. See the recent book
by Chen et al. [5] and the survey in [21] for more detailed
overviews.

As a precursor to maximizing influence, one needs to in-
fer the influence function o from observed data. The most
common approach is to estimate the parameters of a partic-
ular diffusion model [1, 11, 14, 15, 30, 32, 33]. Theoretical
bounds on the required sample complexity for many dif-
fusion models have been established, including [1, 30, 32]
for the Discrete-Time Independent Cascade (DIC) model,
[11] for the Continuous-Time Independent Cascade (CIC)
model, and [30] for the Linear Threshold model. However,

it remains difficult to decide which diffusion models fit the
observation best. Moreover, the diffusion models only serve
as a rough approximation to the real-world diffusion pro-
cess. In order to sidestep the issue of diffusion models, Du
et al. [12] recently proposed to directly learn the influence
function o from the observations, without assuming any par-
ticular diffusion model. They only assume that the influence
function is a weighted average of coverage functions. While
their approach provides polynomial sample complexity, they
require a strong technical condition on finding an accurate
approximation to the reachability distribution. Hence, their
work remains orthogonal to the issue of Robust Influence
Maximization.

Several recent papers take first steps toward Influence
Maximization under uncertainty. Goyal, Bonchi and Laksh-
manan [17] and Adiga et al. [2] study random (rather than
adversarial) noise models, in which either the edge activation
probabilities p,,, are perturbed with random noise [17], or
the presence/absence of edges is flipped with a known prob-
ability [2].

Another approach to dealing with uncertainty is to carry
out multiple influence campaigns, and to use the observa-
tions to obtain better estimates of the model parameters.
Chen et al. [8] model the problem as a combinatorial multi-
armed bandit problem and use the UCBI1 algorithm with
regret bounds. Lei et al. [24] instead incorporate beta distri-
bution priors over the activation probabilities into the DIC
model. They propose several strategies to update the pos-
terior distributions and give heuristics for seed selection in
each trial so as to balance exploration and exploitation. Our
approach is complementary: even in an exploration-based
setting, there will always be residual uncertainty, in partic-
ular when exploration budgets are limited.

The adversarial Perturbation Interval model was recently
proposed in work of the authors [19]. The focus in that
work was not on robust optimization, but on algorithms
for detecting whether an instance was likely to suffer from
high instability of the optimal solution. Optimization for
multiple scenarios was also recently used in work by Chen
et al. on tracking influential nodes as the structure of the
graph evolves over time [10]. However, the model explicitly
allowed updating the seed set over time, while our goal is
simultaneous optimization.

Simultaneously to the present work, Chen et al. [6] and
Lowalekar et al. [27] have been studying the Robust Influ-
ence Maximization problem under the Perturbation Interval
model [19]. Their exact formulations are somewhat differ-
ent. The main result of Chen et al. [6] is an analysis of the
heuristic of choosing the best solution among three candi-
dates: make each edge’s parameter as small as possible, as
large as possible, or equal to the middle of its interval. They
prove solution-dependent approximation guarantees for this
heuristic.

The objective of Lowalekar et al. [27] is to minimize the
maximum regret instead of maximizing the minimum ra-
tio. They propose a heuristic based on constraint generation
ideas to solve the robust influence maximization problem.
The heuristic does not come with approximation guaran-
tees; instead, [27] proposes a solution-dependent measure of
robustness of a given seed set. As part of their work, [27]
prove a result similar to our Lemma 1, showing that the
worst-case instances all have the largest or smallest possible
values for all parameters.



3. MODELS AND PROBLEM DEFINITION
3.1 Influence Diffusion Models

For concreteness, we focus on two diffusion models: the
discrete-time Independent Cascade model (DIC) [21] and
the continuous-time Independent Cascade model (CIC) [15].
Our framework applies to most other diffusion models; in
particular, most of the concrete results carry over to the
discrete and continuous Linear Threshold models [21, 33].

Under the DIC model, the diffusion process unfolds in dis-
crete time steps as follows: when a node u becomes active
in step t, it attempts to activate all currently inactive neigh-
bors in step ¢t 4+ 1. For each neighbor v, it succeeds with a
known probability pu,.; the p.,. are the parameters of the
model. If node u succeeds, v becomes active. Once u has
made all its attempts, it does not get to make further ac-
tivation attempts at later times; of course, the node v may
well be activated at time ¢ + 1 or later by some node other
than w.

The CIC model describes a continuous-time process. As-
sociated with each edge (u,v) is a delay distribution with pa-
rameter o, When a node u becomes newly active at time
tu, for every neighbor v that is still inactive, a delay time
Ay, is drawn from the delay distribution. A, is the dura-
tion it takes u to activate v, which could be infinite (if u does
not succeed in activating v). Commonly assumed delay dis-
tributions include the Exponential distribution or Rayleigh
distribution. If multiple nodes u1, ..., u, attempt to activate
v, then v is activated at the earliest time min; tu, + Ay, 0.
Nodes are considered activated by the process if they are
activated within a specified observation window [0, T'].

A specific instance is described by the class of its influence
model (such as DIC, CIC, or others not discussed here in de-
tail) and the setting of the model’s parameters; in the DIC
and CIC models above, the parameters would be the influ-
ence probabilities p,,., and the parameters a.,. of the edge
delay distributions, respectively. Together, they completely
specify the dynamic process; and thus a mapping ¢ from ini-
tially active sets Sp to the expected number?® o(So) of nodes
active at the end of the process. We can now formalize the
Influence Maximization problem as follows:

DEFINITION 1 (INFLUENCE MAXIMIZATION). Mazimize
the objective o(So) subject to the constraint |So| < k.

For most of the diffusion models studied in the literature,
including the DIC [21] and CIC [13] models, it has been
shown that o(Sp) is a monotone and submodular® function
of Sp. These properties imply that a greedy approximation
algorithm guarantees a 1 — 1/e approximation [31].

3.2 Robust Influence Maximization

The main motivation for our work is that often, o is not
precisely known to the algorithm trying to maximize influ-
ence. There may be a (possibly infinite) number of candi-
date functions o, resulting from different diffusion models or

3The model and virtually all results in the literature extend
straightforwardly when the individual nodes are assigned
non-negative importance scores.

“Recall that a set function f is monotone iff f(S) < f(T)
whenever S C T, and is submodular iff f(SU{z})— f(S) >
f(ru{z}) — f(T') whenever S CT.

parameter settings. We denote the set of all candidate in-
fluence functions® by ¥. We now formally define the Robust
Influence Mazimization problem.

DEFINITION 2
a set X of influence functions, maximize the objective

. o(9)
S) = —=,
p(S) = min Zra
subject to a cardinality constraint |S| < k. Here S5 is a seed
set with |Sy| < k mazimizing o(Sy).

A solution to the Robust Influence Maximization prob-
lem achieves a large fraction of the maximum possible influ-
ence (compared to the optimal seed set) under all diffusion
settings simultaneously. Alternatively, the solution can be
interpreted as solving the Influence Maximization problem
when the function o is chosen from ¥ by an adversary.

While Definition 2 per se does not require the o € ¥ to be
submodular and monotone, these properties are necessary
to obtain positive results. Hence, we will assume here that
all ¢ € ¥ are monotone and submodular, as they are for
standard diffusion models. Notice that even then, p is the
minimum of submodular functions, and as such not neces-
sarily submodular itself [23].

A particularly natural and important special case of Defi-
nition 2 is the Perturbation Interval model recently proposed
in [19]. Here, the influence model is known (for concrete-
ness, DIC), but there is uncertainty about its parameters.
For each edge e, we have an interval I. = [lc,r.], and the
algorithm only knows that the parameter (say, pe) lies in
I.; the exact value is chosen by an adversary. Notice that
3 is (uncountably) infinite under this model. While this
may seem worrisome, the following lemma shows that we
only need to consider finitely (though exponentially) many
functions:

LEMMA 1. Under the Perturbation Interval model for DICS,
the worst case for the ratio in p for any seed set So is
achieved by making each pe equal to £e or Te.

ProoOF. Fix one edge é, and a seed set Sp. Fix the acti-
vation probabilities on all edges except é, and consider the
function fs,(z), the expected number of nodes activated by
So when the activation probabilities of all edges e # é are
as fixed, and the activation probability of é is z.

By explicitly writing the expectation as a distribution over
live edge graphs (see [21]), one can observe that fs,(x) is a
linear function of x. Hence, the optimum influence (over all

So) g(z), being a maximum of linear functions, is convex.

This means that the ratio fjt(’x) is quasi-concave, which

one can show by considering its level sets, and noticing that
{z | fs,(z)/g(x) > a} = {z | g(x) — 1/a- fs,(z) < 0}. The
latter is a level set of a convex function, and thus convex.

Finally, because fs,(z)/g(x) is quasi-concave, it attains
its minimum at the smallest or largest value of x. By re-
peating this argument for all edges é, we obtain a worst-case
setting in which all parameter values are equal to the left or
right endpoints of the respective intervals I.. [

5For computation purposes, we assume that the functions
are represented compactly, for instance, by the name of the
diffusion model and all of its parameters.

5The result carries over with a nearly identical proof to the
Linear Threshold model. We currently do not know if it also
extends to the CIC model.

(ROBUST INFLUENCE MAXIMIZATION). Given



4. ALGORITHMS AND HARDNESS

Even when ¥ contains just a single function o, Robust
Influence Maximization is exactly the traditional Influence
Maximization problem, and is thus NP-hard. This issue
also appears in a more subtle way: evaluating p(So) (for

ggﬁ)) over all

o € ¥. It is not clear how to calculate the ratio 5((52))
for one of the o, since the scaling constant o(Sy) (which is
independent of the chosen Sp) is exactly the solution to the
original Influence Maximization problem, and thus NP-hard
to compute.

This problem, however, is fairly easy to overcome: instead
of using the true optimum solutions S}, for the scaling con-
stants, we can compute (1 — 1/e)-approximations SJ using
the greedy algorithm, because the ¢ are monotone and sub-
modular [31]. Then, because (1 — 1/e) - o(Ss) < o(S2) <
o(Sy;) for all o € X, we obtain that the “greedy objective
function” p?(S) = minsex %, satisfies the following prop-
erty for all sets S: (1 —1/e) - p?(S) < p(S) < p?(S). Hence,
optimizing p?(S) in place of p(S) comes at a cost of only
a factor (1 — 1/e) in the approximation guarantee. We will
therefore focus on solving the problem of (approximately)
optimizing p?(S).

Because each o is monotone and submodular, and the
c(S9), just like the o(S}), are just scaling constants, p?(.S)
is a minimum of monotone submodular functions. However,
we show (in Theorem 2, proved in the full version [20]) that
even in the context of Influence Maximization, this mini-
mum is impossible to approximate to within any polynomial
factor. This holds even in a bicriteria sense, i.e., the algo-
rithm’s solution is allowed to pick (1 — §)In|X| - k& nodes,
but is compared only to solutions using k£ nodes. The result
also extends to the seemingly more restricted Perturbation
Interval model, giving an almost equally strong bicriteria
approximation hardness result there.

a given Sp) involves taking the minimum of

even

THEOREM 2. Let §,¢ > 0 be any constants, and assume
that P # NP. There are no polynomial-time algorithms for
the following problems:

1. Given n nodes and a set X of influence functions on
these nodes (derived from the DIC or CIC models), as
well as a target size k. Find a set S of |S| < (1 —
8)In || - k nodes, such that p(S) > p(S*) - Q(1/n'~¢),
where S* is the optimum solution of size k.

2. Given a graph G on n nodes and intervals I. for edge
activation probabilities under the DIC model (or in-
tervals I. for edge delay parameters under the CIC
model), as well as a target size k. Find a set S of
cardinality |S| < €-c-lnn -k (for a sufficiently small
fized constant c) such that p(S) > p(S*) - Q(1/n'~€),
where S* is the optimum solution of size k.

The hardness results naturally apply to any diffusion model
that subsumes the DIC or CIC models. However, an exten-
sion to the DLT model is not immediate: the construction
relies crucially on having many edges of probability 1 into a
single node, which is not allowed under the DLT model.

4.1 Bicriteria Approximation Algorithm

Theorem 2 implies that to obtain any non-trivial approx-
imation guarantee, one needs to allow the algorithm to ex-
ceed the seed set size by at least a factor of In|X|. In this

Algorithm 1 SATURATE GREEDY (X, k, precision =)
1: Initialize cmin < 0, Cmax + 1.

2: while (¢max — Cmin) > v do

3: C < (Cmax + Cmin)/2-

4:  Define H(S) « > oex min(c, %)

5. S < GREEDY MINTSS(H9 K, c-||,c-~/3).
6: if |S| > 8-k then

7 Cmax ¢ C.

8: else

9: Cmin < ¢+ (1 —v/3), S* «+ S.

10:  end if

11: end while
12: Return S™.

section, we therefore focus on such bicriteria approxima-
tion results, by slightly modifying an algorithm of Krause
et al. [23].

The slight difference lies in how the submodular coverage
subproblem is solved. Both [23] and the GREEDY MINTSS
algorithm [18] greedily add elements. However, the GREEDY
MinTss algorithm adds elements until the desired submodu-
lar objective is attained up to an additive € term, while [23]
requires exact coverage. Moreover, directly considering real-
valued submodular functions instead of going through frac-
tional values leads to a more direct analysis of the GREEDY
MINTSS algorithm [18].

The high-level idea of the algorithm is as follows. Fix a

real value ¢, and define h'? (S) := min(c, U(’(g‘?)) and H(S) :

Y ves RS (S). Then, p?(S) > c if and only if d‘r(gsg)) > ¢ for

all o € X. But because by definition, hg,c>(5') < ¢ for all o,
the latter is equivalent to H¢)(S) > |2| - ¢. (If any term in
the sum is less than ¢, no other term can ever compensate
for it, because they are capped at c.)

Because H'®(S) is a non-negative linear combination of

the monotone submodular functions A% , it is itself a mono-
tone and submodular function. This enables the use of a
greedy In |Y|-approximation algorithm to find an (approxi-
mately) smallest set S with H(®(S) > ¢|Z|. If S has size
at most kIn ||, this constitutes a satisfactory solution, and
we move on to larger values of c¢. If S has size more than
kln |X|, then the greedy algorithm’s approximation guaran-
tee ensures that there is no satisfactory set S of size at most
k. Hence, we move on to smaller values of c¢. For efficiency,
the search for the right value of ¢ is done with binary search
and a specified precision parameter.

A slight subtlety in the greedy algorithm is that H(® could
take on fractional values. Thus, instead of trying to meet
the bound ¢|X| precisely, we aim for a value of ¢|3|—e. Then,
the analysis of the GREEDY MINTSS algorithm of Goyal et
al. [18] (of which our algorithm is an unweighted special
case) applies. The resulting algorithm SATURATE GREEDY
is given as Algorithm 1. The simple greedy subroutine — a
special case of the GREEDY MINTSS algorithm — is given as
Algorithm 2.

By combining the discussion at the beginning of this sec-
tion (about optimizing p vs. p?) with the analysis of Krause
et al. [23] and Goyal et al. [18], we obtain the following ap-
proximation guarantee. The (straightforward) missing de-
tails are given in the full version [20].



Algorithm 2 GREEDY MINTSS (f, k, threshold 7, error ¢)

: Initialize S < 0.

while f(S) <n—edo
u < argmax,¢g f(SU {v}).
S+ SU{u}.

end while

: Return S.

Do

THEOREM 3. Let 8 = 14+In|X|+In % SATURATE GREEDY
finds a seed set S of size |S| < Bk with

p(S) = (1—1/e) - p(S") =,

where S* € argmaxg, g <k P(S) s an optimal robust seed set
of size k.

Theorem 3 holds very broadly, so long as all influence
functions are monotone and submodular. This includes the
DIC, DLT, and CIC models, and allows mixing influence
functions from different model classes. Notice the contrast
between Theorems 3 and 2. By allowing the seed set size to
be exceeded just a little more (a factor In |X| + O(1) instead
of 0.9991n |X|), we go from Q(n' ™) approximation hardness
to a (1 — 1/e)-approximation algorithm.

4.2 Simple Heuristics

In addition to the SATURATE GREEDY algorithm, our ex-
periments use two natural baselines. The first is a sim-
ple greedy algorithm SINGLE GREEDY which adds Sk ele-
ments to S one by one, always choosing the one maximizing
p?(S U {v}). While this heuristic has provable guarantees
when the objective function is submodular, this is not the
case for the minimum of submodular functions.

The second heuristic is to run a greedy algorithm for each
objective function ¢ € ¥ separately, and choose the best
of the resulting solutions. Those solutions are exactly the
sets SY defined earlier in this section. Thus, the algorithm
consists of choosing argmax 5, p7(S7). We call the resulting
algorithm ALL GREEDY.

In the worst case, both SINGLE GREEDY and ALL GREEDY
can perform arbitrarily badly, as seen by the following class
of examples with a given parameter k. The example consists
of k instances of the DIC model for the following graph with
3k + m nodes (where m > k). The graph comprises a di-

rected complete bipartite graph Ky », with k nodes z1,...,zx
on one side and m nodes y1, . . ., Ym on the other side, as well
as k separate edges (u1,v1),..., (uk,vg). The edges (u;,v;)

have activation probability 1 in all instances. In the bipar-
tite graph, in the i*® scenario, only the edges leaving node x;
have probability 1, while all others have 0 activation proba-
bility.

The optimal solution for Robust Influence Maximization
is to select all nodes x;, since one of them will succeed in
activating the m nodes y;. The resulting objective value will
be close to 1. However, ALL GREEDY only picks one node
z; and the remaining k — 1 nodes as u;. SINGLE GREEDY
instead picks all of the u;. Thus, both ALL GREEDY and
SINGLE GREEDY will have robust influence close to 0 as m
grows large. Empirical experiments confirm this analysis.
For example, for k = 2 and m = 100, SATURATE GREEDY
achieves p = 0.985, while SINGLE GREEDY and ALL GREEDY
only achieve 0.038 and 0.029, respectively.

Implementation

The most time-consuming step in all of the algorithms is the
estimation of influence coverage, given a seed set S. Naive
estimation by Monte Carlo simulation could lead to a very
inefficient implementation. The problem is even more pro-
nounced compared to traditional Influence Maximization as
we must estimate the influence in multiple diffusion settings.
Instead, we use the CONTINEST algorithm of Du et al. [13]
for fast influence estimation under the CIC model. For the
DIC model, we generalize the approach of Du et al. To ac-
celerate the GREEDY MINTSS algorithm, we also apply the
CELF optimization [26] in all cases. Analytically, one can
derive linear running time (in both n and |X|) for all three
algorithms, thanks to the fast influence estimation. This is
borne out by detailed experiments”, which also show that
SATURATE GREEDY is slower than the heuristics by about a
factor of ten.

S. EXPERIMENTS

We empirically evaluate the SATURATE GREEDY algorithm
and the SINGLE GREEDY and ALL GREEDY heuristics. Our
goal is twofold: (1) Evaluate how well SATURATE GREEDY
and the heuristics perform on realistic instances. (2) Quali-
tatively understand the difference between robustly and non-
robustly optimized solutions.

Our experiments are all performed on real-world data sets.
The data sets span the range of different causes for un-
certainty, namely: (1) influences are learned from cascades
for different topics; (2) influences are learned with different
modeling assumptions; (3) influences are only inferred to lie
within intervals I. (the Perturbation Interval model).

5.1 Different Networks

We first focus on the case in which the diffusion model is
kept constant: we use the DIC model, with parameters spec-
ified below. Different objective functions are obtained from
observing cascades (1) on different topics. We use Twitter
retweet networks for different topics. (2) at different times.
We use MemeTracker diffusion network snapshots at differ-
ent times.

The Twitter networks are extracted from a complete col-
lection of tweets between Jan. 2010 and Feb. 2010. We treat
each hashtag as a separate cascade, and extract the top
100/250 users with the most tweets containing these hash-
tags into two datasets (Twitterl00 and Twitter250). The
hashtags are manually grouped into five categories of about
70-80 hashtags each, corresponding to major events/topics
during the data collection period. The five groups are: Haiti
earthquake (Haiti), Iran election (Iran), Technology, US pol-
itics, and the Copenhagen climate change summit (Climate).
Examples of hashtags in each group are shown in Table 1.
Whenever user B retweets a post of user A with a hashtag
belonging to category ¢, we insert an edge with activation
probability 1 from A to B in graph ¢. The union of all these
edges specifies the i*" influence function.

Our decision to treat each hashtag as a separate cascade
is supposed to capture that most hashtags “spread” across
Twitter when one user sees another use it, and starts posting
with it himself. The grouping of similar hashtags captures
that a user who may influence another to use the hashtag,
say, #teaparty, would likely also influence the other user

"omitted here due to space constraints



1 12
1

0.8
0.8

06
0.6

0.4
0.4
02 02
0

1x 2x 1x

1.5x
All Greedy

2x

Saturate Greedy

1.5x

H Single Greedy All Greedy

(a) Twitter100 (k = 10)

Saturate Greedy  Single Greedy

(b) Twitter250 (k = 20)

1
0.8
0.6
04
0.2
0
2x 1x 1.5x

All Greedy

1x 1.5x

All Greedy

2x

Saturate Greedy

(d) Meme5000 (k = 100)

 Single Greedy Saturate Greedy

(¢) Meme2000 (k = 50)

® Single Greedy

Figure 1: Performance of the algorithms on the four topical/temporal datasets. The z-axis is the number of
seeds selected, and the y-axis the resulting robust influence (compared to seed sets of size k).

(b) Haiti

Figure 2: Saturate Greedy vs. Iran graph seed nodes.
ange/triangle nodes are selected by Saturate Greedy only; purple/square nodes for Iran only.

to a similar extent to use, say, #liberty. The pruning of
the data sets was necessary because most users had showed
very limited activity. Naturally, if our goal were to evaluate
the algorithmic efficiency rather than the performance with
respect to the objective function, we would focus on larger
networks, even if the networks were less easily visualized.

Category Hashtags

Iran #tiranelection, #iran, #16azar, #tehran
Haiti F#haiti, #haitiquake, #supphaiti, #cchaiti
Technology | #iphone, #mac, #microsoft, #tech

US politics | #obama, #conservative, #teaparty, #liberty
Climate #copenhagen, #coplb, #climatechange

Table 1: Examples of hashtags in each category

The MemeTracker dataset [25] contains memes extracted
from the Blogsphere and main-stream media sites between
Aug. 2009 and Feb. 2010. In our experiments, we extract
the 2000/5000 sites with the most posting activity across
the time period we study (Meme2000 and Meme5000). We
extract six separate diffusion networks, one for each month.
The network for month i contains all the directed links that
were posted in month 4 (in reverse order, i.e., if B links to A,
then we add a link from A to B), with activation probability
1. It thus defines the i*" influence function.

The parameters of the DIC model used for this set of
experiments are summarized in Table 2.

Recalling that in the worst case, a relaxation in the num-
ber of seeds is required to obtain robust seed sets, we al-
low all algorithms to select more seeds than the solution
they are compared against. Specifically, we report results in

(c) US politics (d) Climate

Green/pentagon nodes are selected in both; or-

| Data set | Edge Activation Probability | # Seeds |
Twitter100 | 0.2 10
Twitter250 | 0.1 20
Meme2000 | 0.05 50
Meme5000 | 0.05 100

Table 2: Diffusion model settings

which the algorithms may select k, 1.5 - k and 2 - k seeds,
respectively. The reported results are averaged over three
independent runs of each of the algorithms.

Results: Performance

The aggregate performance of the different algorithms on
the four data sets is shown in Figure 1.

The first main insight is that (in the instances we study)
getting to over-select seeds by 50%, all three algorithms
achieve a robust influence of at least 1.0. In other words,
50% more seeds let the algorithms perform as though they
knew exactly which of the (adversarially chosen) diffusion
settings was the true one. This suggests that the networks
in our data sets share a lot of similarities that make influ-
ential nodes in one network also (mostly) influential in the
other networks. This interpretation is consistent with the
observation that the baseline heuristics perform similarly to
(and in one case better than) the SATURATE GREEDY algo-
rithm. Notice, however, that when selecting just k seeds,
SATURATE GREEDY does perform best (though only by a
small margin) among the three algorithms. This suggests
that keeping robustness in mind may be more crucial when
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Figure 3: Saturate Greedy vs. Climate graph seed nodes.

(c) US politics

(d) Climate

Green/pentagon nodes are selected in both;

orange/triangle nodes are selected by Saturate Greedy only; purple/square nodes for Climate only.

the algorithm does not get to compensate with a larger num-
ber of seeds.

Results: Visualization

To further illustrate the tradeoffs between robust and non-
robust optimization, we visualize the seeds selected by SAT-
URATE GREEDY (robust seeds) compared to seeds selected
non-robustly based on only one diffusion setting. For legibil-
ity, we focus only on the Twitter250 data set, and only plot
4 out of the 5 networks. (The fifth network is very sparse,
and thus not particularly interesting.)

Figure 2 compares the seeds selected by SATURATE GREEDY
with those (approximately) maximizing the influence for the
Iran network. Notice that SATURATE GREEDY focuses mostly
(though not exclusively) on the densely connected core of the
network (at the center), while the Iran-specific optimization
also exploits the dense regions on the left and at the bottom.
These regions are much less densely connected in the US
politics and Climate networks, while the core remains fairly
densely connected, leading the SATURATE GREEDY solution
to be somewhat more robust.

Similarly, Figure 3 compares the SATURATE GREEDY seeds
(which are the same as in Figure 2) with seeds for the Cli-
mate network. The trend here is exactly the opposite. The
seeds selected based only on the Climate network are ex-
clusively in the core, because the other parts of the Climate
network are barely connected. On the other hand, the robust
solution picks a few seeds from the clusters at the bottom,
left, and right, which are present in other networks. These
seeds lead to extra influence in those networks, and thus
more robustness.

5.2 Different Diffusion Models

In choosing a diffusion model, there is little convincing
empirical work guiding the choice of a model class (such as
CIC, DIC, or threshold models) or of distributional assump-
tions for model parameters (such as edge delay). A possible
solution is to optimize robustly with respect to these differ-
ent possible choices.

In this section, we evaluate such an approach. Specifically,
we perform two experiments: (1) learning the CIC influence
network under different parametric assumptions about the
delay distribution, and (2) learning the influence network
under different models of influence (CIC, DIC, DLT). We
again use the MemeTracker dataset, restricting ourselves to
the data from August 2008 and the 500 most active users.
We use the MULTITREE algorithm of Gomez-Rodriguez et

al. [16] to infer the diffusion network from the observed cas-
cades. This algorithm requires a parametric assumption for
the edge delay distribution. We infer ten different networks
G; corresponding to the Exponential distribution with pa-
rameters 0.05, 0.1, 0.2, 0.5, 1.0, and to the Rayleigh distri-
bution with parameters 0.5, 1, 2, 3, 4. The length of the
observation window is set to 1.0.

We then use the three algorithms to perform robust in-
fluence maximization for k = 10 seeds, again allowing the
algorithms to exceed the target number of vertices. The
influence model for each graph is the CIC model with the
same parameters that were used to infer the graphs.

The performance of the algorithms is shown in Figure 4(a).
All methods achieve satisfactory results in the experiment;
this is again due to high similarity between the different
diffusion settings inferred with different parameters.

For the second experiment, we investigate the robustness
across different classes of diffusion models. We construct
three instances of the DIC, DLT and DIC model from the
ground truth diffusion network between the 500 active users.
For the DIC model, we set the activation probability uni-
formly to 0.1. For the DLT model, we follow [21] and set
the edge weights to 1/d,, where d, is the in-degree of node v.
For the CIC model, we use an exponential distribution with
parameter 0.1 and an observation window of length 1.0. We
perform robust influence maximization for k£ = 10 seeds and
again allow the algorithms to exceed the target number of
seeds.

The results are shown in Figure 4(b). Similarly to the case
of different estimated parameters, all methods achieve satis-
factory results in the experiment due to the high similarity
between the diffusion models. Our results raise the intrigu-
ing question of which types of networks would be prone to
significant differences in algorithmic performance based on
which model is used for network estimation.

5.3 Networks sampled from the Perturbation
Interval model

To investigate the performance when model parameters
can only be placed inside “confidence intervals” (i.e., the Per-
turbation Interval model), we use the CONNIE algorithm [29]
to infer the (fractional) parameters of a DIC model from the
same 500-node MemeTracker data set used in the previous
section. Following the approach of [19], we then assign “con-
fidence intervals” I. = [(1 — ¢)pe, (1 + q)pe], where the p. are
the inferred parameters, and ¢ € {10%, 20%, 30%, . .., 100%}.

While Lemma 1 guarantees that the worst-case instances



have activation probabilities (1 — ¢)pe or (1 + q)pe, this still
leaves 2/F! candidate functions, too many to include. We
generate an instance for our experiments by sampling 10
of these functions uniformly, i.e., by independently making
each edge’s activation probability either (1—gq)pe or (14-¢)pe.
This collection is augmented by two more instances: one
where all edge probabilities are (1 — g)pe, and one where all
probabilities are (1 + g)pe. Notice that with the inclusion
of these two instances, the ALL GREEDY heuristic general-
izes the LUGreedy algorithm by Chen et al. [6], but might
provide strictly better solutions on the selected instances be-
cause it explicitly considers those additional instances. The
algorithms get to select 20 seed nodes; note that in these
experiments, we are not considering a bicriteria approxima-
tion.

1x 1.5x 2 1x 1.5x 2x
Single Greedy M All Greedy ™ Saturate Greedy

(a) Different Distributions.

Single Greedy M All Greedy ™ Saturate Greedy

(b) Different Models

Figure 4: Performance of the algorithms (a) un-
der different delay distributions following the CIC
model, and (b) under different classes of diffusion
models. The z-axis shows the number of seeds se-
lected, and k = 10.
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Figure 5: Performance of the algorithms under
networks sampled from the Perturbation Interval
model. The z axis shows the (relative) size of the
perturbation interval /., and k = 20.

The results are shown in Figure 5. Contrary to the pre-
vious results, when there is a lot of uncertainty about the
edge parameters (relative interval size 100%), the SATURATE
GREEDY algorithm more clearly outperforms the SINGLE
GREEDY and ALL GREEDY heuristics. Thus, robust opti-
mization does appear to become necessary when there is a
lot of uncertainty about the model’s parameters.

Notice that the evaluation of the algorithms’ seed sets is
performed only with respect to the sampled influence func-
tions, not with respect to all 2/*! functions. Whether one
can efficiently identify a worst-case parameter setting for a

given seed set Sp is an intriguing open question. Absent this
ability, we cannot efficiently guarantee that the solutions are
actually good with respect to all parameter settings.

6. FUTURE WORK

Our work marks an early step, rather than the conclu-
sion, in devising robust algorithms for social network tasks,
and more specifically Influence Maximization. An interest-
ing unresolved question is whether one can efficiently find an
(approximately) worst-case influence function in the Pertur-
bation Interval model. This would allow us to empirically
evaluate the performance of natural heuristics for the Per-
turbation Interval model, such as randomly sampling a small
number of influence functions. Furthermore, it would allow
us to design “column generation” style algorithms for the
Perturbation Interval model, where we alternate between
finding a near-optimal seed set for all influence functions
encountered so far, and finding a worst-case influence func-
tion for the current seed set, which will then be added to
the encountered functions.

In the context of the bigger agenda, one could conceive of
other notions of robustness in Influence Maximization, per-
haps tracing a finer line between worst-case and Bayesian
models. Also, much more research is needed into identi-
fying which influence models best capture the behavior of
real-world cascades, and under what circumstances. It is
quite likely that different models will perform differently de-
pending on the type of cascade and many other factors, and
in-depth evaluations of the models could give practitioners
more guidance on which mathematical models to choose.
While our model of robustness allows us to combine in-
stances of different models (e.g., IC and LT), this may come
at a cost of decreased performance for each of the models
individually. Thus, it remains an important task to identify
the influence models that best fit real-world data.
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