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Abstract This paper proposes a Smartphone-Assisted

Localization Algorithm (SALA) for the localization of

Internet of Things (IoT) devices that are placed in indoor

environments (e.g., smart home, smart office, smart mall,

and smart factory). This SALA allows a smartphone to

visually display the positions of IoT devices in indoor

environments for the easy management of IoT devices,

such as remote-control and monitoring. A smartphone

plays a role of a mobile beacon that tracks its own position

indoors by a sensor-fusion method with its motion sensors,

such as accelerometer, gyroscope, and magnetometer.

While moving around indoor, the smartphone periodically

broadcasts short-distance beacon messages and collects the

response messages from neighboring IoT devices. The

response messages contains IoT device information. The

smartphone stores the IoT device information in the

response messages along with the message’s signal

strength and its position into a dedicated server (e.g., home

gateway) for the localization. These stored trace data are

processed offline through our localization algorithm along

with a given indoor layout, such as apartment layout.

Through simulations, it is shown that our SALA can

effectively localize IoT devices in an apartment with

position errors less than 20 cm in a realistic apartment

setting.

Keywords Indoor � Localization � Algorithm �
Smartphone � IoT � Device � Trajectory

1 Introduction

Recently the research for smart home has been spotlighted

to facilitate the comfortable life of residents in home [1].

This smart home is accommodating an increasing number

of Internet of Things (IoT) devices, such as mobile smart

devices, appliances, and sensors. At this smart home, users

want to remote-control and monitor IoT devices, such as

smart TV, air conditioner, lights, temperature controller,

entrance door lock, rice cooker, refrigerator, and robot

cleaner. This remote-control and monitoring is possible due

to the following two trends. As the first trend, for the easy

management of IoT devices, AllSeen Alliance is develop-

ing a system called AllJoyn [2], which makes the IoT

devices to advertise and share their abilities with other IoT

devices near them. As shown in Fig. 1a, the solution in
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Allseen Alliance lists IoT devices at home without their

location information. On the other hand, as shown in

Fig. 1b, it will be more convenient for the management of

IoT devices when the positions of the IoT devices at home

are visually displayed in the smartphone or tablet of a home

user. Also, as a mobile node, a robot cleaner keeps moving

during the cleaning in the apartment. A smartphone can

track it through our SALA, so the home user can easily

locate it in the apartment. As the second trend, a smart-

phone has many motion sensors for indoor positioning,

such as accelerometer, gyroscope, and magnetometer. The

sensor-fusion of these sensors allows the smartphone to

keep its mobility trajectory indoors, such as at home and in

office [3, 10]. A natural research question is how to utilize

the smartphone’s positioning capability to localize IoT

devices at home.

Let us provide a gap analysis between the legacy indoor

localization research and our localization problem of

indoor IoT devices. The legacy indoor localization research

has been so far focused on measuring the position of a

mobile device itself (e.g., smartphone) rather than the

positions of its neighboring devices indoors (e.g., smart

TV, air conditioner, and robot cleaner at smart home, as

shown in Fig. 1b). There are three approaches of indoor

localization, such as (1) WiFi fingerprint (using signal

strength measurement for WiFi access points (APs)) [4–7],

(2) Range-based localization (using distance measurement

hardware) [8, 9], and (3) Dead reckoning (using motion

sensors embedded within a smartphone) [3, 10, 13]. First,

WiFi fingerprint is based on signal strength from nearby

APs. Received Signal Strength (RSS) is proportional to the

distance between a signal transmitter (e.g., AP) and a

signal reciever (e.g., smartphone). From this fact, at a

certain location, a list of the RSSes from multiple nearby

APs can be used like a fingerprint. A manager system for

constructing fingerprints in an indoor map (e.g., apartment

and office) collects the lists of RSSes at the intended

positions as landmarks. It offers them to user devices (e.g.,

smartphones) so that they can know their own positions by

comparing the pairs of the RSS list and the corresponding

position, which are provided by the manager system.

Second, to overcome the unstableness of WiFi fingerprint

over time, Range-based localization uses ranging hardware

for distance measurement, such as acoustic signal beacons.

After the distance measurements through the accurate

ranging between a smartphone and each anchor, the

smartphone can be accurately localized by multilateration.

Third, Dead reckoning is based on the motion sensors of a

smartphone, such as accelerometer, gyroscope, and mag-

netometer. These motion sensors measure the physical

acceleration, angular velocity, and magnetic force (i.e., the

direction and strength of magnetic field). The user devices

collect these sensing data and update their physical posi-

tions along their movement over time. In the environments

where a small number of APs are located, the dead reck-

oning shows better accuracy than the WiFi fingerprint; note

that a small number of APs may make a weak signature of

WiFi fingerprint, and the dead reckoning is less affected by

the number of APs. Also, the range-based localization

requires additional hardware for ranging, so it is a costly

approach for the localization of IoT devices. Note that the

dead reckoning can be applied for the localization of a

smartphone rather than its neighboring IoT devices

indoors. Thus, the research on localization of the IoT

devices has been insufficiently conducted. In our study, we

use a smartphone as a mobile anchor to localize these IoT

devices indoors.

This paper proposes a Smartphone-Assisted Localiza-

tion Algorithm (called SALA) that is the first work for the

localization of IoT devices for the visual display of IoT

devices’ positions through the smartphone indoor posi-

tioning. When a smartphone enters its home, it keeps

(a)

Living Room
Bedroom-1

Bedroom-2

Study Room

Bath
room

Kitchen
StorageEntry

Airconditioner-1

Airconditioner-2

Airconditioner-3

Robot Cleaner

(b)

Fig. 1 Display methods of indoor IoT devices at smart home. a Text-

based display by AllJoyn shows only the list of devices, so it is hard to

distinguish three airconditioners. b Graphic-based display by SALA

shows the physical positions of the devices, so it is easy to distinguish

three airconditioners
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tracking its indoor position by the functionality of self-

tracking [12, 13]. Since the smartphone has motion sensors,

it can track its position during its movement without GPS

signal in indoor environments. The smartphone plays a role

of a mobile beacon while moving around the home. It peri-

odically broadcasts short-distance beacon messages. When

an IoT device receives a beacon message from the smart-

phone, it acknowledges the beacon message by sending the

smartphone a responsemessage with its device identifier and

device information (e.g., device category, vendor name, and

device model). The smartphone records this response mes-

sage along with its position coordinate and the message’s

received signal strength as trace data for the localization.

After a couple of hours, the recorded trace data contain the

sample points of the smartphone near an IoT device.

SALA uses the correlation that the closer distance

between two devices leads the stronger received signal

strength of the exchanged message frame. The sample

points with the received signal strength are processed to

identify a grid position for the IoT device with the highest

possibility. The contributions of this paper are as follows.

• An indoor localization architecture based on smart-

phone. This paper proposes an architecture using a

smartphone-assisted localization algorithm called

SALA for IoT devices in indoor environments. The

architecture consists of a smartphone as a mobile

anchor node with self-tracking capability and a server

to perform offline localization algorithms along with

the layout information of the indoor environment.

• A power map algorithm. A smartphone collects sample

points for IoT devices through short-range communi-

cation. The power map algorithm constructs a power

map whose entries have the fields of a device?’s

identifier, the reception power for a message transmit-

ted by the device, and the estimates (i.e., mean and

standard deviation) of the distance between the smart-

phone and the device.

• A grid-weight map algorithm. With the power map, the

grid-weight map algorithm associates a device’s esti-

mate position with a grid point. All grid points become

to get their weight for all sample points by using the

accumulative weight function through the Gaussian

distribution model for the distance between each

sample point and the device’s estimated location.

The remaining structure of the paper is as follows.

Section 2 explains related work. Section 3 specifies our

problem formulation for indoor IoT device localization.

Section 4 describes the design of our localization algorithm

called SALA. Section 5 evaluates the performance of our

SALA and two baselines. Section 6 concludes this paper

along with future work.

2 Related work

Many localization schemes have previously been pro-

posed for mobile ad-hoc networks and wireless sensor

networks for outdoor localization. They can be catego-

rized into the following three classes: (1) Range-based

localization schemes [14, 15], (2) Range-free localization

schemes [16–20], and (3) Event-driven localization

schemes [21]. These outdoor localization schemes cannot

be used for indoor localization where GPS signals are

unavailable or weak. However, many indoor localization

schemes use the basic ideas from the outdoor localiza-

tion schemes. Also, there are three major approaches for

indoor localization: (1) WiFi fingerprint [22–25], (2)

Range-based localization [8, 9], and (3) Dead reckon-

ing [3, 10, 13]. Thus, in this section, we review the

literature of outdoor localization schemes, and then that

of indoor localization schemes.

Range-based localization schemes use ranging devices

(e.g., ultra-sonic sensor and laser) to measure signal arrival

time difference and angle difference for distance mea-

surement between adjacent devices. For the signal arrival

time difference, Time Difference Of Arrival (TDOA) [14]

and Angle Of Arrival (AOA) [15] are proposed.

Range-free localization schemes use message exchanges

to estimate distance between adjacent devices. DV Hop and

its deviations are well-known range-free localization

algorithms [16–19]. The DV Hop algorithm works well in

case of isotropic networks where anchor nodes with GPS

receiver are uniformly placed in the entire area of interest.

A range-free localization scheme beyond network con-

nectivity is proposed to improve localization by using

signature representing relative distances from each node to

its neighboring nodes [20]. However, in this paper, we use

only smartphones for localization as a mobile anchor node

or beacon node indoors where GPS signal is not available.

Event-driven localization schemes use artificial event

generation and event detection sequence for the localiza-

tion. Zhong et. al propose a node-sequence-based local-

ization scheme that uses the sequences of anchor nodes

sorted by the received signal strength [21]. They first

divide a map into small areas and calculate all node

sequences for event detection. Each time, the target device

chooses an area which has the best similarity between the

area and its node sequences.

Many indoor localization schemes have recently been

proposed with WiFi, beacons (or anchors), and smart-

phones [8, 9, 13]. However, these indoor localization schemes

require either the expensive training for system deployment

(e.g., WiFi signal fingerprint) or additional infrastructure (e.g.,

anchors and ranging devices). On the other hand, our SALA

does not require such additional infrastructure and expensive
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training. SALA can support the indoor localization of IoT

devices, such as at home, in an autonomous way. This is

possible because SALA uses short-range communication

between the smartphone and IoT devices in order to get the

proximity of the IoT devices indoors.

There are many fingerprint-based indoor localization

schemes, which use fingerprint map to position a device.

They use the deployed APs and collect WiFi Received

Signal Strength Indicator (RSSI) data to make a fingerprint

map. But at least five or six APs and prior sensing data are

required to get a reliable map [22, 23]. However, based on

the fact that FM uses channels different from ISM band

used by WiFi, FM-based localization generates a better

fingerprint map [24, 25].

He et al. [5] proposed a WiFi-based indoor localization

scheme for tracking smartphones in indoor environments.

This scheme uses a Gaussian process regression in order to

train the collected dataset of WiFi RSS, and also uses a

particle filter in order to estimate the smartphone’s loca-

tion. Like other WiFi-based fingerprints, this scheme con-

structs discrete location fingerprints during offline training

phase and calculates the estimate of each location by the

Bayesian decision rule along with the observed signal

strength. Since a smartphone can move along any path, the

collected fingerprints are interpolated by a Gaussian pro-

cess and the location of the smartphone is determined by a

particle filter. Like other WiFi-based fingerprints, since this

scheme requires multiple reference points (i.e., APs) with

training phase as pre-configuration, it cannot be used at

apartments with one or two APs.

Jiang et al. [7] proposed a distributed RSS-based

localization scheme for indoor IoT devices. This

scheme uses a dynamic circle expanding mechanism that

can accurately establish the geometric relationship between

an unknown node and reference nodes for localization.

This dynamic circle expanding mechanism can flexibly

expand the coverage of localization circles that are based

on the confidence level of three reference nodes until the

circles of the reference nodes intersect each other. This

mechanism is based on the fact that the RSSI becomes

more unreliable as the distance from the signal source

increases. The distance is modeled as multiple stages

according to the range of RSSI. An unknown node dis-

covers neighboring reference nodes by broadcasting dis-

cover packets and computes its coordinate according to the

distances translated from the RSSIs with the reply packets

from at least three reference nodes by using the dynamic

circle expanding mechanism. Since the RSSI-distance

relationship depends on the layout of indoor environments,

a model for the RSSI-distance relationship cannot be

generally for all indoor environments. Also, because this

scheme requires references points, it cannot be used for

apartments having one or two WiFi APs.

Otsason et al. [7] proposed a GSM-based indoor local-

ization scheme where GSM stands for Global System for

Mobile Communications for 2G cellular networks. This

scheme uses wide signal-strength fingerprints that are

constructed by 6-strongest signal cells and more available

cells. They claimed that since the signals from the cells

were more stable than those from WiFi APs, their proposed

scheme was more stable and robust than WiFi-fingerprint-

based schemes. However, this scheme cannot be used in

rural areas with a less number of cellular base stations and

requires overhead for training phase like other WiFi-fin-

gerprint-based schemes.

Chintalapudi et al. [4] proposed an indoor localization

scheme without pre-deployment effort, such as the con-

struction of a fingerprint map through RSS measurements

from WiFi APs. The scheme uses the EZ localization

algorithm that leverages the constraints of physical wire-

less propagation and utilizes a genetic algorithm to solve

them for localization. Even though this scheme does not

require any explicit pre-deployment calibration, it yields

higher localization errors from 2 to 7 m. However, in

environments with residential areas with a small number of

APs, this scheme cannot provide a reasonable indoor

localization.

By dead reckoning, smartphones can have self-tracking

capability in indoor environments where GPS signal is

unreachable. In [3, 10], it is shown that such self-tracking

capability can be implemented by a smartphone’s motion

sensors, such as accelerometer, gyroscope sensor, and

magnetometer. In this paper, we use this self-tracking

capability to localize IoT devices including appliances in

smart home environments.

Hsu et al. [10] proposed a smartphone-based indoor

localization scheme. This scheme is based on dead reck-

oning using the smartphone’s motion sensors, such as an

accelerometer and a gyroscope. The accelerometer’s

sensing data are used for step count, that is, measuring how

many steps the smartphone user took. The gyroscope’s

sensing data are used for direction change, that is, mea-

suring how much the smartphone user turned to the right or

left. Since the motion error is accumulated over time, this

scheme uses calibration marks to correct this accumulated

motion error. This scheme’s dead reckoning does not use

the layout information, that is, apartment structure. On the

other hand, our SALA’s dead reckoning uses particle fil-

tering based on the layout information, it can support more

accurate self-position-tracking than Hsu’s proposed one.

Jun et al. [13] proposed an enhanced indoor localization

scheme called Social-Loc with social sensing. To cooper-

atively calibrate the estimation errors in localization,

Social-Loc exploits encounter and non-encounter events of

moving smartphones that performs self-tracking. Social-

Loc aims at the localization of a moving smartphone user
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with multiple cooperative smartphones rather than the

localization of static IoT devices with a single smartphone.

Liu et al. [11] proposed a Hybrid smartphone Indoor

Positioning Engine (called HIPE) for mobile location-

based services. HIPE is a hybrid approach fusing a

smartphone’s motion sensors with WiFi fingerprints. The

smartphone’s motion sensors measure the user’s motion

dynamics information, such as step count (by an

accelerometer) and heading direction (by a digital com-

pass). To perform the fusion of motion information for

position estimates, a hidden Markov model is used along

with a grid-based filter algorithm and the Viterbi algorithm.

HIPE does not use indoor layout information, so it can be

improved more like SALA’s dead reckoning. HIPE is for

the tracking of a smartphone’s position, not for the local-

ization of IoT devices near the smartphone, which is

SALA’s objective.

Range-based indoor localization schemes have been

proposed to improve WiFi fingerprint that tends to have the

weak signatures from the unstable RSS over time [8, 9].

Liu et al. [8] proposed an accurate WiFi based localization

with smartphone-based peer ranging in indoor environ-

ments. They showed the limitation of pure WiFi-based

methods, which has the ambiguity of similar signatures

among distinct locations. They improved the accuracy of

WiFi-based localization through acoustic ranging estimates

among peer smartphones and the mapping of their loca-

tions against a WiFi signature map that is subject to

ranging constraints. However, since their scheme requires

multiple APs for WiFi signatures and many smartphones

for acoustic ranging, it is not feasible for the localization of

IoT devices at home.

As another range-based localization scheme, Guoguo

was proposed as an indoor localization ecosystem, using

acoustic ranging among anchors and smartphones [9].

Their scheme uses low transmission power for the anchor

network longevity and also acoustic, unnoticeable beacons

for sound pollution avoidance. Though their scheme can

provide centimeter-level localization accuracy for smart-

phone positioning, it requires anchor nodes for acoustic

ranging with smartphones and the manual localization of

these anchor nodes. This setting is overkill for IoT device

localization at home. On the other hand, our SALA does

not require such anchor nodes and manual localization, so

it is a more feasible approach at home environments.

Therefore, through the literature review, the legacy

indoor localization approaches are focused on the local-

ization of mobile nodes (e.g., smartphones) rather than

their neighboring nodes indoors. In this paper, we propose

SALA for the cost-effective localization of indoor IoT

devices by using smartphones as mobile anchors along with

the short-range communication among the smartphones

and IoT devices.

3 Problem formulation

In this section, we specify assumptions for the localization

at a target indoor place (e.g., home) and describe our

localization problem along with the objective in this paper.

For a given home layout with IoT devices, the objective is

to localize the positions of the IoT devices through the

short-range communication between a smartphone and

each IoT device, indicating at which part each IoT device is

located, such as open space, wall or corner, in a specific

room in the target indoor place.

3.1 Assumptions

We have the following list of assumptions for SALA:

• The layout of a target place (e.g., home) is available to

a smartphone in the format of a digital map. Fig. 2

shows the layout of an apartment with IoT devices,

such as smart TV, refrigerator, washer machine, CD

player, air conditioners, and robot cleaner. In this paper,

we target at the localization in an apartment with a

single floor. The localization of a house with multiple

floors is feasible by extending our SALA in three

dimensions. The localization in three dimensions is left

as future work.

• A smartphone has self-tracking capability to track its

position at home with motion sensors, such as accelerom-

eter, gyroscope, and magnetometer from the entrance of

the target home, as shown in Fig. 2 [3, 12, 13]. This self-

tracking is enabled with step counter based on accelerom-

eter and direction measure based on magnetometer and

gyroscope.

• A smartphone and IoT devices can communicate with

each other within short distance through the transmis-

sion power control of wireless communications, such as

WiFi, RFID, ZigBee, or NFC. In this paper, it is

Fig. 2 SALA Localization for positioning IoT Devices. The positions

of the IoT devices can be estimated by using a smartphone as a

mobile anchor and short-range communication with IoT devices
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assumed that they can communicate with each other in

WiFi ad-hoc mode. When the smartphone broadcasts a

beacon message for localization, each IoT device can

respond to the message with a reply message, contain-

ing the IoT device’s information, such as identifier,

vendor and model. This interaction between the smart-

phone and IoT devices is active probing. Along with

this active probing, SALA can support the localization

with passive probing where the RSSI of the messages

from IoT devices to an AP at home is measured. The

performance of both active probing and passive probing

will be evaluated in Sect. 5. The smartphone stores the

captured device information into its local repository

along with the reception timestamp and RSSI of the

reply message and the coordinate of the smartphone.

• There is a dedicated server (called SALA Server) at

home that performs localization with trace data col-

lected by the smartphone. The trace data consist of the

tuples of timestamp, smartphone’s position, device

information, and RSSI. Fig. 2 shows SALA Server,

collecting trace data from a smartphone.

• A smartphone can recognize its entrance into a target

apartment to start tracing its trajectory (i.e., movement

path) indoors. This assumption can be realized by a

fusion sensing with the Service Set Identifier (SSID) and

signal strength of a WiFi AP at home [26] and the sound

detection of the entrance door opening [27]. Also, a

beacon having home identification can be used to give

the entrance information to the smartphone [28].

3.2 Concept of localization in SALA

In this section, we describe the concept of localization in

SALA with Fig. 2. First of all, we categorize the positions

of IoT devices in Fig. 2 into the following three classes: (1)

Open space, (2) Wall, and (3) Corner. As an open-space

IoT device, a smart TV is located in the middle of Room1.

As wall IoT devices, a desktop PC and a home server

(called SALA Server) are located near the wall of Room2

and Room3, respectively. As corner IoT devices, a washer,

a robot cleaner, and a tablet are located at the corner of

Room4, Room5, and Room6, respectively. SALA can

localize the positions of these IoT devices wherever they

are located, such as open space, wall, and corner with trace

data of a smartphone, as shown in Fig. 2.

Now we explain the procedure of SALA localization at

an apartment in Fig. 2. When a smartphone detects the

position of the entrance at home, it starts to trace its tra-

jectory. It stores the initial position (marked as 1) as

ðx0; y0Þ along with timestamp t0 into its local repository in

the relative coordination system at home. The smartphone

moves along the trajectories denoted as 2 and 3 and reaches

the position of ðx1; y1Þ. At this position, it broadcasts a

beacon frame with timestamp to a smart TV and gets the

response from the smart TV. It stores position ðx1; y1Þ with
timestamp t1 into its local repository. In the same way, it

stores positions ðx2; y2Þ, ðx3; y3Þ, and ðx4; y4Þ along with

timestamps t2, t3, and t4, respectively, while it moves along

the trajectories denoted by 4, 5, and 6. For the same IoT

device, such as smart TV, the smartphone has four coor-

dinates, as shown in Fig. 2. With these four coordinates, we

can calculate a centroid as an estimate of the smart TV’s

location. The challenge in the localization is that these four

coordinates may have different distances from the ground-

truth location of the smart TV because of environmental

effects, such as WiFi radio irregularity and multi-path

fading. That is, the communication range limited by

transmission power control is not constant, such as 2 m. To

deal with this challenge, we use a statistical approach with

many sample coordinates obtained from short-range com-

munication between the smartphone and IoT devices. In the

next section, we will explain the design of our SALA

system along with its core algorithms.

4 Design of SALA System

This section explains the design of our Smartphone-As-

sisted Localization Algorithm (SALA) and the justification

of our design.

4.1 SALA system architecture and localization

procedure

This subsection explains the system architecture and

localization procedure of SALA. Fig. 3 shows our SALA

system architecture. As shown in the figure, SALA system

consists of two nodes, such as smartphones and SALA

Server. The localization of IoT devices is performed by the

following seven steps:

1. IoT device detectionWhenever a smartphone sk detects

an IoT device di by short-range communication at time

tij at its Cartesian coordinate pij with the power of the

reply message wi
j from the IoT device di, sk stores this

detection into its local repository. When sk collects a

sufficient number of coordinates for di, sk reports the

set Ci of tuples ðtij; pij;wi
jÞ for di to SALA Server.

2. Collection of IoT device detection trace SALA Server

collects IoT device di’s trace data Ci that are a set of

tuples ðtij; pij;wi
jÞ where tij is a timestamp, pij is a

detection position, and wi
j is the RSSI of the reply

message from di.
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3. RSSI-centroid estimation SALA Server performs

RSSI-Centroid estimation to compute an initial esti-

mate p�i of the IoT device di’s position from the trace

data Ci.

4. Wall-corner handling algorithmWhen an IoT device is

located at either wall or corner, sample points may not

surround an IoT device geographically. In this case,

the grid-weight map cannot make an accurate estima-

tion of the IoT device di. The skewed distribution of

sample points will be handled, taking advantage of the

layout information for the localization of such an IoT

device di.

5. Power-distance table construction SALA Server con-

structs a power-distance table Ti where an entry for

each sample point pj 2 Ci has a pair of the distance

between pj and p�i and the RSSI for di at pj.

6. Grid-weight map construction From the power-dis-

tance table Ti, a grid-weight map is constructed. The

map of a target indoor area is divided into grid cells

whose centers are used as the location estimates of an

IoT device. With Ti, each grid cell will be assigned a

weight value per IoT device di.

7. Position notification Once the IoT device di is

localized by SALA Server, the location information

li is delivered to di.

With exemplary figures, we explain the procedure of

SALA localization in a target localization place, such as an

apartment in Fig. 11. As shown in Fig. 4, during (1) IoT

device detection and (2) the collection of IoT device

detection trace, a smartphone sk collects sample points for

an IoT device di with its real location pr, and delivers them

to SALA server for the localization of di. After the col-

lection of sample points for di, through (3) RSSI-centroid

estimation, SALA server computes an initial estimated

location p�i (also called pe) of di, as shown in Fig. 9a where

the estimated location pe is a little far away from the real

location pr. In the case where the estimated location pe is

close to either wall or corner, as shown in Fig. 5, (4) wall-

corner handling algorithm makes artificial sample points

for a better estimation of the real location pr of di. Through

(5) power-distance table construction, as shown in Table 1,

a power-distance table is constructed to contain the ordered

tuples of sample points for a robust distance estimate for

the real location pr and the reception radio power from pr.

Through (6) grid-weight map construction, as shown in

Fig. 6, a grid-weight map is constructed to put an

Detection of
IoT Device di

Repository

Smartphone sk

IoT Device 
Detection 

Trace Data

RSSI-Centroid

Position
Notification

Wall-Corner
Handling

Power-Distance 
Table
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1
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(di , Ci )

(di , Ci , pi )

(di , li )

(di , Ci , pi )

(di , Ci , Ti )

(di , Ci )

(d , t , p , w )

7

Fig. 3 SALA System Architecture. Localization procedure consists

of (1) IoT device detection, (2) collection of trace data, (3) RSSI-

centroid estimation, (4) wall-corner handling algorithm, (5) power-

distance table construction, (6) grid-weight map construction, and (7)

position notification

Power: 30 mW
Distance: 22 cm

Power: 50 mW
Distance: 6 cm

pr

pe

pj

pi

Sample Point
Strong-RSSI Point
Estimated Location
Real Location

Fig. 4 Distance and power measurement. The figure shows how the

sample points for RSSI-centroid estimation are selected
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Fig. 5 Wall-Corner Handling for special devices on the wall or at the

corner. This procedure checks whether an IoT device is located near a

wall or corner. If so, it reflects the sample points on the opposite

side(s) of the wall or corner as virtual sample points
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accumulative weight to each grid in the target localization

place. A grid point li with the highest weight is regarded as

the final location estimate of the real location pr, as shown

in Fig. 9d. Finally, in (7) position notification, the final

location estimate li is delivered to the IoT device di by

SALA server.

So far we have explained the system architecture and

localization procedure of SALA. In the next subsection,

main localization algorithms in Steps (3)� (6) will be

explained.

4.2 Localization algorithms

In this section, component algorithms for SALA localiza-

tion are explained, such as (1) RSSI-Centroid Estimation,

(2) Wall-Corner Handling, (3) Power-Distance Table Con-

struction, and (4) Grid-Weight Map Construction.

4.2.1 RSSI-centroid estimation

Assume that sample points are distributed around the real

location of an IoT device di, as shown in Fig. 4. Our RSSI-

Centroid estimation makes an initial position estimate

(called estimated location) of an IoT device di from the

sample points in Fig. 4. Let Ci be a set of sample tuples

ðtj; xj; yj;wjÞ for IoT device di where tj is a timestamp, xj is

x-coordinate, yj is y-coordinate, and wj is RSSI value. Let

the set size jCij be n. We sort the sample tuples into a list

C0
i according to the descending order of RSSI values wj

such that C0
i ¼ fp1; p2; . . .; pk�1; pk; pkþ1; . . .; png. We

select the first m tuples in the sorted list C0
i and make a new

list C�
i where m is usually set to 10. We then compute a

centroid of these m sample points in C�
i as follows:

x�i ¼
1

m

X

xk2C�
i

xk;

y�i ¼
1

m

X

yk2C�
i

yk:

ð1Þ

From (1), let p�i ¼ ðx�i ; y�i Þ be an initial position estimate

of the IoT device di. When the sample points surround the

IoT device di, this RSSI-Centroid p�i gives us an accurate

position estimate of di. This p
�
i is used as an initial position

estimate to construct a power-distance table for a more

accurate position estimate in the next step.

4.2.2 Wall-corner handling

Differently from an open-space IoT device, which allows

sample points to surround the IoT device, we treat the case

where an IoT device is located near either wall or corner.

Such an IoT device is called wall-corner IoT device. In this

case, the sample points are not surrounding the IoT device,

as shown in Fig. 5, leading to an inaccurate initial position

estimate of the IoT device that is far away from the real

location of the IoT device. Thus, in this subsection, we

handle these wall-corner IoT devices such that the sample

points surround them by adding virtual sample points that

are artificial sample points. As a result, when the sample

points surround a wall-corner IoT device, the initial posi-

tion estimate based on centroid is usually close to the real

position of the IoT device.

First of all, we check whether an IoT device is located

near wall or corner. The initial position estimate p�i is found

by RSSI-Centroid estimation in Sect. 4.2.1. In a wall case,

if p�i is located near wall (e.g., 2 meters from the wall), we

select the first x sample points (e.g., p1, p2, p3, p4, and p5 in

Sample Point
Grid Point
Estimated Location

pj pe gab

dab

j

Fig. 6 Grid-Weight Map constructed by Power-distance table. This

map is used in the tuning for the better estimation of the IoT device’s

position

Table 1 Power-distance table

Metrics/Point p1 . . . pk�1 pk pkþ1 . . . pn

Power w1 . . . wk�1 wk wkþ1 . . . wn

Distance l1 . . . lk�1 lk lkþ1 . . . ln

Avg. Distance l1 . . . lk�1 lk lkþ1 . . . ln
Std. Deviation r1 . . . rk�1 rk rkþ1 . . . rn

Power is the RSSI value. Distance is the Euclidean distance between a

sample point and the estimated location of an IoT device. Avg.

Distance is the average of the distances of multiple neighboring

sample points for the estimation location. Std. Deviation is the stan-

dard deviation of the distances of those sample points for Avg.

Distance
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Fig. 5) in the RSSI-based-sorted list C0
i. We flip them to the

wall, getting virtual sample points (e.g., p01, p
0
2, p

0
3, p

0
4, and

p05 in Fig. 5). In a corner case, if p�i is located near corner

(e.g., 2 meters from the corner), we flip the sample points

(e.g., p6, p7, and p8 in Fig. 5) to both two walls adjacent to

the corner in one step at a time. These virtual sample points

include single flipped ones and double flipped ones. In

Fig. 5, the single flipped ones are p06, p
0
7, and p08 (or p

�
6, p

�
7,

and p�8) in Fig. 5). In the figure, the double flipped ones are

p0�6 , p
0�
7 , and p0�8 . They are merged to C0

i. This augmentation

of virtual sample points can reduce the impact of the biased

sample points on the skewedness of the initial position

estimate in Power-Distance Table, discussed in Sect. 4.2.3.

4.2.3 Power-distance table construction

In this step, a power-distance table is constructed as a data

structure to construct a grid-weight map in the next step.

This step uses the RSSI-based-sorted list C0
i. The initial

position estimate p�i is computed by the centroid of the

points in C0
i by Equation (1) where p�i ¼ ðx�i ; y�i Þ. Let pj be

a sample point in C0
i . We make an Euclidean distance

distðp�i ; pjÞ between p�i and pj 2 C0
i . In Fig. 4, the centroid

p�i is denoted as pc.

Table 1 shows a power-distance table made from the

sorted sample set C�
i and its centroid pc. In the table, a point

pk has four values, such as power (wk), distance (lk), average

distance (lk), and distance deviation (rk). The power wk is

the RSSI value for the IoT device di at the point pk. The

distance lk is the Euclidean distance between the centroid pc
and the point pk. The average distance lk is the average of

the distances of multiple points near the point pk, e.g., 10

samples that consist of one sample pk, four samples left to

pk, and five samples right to pk. This average distance is

regarded as the estimated distance between pk and the real

position (denoted as pr in Fig. 4) of the device di. Most of

points pk can take their left four neighboring points and right

five neighboring points for the average distance. However,

the leftmost point p1 takes its right five neighboring points

and the rightmost point pn takes its left four neighboring

points for the average distance.

The rationale of the average distance is that the distance

lk between the sample point pk and the centroid pc has

noise due radio irregularity [29] in the measurement of

RSSI values. Thus, m strongest RSSI-value points are

selected for a stable centroid pc. By simulation, we know

that the average distance lk is a more reliable distance

metric than distance lk. In the same way as the average

distance lk, we can compute the standard deviation rk for
m sample points including pk and the estimated location pe
with the distances of multiple points near the point pk for

the average distance lk.

Let pe be an estimated location for device di from the

power-distance table. In Fig. 6, pe is lj away from a sample

point pj. Note that the position of pe will be estimated from

the grid-weight map in the next subsection. We have so far

constructed a power-distance table for sample points in C0
i

and the centroid pc. In the next subsection, we construct a

grid-weight map with the power-distance table that is used

to estimate the real location of the IoT device di.

4.2.4 Grid-weight map construction

A grid-weight map is constructed with the power-distance

table for the estimation of the real location pr of the IoT

device di. Fig. 6 shows a grid-weight map that is con-

structed by a sample point pj and its average distance lj to
the estimated location pe in Table 1. As shown in the fig-

ure, the estimated location of the IoT device di is regarded

as being on the perimeter of the circle whose center is pj
and whose radius is lj. Next, we give each grid cell a

weight corresponding to the probability that the grid cell

has the IoT device di. Such a probability is determined by

the probability distribution that is a normal distribution

Nðlj; rjÞ where lj is the average distance and rj is the

standard deviation for the sample point pj in Table 1. Let

Nrow be the number of rows and Ncol be the number of

columns in the grid-weight map M. Let gab be a grid cell

where a is the row index in ½1;Nrow� and b is the column

index in ½1;Ncol�, as shown in the grid-weight map M in

Fig. 6. Let dab be the shortest distance between the grid cell

gab and pj, as shown in Fig. 6. Let fab be the probability of

the normalized value
dab�lj

rj
in the standard normal distri-

bution N(0, 1) (i.e., Gaussian distribution), as shown in

Fig. 7. Note that Fig. 8 shows a three-dimensional proba-

bility distribution for a grid-weight map for a given sample

gabpe

Grid Point
Estimated Location

fab

dab - j

j
0 x

Fig. 7 Probability distribution for grid-weight map. This is a

Gaussian distribution used for calculating the cumulative grid-weight

for each grid cell
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point pj. This figure is the combination of the grid-weight

map in Fig. 6 and the probability distribution in Fig. 7. Let

cab be the cumulative grid-weight for the grid cell gab,

which is initially set to 0.

To construct the grid-weight map M, for each sample

point pj 2 Ci, the weight fab is computed for each grid cell

gab and is added to cab. Algorithm 1 specifies the whole

procedure to compute the grid-weight map M for the

sample point set C. In line 2, the grid-weight matrix M is

initialized with zeroes. In lines 3–12, with sample points in

C, the cells in the grid-weight matrix M become to have

weight for the location estimation of each IoT device di.

Note that a grid cell with the greatest weight is estimated as

a real location candidate with the highest probability. In

line 4, Get Table Entry computes the table entry values of

distance lj, average distance lj, and standard deviation rj
for each sample point pj. In lines 5–11, for each sample

point pj 2 C, the cells inM are populated with accumulated

weight for the location estimation of an IoT device di. In

line 7, Get Distance computes the Euclidean distance

between a grid cell gab and the sample point pj whose

radius is lj in Fig. 6. In line 8, Get Probability computes

the probability (denoted as fab) of gab with the distance dab

between pj and gab with the normal distribution Nðlj; rjÞ.
In line 9, the cell mab becomes to have the accumulated

value of mab þ fab.

The time complexity of Algorithm 1 is OðjCj�
Nrow � NcolÞ. Algorithm 1 has triple loops where the first

loop has |C| iterations, the second loop has Nrow iterations,

and the third loop has Ncol iterations.

After running Algorithm 1, the center of a grid cell g�ab
with the maximum weight in M is estimated for the real

location pr of the IoT device di, as shown in Fig. 4. If there

are more than one grid cell with the maximum weight, the

centroid of those grid cells is estimated for the real location

pr of the IoT device di. Fig. 9 shows the searching

sequence for the real location of an IoT device di through

Algorithm 1 along with a grid-weight map. At Step 1, there

is a non-negligible distance between an estimated location

Fig. 8 Three-dimensional

probability distribution for grid-

weight map. The grid cells near

the estimated location have

higher values than others by the

property of a Gaussian

distribution
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and the real location. During the iterations of Algorithm 1,

it can be observed that the estimated location is getting

closer to the real location.

So far we have explained our SALA algorithm through

RSSI-Centroid estimation, power-distance table, and grid-

weight map. In the next section, we will evaluate our

SALA in realistic home settings along with two baseline

localization schemes.

5 Performance evaluation

This section evaluates the performance of SALA in terms

of localization error and localization accuracy of IoT

devices. The evaluation setting is as follows:

• Performance metrics We use two metrics: (1) localiza-

tion error is defined as the Euclidean distance between

the real location and estimated location of an IoT device.

(2) localization accuracy is defined as the accuracy

percentage value for room-level localization estimating

which room an IoT device is located at, such as kitchen,

living room, study room, bedroom, and bathroom.

• Parameters We investigate the impact of the following

parameters on the performance: (1) Smartphone’s

moving time and (2) Smartphone’s positioning error.

• Baselines We make two baseline schemes since our

SALA is the first work for the indoor localization of

IoT devices using smartphone tracking that is based on

a smartphone’s motion sensors:

(1) RSSI is a location estimation scheme for an IoT

device that uses RSSI-Centroid algorithm in

Sect. 4.2.1.

(2) Convex is a location estimation scheme for an

IoT device that uses the average of the circum-

centers of three consecutive sample points on the

convex hull for 10 strong RSSI sample points.

This scheme also use sample points around an

IoT device di like RSSI-Centroid algorithm, as

shown in Fig. 10. First, Convex makes the set of

the points that are included in the convex hull of

the sample points into a convex-hull point set Vi,

as shown in Fig. 10. Next, Convex gets three

clockwisely consecutive points from Vi and

computes the circumcenter of such points. Let

Ui be the union of the circumcenters of all

clockwisely consecutive points in Vi. Finally, we

compute the centroid of the circumcenter points

in Ui for the convex-hull point set Vi where the

size of Vi is n ¼ jVij as follows:

x��i ¼ 1

n� 2

Xn�2

k¼1

X Coordinate

ðCircumcenterðpk; pkþ1; pkþ2ÞÞ;

y��i ¼ 1

n� 2

Xn�2

k¼1

Y Coordinate

ðCircumcenterðpk; pkþ1; pkþ2ÞÞ;

ð2Þ

where Circumcenterðpk; pkþ1; pkþ2Þ is the cir-

cumcenter of three points pk; pkþ1; pkþ2 2 Vi, and

X CoordinateðqkÞ and Y CoordinateðqkÞ return

the x-coordinate xk and y-coordinate yk of

qk ¼ ðxk; ykÞ, respectively. From (2), let p��i ¼
ðx��i ; y��i Þ be a position estimate of the IoT device

di by Convex method.

(a) (b)

(c) (d)

Fig. 9 Searching sequence for

real location of IoT device.

During the iterations of

Algorithm 1, it can be observed

that the estimated location is

getting closer to the real

location. a Step 1 (distance:

39.10 cm). b Step 2 (distance:

23.45 cm). c Step 3 (distance:

9.02 cm). d Step 4 (distance:

6.46 cm)
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We have implemented our SALA and the two baselines

with a popular network simulator called OMNeT?? [30].

For an indoor environment, we use a 109 m2 apartment

model, as shown in Fig. 11a. Ten IoT devices are placed in

a 10.1 m 9 9.3 m apartment except hall and veranda, as

shown in Fig. 11b. Table 2 shows simulation configuration

for the apartment in Fig. 11.

The IoT devices are located near to the open space, wall,

or corner in the apartment as follows. Device 1 is located at

the upper-left corner. Devices 2 through 7 are located close

to the walls. Devices 8, 9, and 10 are located close to the

corners of the entrances.

In the simulation, a smartphone moves with a random

mobility, mimicking the mobility of a resident in an

apartment. We assume that a smartphone can recognize

entering the target apartment and start from the entrance as

its initial position. Also, we assume that it can trace its

trajectory by its motion sensors (e.g., accelerometer,

gyroscope, and magnetometer). After it starts moving at the

entrance of the apartment with its initial position, every

two seconds, it chooses a next target point with a distance

less than 2 m without any wall so that it can move to the

target point with no collision.

Figure 12 shows how a smartphone has moved by a

random mobility called random waypoint model [31].

Fig. 12a shows a mobility trajectory, that is, a moving path

in the apartment. Fig. 12b shows a mobility distribution

where each grid has a visiting frequency during the

smartphone’s travel. In this figure, a dark-colored grid has

a relatively higher frequency than a light-colored grid.

From a start point, the smartphone directly moves to a

destination with a random velocity. Once it arrives at the

destination, it selects another destination and moves

towards the destination without any thinking time. It shows

that the smartphone moved all around the house with

enough sample points for the IoT devices.

For the collection of sample points in the localization

period, we assume that the smartphone and IoT devices can

communicate with each other via ad-hoc mode in WiFi.

The smartphone transmits a probe request packet every

0.1 s. When an IoT device receives a probe request from

the smartphone, the IoT device transmits its probe reply to

the smartphone, containing the simulation time, the device

ID, and the coordinate of the smartphone. We use Rician

fading model as a radio propagation model, considering

both line-of-sight signal and ground reflection.

We explain why Rician model is used as radio fading

model in the simulation in comparison with Free-space

model. In Free-space model, only path loss affects radio

strength, so the shape of the convex hull for sample points

is almost like a circle. However, in Rician model, the

smartphone can communicate with an IoT device farther

than the expected communication range R by the irregu-

larity of wireless communication range [29]. However,

SALA can reduce the impact of these outliers on the

localization with many sample points around the commu-

nication range R from the IoT device.

5.1 Localization performance comparison

This subsection compares three localization schemes in

terms of performance metrics, such as localization error,

localization accuracy at apartment level, and localization

accuracy at room level. Note that in this subsection, the

localization error for each IoT device is the measurement

for a single simulation run.

Figure 13 shows the localization error of ten IoT devices

according to IoT device ID where about 200 sample points

per IoT device are collected for two hours. In most cases,

SALA has a smaller localization error than Convex and

RSSI even though RSSI has better performance than SALA

for IoT devices 2, 5, 6, and 8. In the term of the average of

the localization errors for ten IoT devices, SALA outper-

forms both RSSI and Convex where SALA, Convex, and

RSSI have the average localization error of 17.9, 53, and

23.4 cm, respectively.

Figure 14 shows the localization accuracy of ten IoT

devices at the apartment level, that is, estimating at which

room an IoT device is located. In figure, true value means

that the corresponding scheme estimates the correct room

where an IoT device is located. On the other hand, false

value means that the corresponding scheme estimate a

Sample Point
Convex Hull Point
Circumcenter
Estimated Location

Fig. 10 Convex Method as a baseline localization scheme. Convex

method takes three clockwisely-consecutive points and computes the

circumcenter of such points as the estimated location of an IoT device
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wrong room for an IoT device. SALA can estimate the

correct rooms of all the IoT devices, but RSSI and Convex

estimate the incorrect room of an IoT device, respectively.

Figure 15 shows the localization accuracy of ten IoT

devices at the room level, that is, estimating at which part

in a room an IoT device is located, such as an open space,

Fig. 11 Apartment (a) and IoT

Device Deployment (b) for

Simulation. A 109 m2

apartment model is used with

the layout of 10.1 m 9 9.3 m.

Ten IoT devices are placed in

the apartment except the hall

and veranda

Fig. 12 Smartphone’s indoor

mobility. a shows the mobility

trajectory, that is, the moving

path of the smartphone in the

apartment. b shows the mobility

distribution where each grid has

the visiting frequency of the

smartphone during the

smartphone’s travel

Table 2 Simulation configuration for performance evaluation of three localization schemes

Parameter Description

Apartment layout An apartment that has three bedrooms, a kitchen, a living room, and two bathrooms with 10.1 m 9 9.3 m (i.e.,

39.7 feet 9 38.4 feet).

Smartphone’s moving

time N

The time (in N minutes) when the smartphone has moved and collected data. The default of N is 120 min.

Smartphone position

error �
Smartphone’s position error caused by motion sensors, such as accelerometer, gyroscope, and magnetometer.

��Nð0;rÞ where the default of r is 50 cm.
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wall, and corner. SALA can estimate the correct parts of all

the IoT devices, but RSSI and Convex estimate the

incorrect part of an IoT device, respectively. Thus, SALA

has better performance than the other baseline schemes in

most cases and perfect accuracy at both the room-level and

apartment-level estimation.

5.2 Cumulative distribution function of localization

error

This subsection shows the cumulative distribution function

(CDF) of localization error for ten IoT devices. Fig. 16

shows the CDF of the localization errors in ten IoT devices

in Fig. 13. SALA has a higher percentage for a low

localization error (i.e., 50 cm) than both RSSI and Convex.

That is, SALA allows 90 % IoT devices to have a low

localization error of 50 cm. For a high localization error

(i.e., at least 60 cm), RSSI has a little higher percentage

than SALA. That is, SALA has some IoT devices with a

little higher localization error than RSSI. Therefore, SALA

lets most of IoT devices have lower localization errors than

the other baseline schemes.

5.3 Impact of measurement time

To compare SALA with the other baseline schemes, we

investigate the impact of measurement time on the

Fig. 13 Localization error of IoT devices. In most cases, SALA has a

smaller localization error. The average localization error of SALA is

17.9 cm, while those of Convex and RSSI are 53 and 23.4 cm,

respectively

Fig. 14 Localization accuracy at apartment level. SALA can

perfectly estimate the correct rooms of all the IoT devices, while

Convex and RSSI make a mistake in the room estimation for the IoT

devices, respectively

Fig. 15 Localization accuracy at room level. SALA can perfectly

estimate the correct room-parts of all the IoT devices, while Convex

and RSSI make some mistakes in the room-part estimation,

respectively

Fig. 16 CDF of localization error. SALA lets most of IoT devices

have smaller localization errors than Convex and RSSI
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performance over time in terms of average localization

error and average localization accuracy.

Figure 17 shows the localization error over time. Note

that in the figure, the localization error for each IoT device

is the average of 30 measurements. In this figure, a 95 %

confidence interval of a vertical value is shown for each

horizontal point. It is noted that a 95 % confidence interval

is used in this paper. As shown in this figure, the local-

ization errors of all the three schemes tend to decrease over

time. This is because more sample points for localization

can reduce the impact of irregular communication ranges

between the smartphone and each IoT device under the

Rician radio channel model. That is, more sample points

grant more points close to the expected communication

range by the transmission power of the smartphone.

In Fig. 17, before 30 min, SALA has bigger errors than

RSSI, but after 30 min, SALA has smaller errors than

RSSI. This is because Power-Distance table becomes reli-

able with a sufficient number of sample points close to the

communication range corresponding to the transmission

power of the smartphone. That is why SALA outperforms

RSSI.

Figure 18 shows the localization accuracy over time.

Note that in the figure, the localization error for each IoT

device is the average of 30 measurements. This fig-

ure demonstrates that SALA have a good localization

accuracy of about 80 % after 50 min. On the other hand,

RSSI and Convex have localization accuracy less than

80 % even after 50 min. Thus, the figures show that SALA

has better performance after a certain point when the

power-distance table discussed in Sect. 4.2.3 becomes

reliable. This is because the accurate average distance lk in
the power-distance table (as shown in Table 1) requires a

certain amount of data.

5.4 Impact of motion error

In this subsection, we investigate the impact of motion

error on the performance. The self-tracking of the smart-

phone depends on the motion sensors. As the smartphone is

moving over time, the error of self-tracking can be accu-

mulated by the motion error. This motion error is important

in the localization accuracy because SALA and the other

baseline schemes are performed, based on the position of

the smartphone for the localization of IoT devices.

In Fig. 19, the localization error increases as the motion

error increases. Below the motion error of 1.2 m, SALA

shows a smaller localization error than both Convex and

RSSI. However, above the motion error of 1.2 m, SALA

has a greater localization error than RSSI. The error curve

of SALA is rising relatively more quickly than those of

RSSI and Convex. From this figure, it is observed that

SALA is more sensitive in motion error than the other

schemes. However, with the legacy smartphone-based self-

tracking techniques [12, 32], the mean error can be boun-

ded with 150 cm. Also, to further reduce accumulated

motion error during the travel, beacons with location

information can be deployed sparsely as landmarks in the

target indoor place [28]. Thus, with a better self-tracking

service, SALA will have a better performance.

In Fig. 20, the localization accuracy decreases as the

motion error increases. Below the motion error of 0.7 m,

SALA has better accuracy than both RSSI and Convex.

The accuracy curve of SALA is falling more quickly than

those of RSSI and Convex. From this figure, in the same

way with localization error in Fig. 19, it is observed that

SALA is more sensitive for smartphone’s self-tracking than

the other schemes.

Fig. 17 Localization error over time. Since power-distance table be-

comes reliable after 30 min, SALA outperforms Convex and RSSI

after 30 min

Fig. 18 Localization accuracy over time. Since power-distance

table becomes reliable after 50 min, SALA has a good localization

accuracy above 80 %
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5.5 Localization of passive measurement

This subsection shows the feasibility of the indoor local-

ization of SALA through passive measurement. SALA has

so far used the active measurement of beacon reply mes-

sages. However, SALA can use passive measurement for

indoor localization. The passive measurement monitors

radio data traffic between IoT devices and a WiFi AP in the

apartment in order to collect sample points for localization.

When a smartphone receives a WiFi frame from an IoT

device, it stores the IoT device’s MAC address (as IoT

device ID), the reception signal strength (i.e., RSSI), and

the location of the smartphone.

Figure 21 shows the localization error of ten IoT devices

according to IoT device ID through passive measurement.

SALA has better performance than the others for IoT

devices 3, 4, 5, 6, 7, and 9. In Fig. 22, SALA always has

smaller error than the other schemes. As expected, all

schemes show better performance as time passes. This is

because more sample points are available for better local-

ization. This figure demonstrates that SALA can support

the indoor localization of IoT devices through passive

measurement as well as active measurement.

Overall, simulation results have shown that SALA can

provide a promising indoor localization using the self-

tracking functions of a smartphone.

5.6 Validation through real experiment

In this subsection, SALA is validated through real experi-

ment based on smartphone App and Raspberry Pi devi-

ces [33]. Fig. 23 shows our SALA system architecture for

the real experiment. It is mostly the same with the SALA

system architecture shown in Fig. 3, but a few things have

been modified so that the system can explain more about

the implementation in a real environment. Because the

system uses passive measurement, it is designed to perform

one-way communication with IoT devices. As shown in the

figure, SALA system consists of three kinds of nodes, such

as smartphones, IoT devices and SALA server. Raspberry

Pi 2 Model B and DW-400MINI were used as IoT devices

and a smartphone of Galaxy SHV-E160s was used. The

localization of IoT devices is performed through the fol-

lowing six steps:

Fig. 19 Localization error over motion error. Below the motion error

of 1.2 m, SALA shows smaller localization error than Convex and

RSSI. SALA will have better performance with better self-tracking

service in dead reckoning

Fig. 20 Localization accuracy over motion error. Below the motion

error of 0.7 m, SALA has better accuracy because SALA is more

sensitive by dead reckoning than the other schemes of Convex and

RSSI

Fig. 21 Localization Error of IoT Devices on Passive Model. SALA

has better performance for IoT devices 3, 4, 5, 6, 7, and 9. SALA can

work well through not only active measurement, but also passive

measurement
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1. IoT device detection Each IoT device di keeps

broadcasting a beacon message for the measurement

of the RSSI wi
j by a smartphone sk where i is the device

index, j is the time instant index, and k is the

smartphone index.

2. Dead reckoning The smartphone sk keeps tracking its

own position pj by performing dead reckoning [13]

according to sampling time instant tj. The dead

reckoning is performed by using a 9-axis sensor, step

sensor, and particle filter. The 9-axis sensor consists of

gyroscrope, accelerometer, and magnetometer, with

which any smartphone device is equipped. The step

sensor is the modification of the linear accelerometer

that can detect human steps with the value of vibration.

A particle filter [13] is an algorithm that can improve

the accuracy of dead reckoning, especially under

narrow indoor environment like corridor. Smartphone

sk periodically calculates the power of the message

(i.e., RSSI) wi
j from the IoT device di, associates the

power with its current position for a pair, and stores

this pair into its local repository. When sk collects a

sufficient number of coordinates for di, sk reports the

set Ci of tuples ðpij;wi
jÞ for di to SALA Server.

3. Collection of IoT device detection trace SALA Server

collects IoT device di’s trace data Ci that are a set of

tuples ðpij;wi
jÞ where pij is a detection position for di,

and wi
j is the RSSI of the broadcast message from di.

4. SALA SALA Server performs SALA to compute an

estimate p�i of the IoT device di’s position from the

trace data Ci.

5. Position notification When the location information li
is updated or the new smartphone sk is connected to

SALA Server, the information li delivered to sk so that

the smartphone’s user can see where the IoT device di
is located.

6. Visualization Smartphone sk displays the location of

each IoT device di by using li, as shown in Fig. 1b.

The experiment was conducted in the office with

8.7 m 9 6.6 m area. Fig. 24 shows the real experimental

environment for SALA. The three IoT devices are

deployed in a corner, wall, and open space, respectively.

Device 1 is located at the bottom-right corner, Device 2 is

located close to the bottom-middle wall, and Device 3 is

located in the middle of the open space. The room shown in

Fig. 25 is surrounded by many wireless devices, such as

APs, and so there is some possibility of the noise higher

than a common indoor place. It is assumed that at the

entrance of the room, the user’s smartphone sets its accu-

rate coordinate by either the user’s input or a beacon

(having a position information). After this setting, the user

is moving around the room, holding the smartphone with

its screen upward. When the user turns on the SALA App

in the smartphone, it starts to prepare for initializing sen-

sors and WiFi. If the step sensor notifies the SALA App of

the occurrence of each step or turning, it updates its loca-

tion. The smartphone makes a list of RSSIs of the broadcast

messages for an IoT device’s ID and transfers it to SALA

Server. SALA Server extracts the device detection trace,

performs SALA localization, and then sends the location

information back to the smartphone. At last, the smart-

phone shows the estimated location of IoT devices.

Figure 26 shows the localization error of the three IoT

devices in Fig. 24 according to IoT device ID where about

300 sample points per IoT device are collected. Note that in

Fig. 22 Localization Error over Time on Passive Model. SALA

always has smaller error than the other schemes since SALA can

work well through not only active measurement, but also passive

measurement

Fig. 23 SALA system architecture for real experiment. localization

procedure consists of (1) IoT device detection, (2) dead reckoning, (3)

collection of IoT device detection trace, (4) SALA, (5) position

notification, and (6) visualization
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the figure, the localization error for each IoT device is the

average of 30 measurements. In most cases, SALA has a

smaller localization error than both Convex and RSSI. In

term of the average of the localization errors for the three

IoT devices, SALA outperforms both RSSI and Convex

where SALA, Convex, and RSSI have the average local-

ization error of 158.9, 259.8, and 166.4 cm, respectively.

The result is similar to the simulation result but has lower

accuracy. However, in the experiment, the motion error

was higher than the expected one. To improve the accuracy

of SALA, the accuracy of the dead reckoning for self-

tracking should be improved. This improvement of dead

reckoning is left as future work.

Figure 27 shows the localization error over steps. Note

that in the figure, the localization error for each IoT device

is the average of 30 measurements over steps. In this figure,

SALA has the best performance among all three schemes.

From this figure, the localization error of both SALA and

RSSI is getting smaller according to steps, but that of

Convex is high regardless of steps.

Therefore, through simulations and real experiments, it

is shown that SALA outperforms both RSSI and Convex in

terms of localization error, and so SALA is a promising

indoor localization scheme for IoT devices, based on

smartphones.

Fig. 24 Indoor IoT device deployment in office. A raspberry Pi connected to AP is used as an IoT device. a Three devices are located in office.

b A nearby-corner device. c A nearby-wall device. d An open-space device

Fig. 25 IoT device deployment map. a The layout of the room with IoT devices. b The real positions of devices, such as a nearby-corner device

(denoted as 1), a nearby-wall device (denoted as 2), and an open-space device (denoted as 3)
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6 Conclusion

This paper proposes a Smartphone-Assisted Localization

Algorithm called SALA to position IoT devices in indoor

environments. Our SALA uses a smartphone as a mobile

anchor node that has its up-to-date position during its

movement at home through its motion sensors. Along with

this smartphone’s position, the smartphone communicates

with IoT devices in a short distance to collect the proximity

information. With the obtained proximity sample points,

our SALA can estimate the locations of IoT devices that

may be located in the middle of the apartment, closely to a

wall, or close to a corner. Through simulation under a

realistic radio model, it is shown that our SALA can

effectively localize IoT devices in the apartment. As future

work, we will deploy SALA for the indoor localization of a

real, large-scale IoT network having many IoT devices,

such as mall and factory. Also, we will develop a local-

ization scheme using virtual beacons (based on WiFi fin-

gerprints and motion sensor signatures) as landmarks to

correct the localization error that is caused by the accu-

mulated motion error.
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