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This article reviews a technological advance that originates from two areas of ongoing neuroimaging
innovation—(1) the use of multivariate supervised learning to decode brain states and (2) real-time
functional magnetic resonance imaging (rtfMRI). The approach uses multivariate methods to train a model
capable of decoding a subject's brain state from fMRI images. The decoded brain states can be used as a
control signal for a brain computer interface (BCI) or to provide neurofeedback to the subject. The ability to
adapt the stimulus during the fMRI experiment adds a new level of flexibility for task paradigms and has
potential applications in a number of areas, including performance enhancement, rehabilitation, and therapy.
Multivariate approaches to real-time fMRI are complementary to region-of-interest (ROI)-based methods
and provide a principled method for dealing with distributed patterns of brain responses. Specifically, a
multivariate approach is advantageous when network activity is expected, when mental strategies could
vary from individual to individual, or when one or a few ROIs are not unequivocally the most appropriate for
the investigation. Beyond highlighting important developments in rtfMRI and supervised learning, the article
discusses important practical issues, including implementation considerations, existing resources, and future
challenges and opportunities. Some possible future directions are described, calling for advances arising from
increased experimental flexibility, improvements in predictive modeling, better comparisons across rtfMRI
and other BCI implementations, and further investigation of the types of feedback and degree to which
interface modulation is obtainable for various tasks.
lsevier Inc.
© 2010 Published by Elsevier Inc.
Introduction

Two major advances in functional magnetic resonance imaging
(fMRI) have made it possible to perform more flexible experiments
and created the potential of using neuroimaging for applications that
include rehabilitation and therapy. The first advance is the recognition
that multi-voxel patterns of fMRI data can be used to decode brain
states (in other words, determine what the volunteer was “doing”—
e.g. receiving sensory input, effecting motor output, or otherwise
internally focusing on a prescribed task or thought) (Haxby et al.,
2001; Haynes and Rees, 2005; LaConte et al., 2003; Mitchell et al.,
2004; Strother et al., 2002b). The second are the continued advances
in MR imaging systems and experimental sophistication with blood
oxygenation level dependent (BOLD) (Ogawa et al., 1990a,b; Turner
et al., 1991) imaging that have led to the emergence of real-time fMRI
(rtfMRI) as a viable tool for biofeedback (deCharms et al., 2004, 2005;
Posse et al., 2003; Weiskopf et al., 2003; Yoo and Jolesz, 2002).

In the fMRI literature, the terms “brain reading” (Cox and Savoy,
2003) and “multi-voxel pattern analysis” (Norman et al., 2006) have
been used to refer to supervised learning techniques that were first
applied to PET data in the mid 1990s (Hansen, 2007; Lautrup et al.,
1994). These include learning algorithms such as neural networks,
linear discriminant analysis, and the support vector machine (SVM)
applied to fMRI brain volumes. An experiment produces brain
measurements comprised of tens-of-thousands of voxels that are
sampled at rates around 0.5 to 2 Hz for several minutes to produce
image data consisting of a 3D movie of the brain in action. What the
brain is doing during the experiment is partially controlled by the
fMRI task. In this context, supervised techniques use training data to
estimate a relationship between the brain images and the
corresponding task conditions that existed during their acquisition.
Once a model is trained, it can be used to decode new test images and
thus provide estimates of the state of the brain over time. In a real-
time fMRI setting, these brain states can be decoded shortly after
acquisition and used as a control signal to adapt the stimulus that is
presented to the volunteer. We have previously reported such a real-
time fMRI implementation (LaConte et al., 2007). Using this system,
Papageorgiou et al. (2009) has recently reported the ability to provide
feedback based on slow vs. fast inner, automatic speech. Using a
similar approach based on neural networks, Eklund et al. (2009) has
reported the ability to control the dynamics of a simulated inverted
pendulum, using classification of left, right, and resting conditions.
Using the relevance vector machine, Hollmann et al. (2009) presented
a subject's neuroeconomic decisions to the operator before that
subject pressed a button to convey his decision. By explicitly using
distributed brain state patterns, the perspective is focused on sensory
and behavioral conditions of the fMRI task rather than anatomic
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localization. In (LaConte et al., 2007), it was demonstrated that (i)
data collection and machine training can be accomplished in minutes,
(ii) near-perfect prediction accuracy is attainable during sustained
periods of activation, (iii) stimulus feedback can respond to changes
in brain state much earlier than the time-to-peak limitations of the
BOLD response, and (iv) this approach is flexible enough to
accommodate a broad range of fMRI tasks, while requiring no change
in experimental procedures.

As advances continue in rtfMRI, there is a real potential to provide
expanded experimental capabilities, and possibly even perform
rehabilitation and therapy. If this is possible, the brain would
represent a unique target for imaging; going beyond measurement
and diagnosis, rtfMRI may be able to use the brain's response to
treatment to adaptively guide the rehabilitation process. Changes in
the brain that occur from mechanisms such as addiction, emotional
disorders, and brain injury can impact our most basic abilities to
function in society and can dramatically impact cognitive and
emotional well-being; however, there is growing evidence that the
human brain is capable of significant functional plasticity after insult,
as well as through training. Future work is required to examine the
potential for neurorehabilitation using rtfMRI methods, making it
possible to provide behavioral treatment while simultaneously
imaging the brain's response to that treatment. Moreover, the entire
process can potentially happen under adaptive conditions, where the
treatment itself can co-evolve with the responding brain. In a manner
that has never before been possible, recovery mechanisms such as
self-control, learning, and memory functions now have the potential
(through real-time fMRI) to actually originate and be reinforced from
the feedback that a patient's own brain provides.

Extracting fMRI information during an experiment opens the
possibility for changing the stimulus or controlling a brain computer
interface (BCI) based on how the brain is responding. The majority of
previous rtfMRI work in this area has focused on the use of univariate
statistical analysis approaches related to the general linear model
(GLM) (Friston et al., 1995b) or to tracking the fMRI signal in one or a
few regions of interest (ROIs). In this review, the focus is on rtfMRI
that is based on brain state prediction. Often, algorithms in machine
learning attempt to estimate a relationship between vector inputs and
scalar outputs. In this case, brain volumes are the input to a trained
model and the outputs are the predicted brain states. In this review,
the desire is to emphasize prediction of brain states from temporally
sampled data and the ability to use this as a control signal to adapt the
stimulus. Putting all of these considerations together, we refer to this
rtfMRI approach as temporally adaptive brain state (TABS) fMRI.

This review discusses the potential that machine learning
approaches, coupled with the data acquisition and reconstruction
capabilities of modern magnetic resonance systems, can allow for
greater flexibility of fMRI experimental designs by enabling adaptive
stimuli that are guided by ongoing detection of the sensory and
behavioral states encoded in the hemodynamics of a subject's brain.
Also discussed are important practical issues related to TABS,
including implementation considerations, existing resources and
future challenges and opportunities.

Real-time fMRI

The spatio-temporal properties of blood oxygenation level
dependent functional magnetic resonance imaging (BOLD fMRI)
(Ogawa et al., 1990a) provide feasibility and set the ultimate
limitations of real-time approaches that use this imaging technique.
BOLD relies on changes in cerebral blood flow, cerebral blood volume,
and blood oxygenation to indirectly measure neuronal activity
(Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1990a,b;
Turner et al., 1991). The biophysics relating the BOLD signal to the
underlying cellular activity has been avidly studied since the
introduction of the method and remains an active area of research
(Heeger and Ress, 2002; Logothetis and Wandell, 2004; Sirotin and
Das, 2009; Vazquez et al., 2009). Spatial and temporal properties of
the BOLD signal are the most crucial factors for useful adaptive
feedback of fMRI. During a task, BOLD signal changes take 6–12 s to
reach maximum intensity, where it remains relatively constant for
sustained long periods of activity, and 8–20 s to return to baseline
values after the task is finished (Chen et al., 1998; Kollias et al., 2000).
Ultimate limits in timing may be much better than this since early but
weak signal changes have been reported to occur roughly 0.5–2 s after
the onset of neuronal activity (Kwong et al., 1992; Yacoub and Hu,
1999). Temporal characteristics vary with spatial region (Chen et al.,
1998), and it is also important to consider how experimental factors
may impact assumptions of linearity of the BOLD response to neural
activity (Boynton et al., 1996; Dale and Buckner, 1997; Friston et al.,
1998; Glover, 1999; Logothetis et al., 2001; Vazquez and Noll, 1998).

Over the last several years, there has been a growing interest in
rtfMRI—see deCharms (2007, 2008) and Weiskopf et al. (2004a,b,
2007) for extensive reviews. It should be noted, though, that
enthusiasm for rtfMRI has existed since almost the beginning of this
imaging modality. The first published manuscript comes from Cox
et al. (1995), which reported the development and use of a recursive
partial correlation algorithm for generating fMRImaps in real-time. As
stated by the authors, online functional maps enable researchers to
(1) monitor data quality, (2) evolve experimental protocols more
rapidly, and (3) perform interactive experimental paradigms for
neurological investigations. Goddard et al. (1997) described integrat-
ing supercomputing with specialized visualization platforms and
discussed the advantages of flexible, individual program modules vs.
tightly integrated code. They expressed a similar motivation for real-
time processing—that a dependence on offline analysis limits fMRI as
a technique, precluding the ability to evolve subsequent experiments
based on previous ones in the same session. Cohen (2001) provided a
comprehensive review of neuroimaging that treated important
aspects of sequences, MR systems, and fMRI data processing, and
reported a real-time system that could process fMRI data, give
feedback to the subject, and detect artifacts. Probably the predomi-
nant rationale for early real-time systems was that they could provide
a high level of quality control and held great promise for health
applications such as surgical planning. From these early examples,
though, it is clear that it was also recognized that extracting functional
information in a timely manner could fundamentally change the
experimental landscape to one in which the experiments and stimuli
could adapt based on ongoing real-time results.

Recent rtfMRI studies have demonstrated that subjects are capable
of modulating both the strength and spatial extent of local activations
when given feedback (deCharms et al., 2004, 2005; Yoo and Jolesz,
2002). At least two rtfMRI reports have discussed the possibility of
detecting short-term or transient changes in ongoing experiments
in resting state data (Peltier et al., 2004) and using a time-windowed
ICA (Esposito et al., 2003). Many rtfMRI studies have focused on
this ability and demonstrated the capacity for neurofeedback, brain
computer interfaces, and enabling rehabilitation and therapy (Cannon
et al., 2007; Caria et al., 2007; deCharms et al., 2004, 2005; Posse et al.,
2003; Weiskopf et al., 2003; Yoo and Jolesz, 2002; Yoo et al., 2006). In
an early investigation by Yoo and Jolesz (2002), subjects were trained
to interpret activation maps for a simple motor task with the goal of
increasing activity in a localized brain region. The five subjects
examined were successful at manipulating the spatial extent of their
blood oxygenation level dependent (BOLD) response in these regions.
This result was corroborated and expanded byWeiskopf et al. (2003),
who showed significant changes of local BOLD responses in the
anterior cingulate cortex in a subject being shown an updated display
of the level of activity in this area; Posse et al. (2003)who showed that
feedback of amygdala activation in a sad mood task led to increases in
both left amygdala activation and self-rated sadness; and deCharms
et al. (2004), who directly demonstrated the ability of subjects to
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exert voluntary control over somatomotor cortex activity using a real-
time system.

The work of deCharms et al. (2005) represents a particularly
compelling example of the utility of rtfMRI for therapeutic applica-
tions. This study examined the impact of providing BOLD signal level
changes in the rostral anterior cingulate cortex (rACC) as feedback to
affect conscious perception of pain. deCharms showed that when
subjects increased (or decreased) activity in this region, there was a
corresponding increase (or decrease) in pain perception, for a given
pain stimulus. Such training was efficacious, leading chronic pain
patients to report decreases in ongoing pain, even after completion of
the experiment.

These, and a continually growing number of ROI-based reports,
demonstrate great potential for rtfMRI and raise exciting questions
about how far these approaches can be extended. How generally can
someone learn to control a given volume of their brain? What degree
of effort from the volunteer is required? Can practice lead to lasting
ability? How does it “feel” to “activate” any given localized area? Can
these techniques serve as a complementary or even more sensitive
tool to uncover localized areas of brain function? These types of
questions reflect the fact that ROI-based rtfMRI approaches present
exciting future opportunities.

On the other hand, some existing challenges are well met by TABS
approaches. Although tracking ROIs may seem intuitive and straight-
forward, there are several technical considerations that are not
immediately obvious. Some of these issues include the selection of the
ROIs (whatmethod is used and how is it standardized across subjects?),
robustness in the face of fMRI signal properties (e.g. low SNR, arbitrary
and variable raw data values, signal drift), and targeting cognitive
strategies that allow individuals to isolate and control the ROI.

Some relevant points about the BOLD signal are that individual
intensity values are arbitrary, and these values can vary over time.
Because of low-frequency scanner drift, physiological changes, head
motion, and changes in the subject' responses, direct comparisons
across runs, sessions, and subjects is problematic. If it is desired to give
feedback based on an ROI, then it is necessary to know the expected
range of numerical values. When presenting data, it is well-known
that the scale for a graph can enhance or suppress the significance of
signal fluctuations. A display that reflects ROI fluctuations is
susceptible to exactly this effect—the goal is to have a slider bar (or
any other interface) scale to give feedback that showsmajor swings in
the signal level, but is not overly sensitive to “bouncing” that would
arise from smaller signal fluctuations. This is difficult to do, since the
difference between inter-task variation and intra-task variation, is,
itself, small. Further, the correct mapping onto a computer display can
change over time. One way to handle this is to scale the voxel time
series into a percent signal change. This, itself, is not a completely
standard calculation, but one reasonable approach is to consider the
percent change relative to the average of the control conditions. In
addition, some of the problems arising from global drift and scaling
issues can be mitigated through the use of differential feedback
(Weiskopf et al., 2004b), which was demonstrated by subtracting
mean ROI values of the parahippocampal place area from the
supplemental motor area. This method was suggested for combining
multiple ROIs to reduce the BCI signal to a single value. Generalizing
this approach to multiple ROIs gives rise to the issue of weighting
combinations of multiple ROIs. If a task involves a brain network, do
the regions involved contribute equally on a functional level and on a
BOLD signal level? The most likely answer is no. The consequence is
that the best combination then involves determining the optimal
weighting to combine the ROIs. This is a multivariate problem, and
one that can be handled directly through brain state prediction
methods that use supervised learning. Further, the output of many
machine learning techniques are on reliable scales or can be cast as
posterior probabilities (Caruana et al., 2008; Platt, 1999), making the
feedback data range less problematic.
Beyond the BOLD signal characteristics, the functional organization
of the brain is an important consideration. From the functional
specialization perspective, there is a large and expanding literature
about the function of anatomically specific brain regions—for example,
the role of rostral anterior cingulate cortex in pain perception
(deCharms et al., 2005; Mackey and Maeda, 2004; Peyron et al.,
2000), the role of subgenual cingulate in modulating mood states
(Mayberg et al., 1999, 2005; Seminowicz et al., 2004), the role of
prefrontal cortex in executive control (Kerns et al., 2004; MacDonald
et al., 2000; Miller and Cohen, 2001), the role of insular cortex when
substance abusers are exposed to craving cues (Bonson et al., 2002;
Brody et al., 2002; Naqvi et al., 2007; Sell et al., 2000; Wang et al.,
1999). Beyond these specific roles, however, it is also true that each of
these anatomical regions may play vital roles in a number of varied
contexts. Further, these regions coordinate activity with a network of
other brain regions. Beyond the fact that multivariate strategies avoid
ad hoc weightings of multiple ROIs, another consideration is how
much is known about the experimental setting and the expected
patterns of brain activity. If the problem is well understood and
localized anatomically, then tracking ROIfluctuations should provide a
sensitive measure in this context. In situations where less a priori
knowledge exists or subjects can use different cognitive strategies to
perform the same task, supervised learning approaches have the
potential to adapt to the individual and the specific experimental
context.

Pattern analysis

The focus of this special issue is that of pattern analysis-based
decoding of neuroimaging data, which can be interchangeably
referred to as supervised machine learning (e.g. classification and
regression) and brain state prediction. Readers of this article are
encouraged to read its companions in this issue (Haynes, 2010;
Kloppel and Ashburner, 2010; Kriegeskorte, 2010; Mitchell, 2010;
Muller, 2010) as an invaluable overview on the current state of this
topic. We also suggest Kjems et al. (2002)and Strother et al. (2002a)
and additional reviews, Hansen (2007), Haynes and Rees (2006) and
Norman et al. (2006). To keep the focus relevant to rtfMRI, this section
includes a brief treatment of pattern analysis, how it can shape new
experimental flexibility, and what aspects make it a natural
framework for rtfMRI.

What does it mean to say that TABS relies on predicting brain
states? Depending on the context, the use of “brain state” can be used
to evoke deeply philosophical debates concerning the connection
betweenmind andbrain, or simply to relate a brainmeasurement to an
observable behavioral condition such as EEG-defined frequency bands
ranging from delta-wave deep sleep to beta-wave alertness. “Brain
state” is often used as a term in the neuroimaging and recording
literature, but it is rarely carefully defined. Here we use the term
compatibly to its use in (Strother et al., 2002b) – essentially brain
states are the sensory/behavioral events ormental processes forwhich
a researcher might hope to find neural correlates through neuroima-
ging. In a mass univariate context, “brain states” are what could be
represented as variates of interest in a design matrix. In a supervised
learning context, these regressors serve instead as “labels.” When the
labels are categorical in nature, we can formulate the modeling
problem as a classification problem over a set of experimental
categories. When the labels are continuous, the problem can be
framed as a regression problem to describe parametrically varying
brain states such as task difficulty, behavioral rate, visual angle, etc. It is
important to remember that regardless of the analyses performed
(supervised, unsupervised, multivariate, mass univariate), the source
data are exactly the same and comewith the same limitations inherent
to fMRI (e.g. voxel size, temporal sampling, and an indirect
relationship to cellular brain activity). In many cases, brain states
can be empirically observed and brain state predictions can be



Fig. 1. Brain state classification can be stable over time. Red traces show the raw
distance values from a support vector machine classification of each volume in each
run. The thin black horizontal line indicates the class decision threshold (red traces
below this line are assigned to class 0, while those above are assigned to class 1). The
dark black square wave represents the block design timing that alternates between two
task conditions. Using the left vs. right. button pressing task in (LaConte et al., 2007),
one run was selected as a training run. Using only volume registration to align fMRI
volumes across sessions (A) shows the classification results for the same individual four
days later, and (B) for 2 years later.
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validated more easily than statistical map predictions, since the
experimenter generally has better knowledge of and a greater ability
to record and control the temporal aspects of the experiment than the
spatial patterns involved. In other words, in an MVPA setting there is
usually a training data set (to estimate the parameters for the
supervised learning model) and an independent test set (that was
never seen by the training step). Since the MVPA predicts brain states
(which are often designed or measured) and not brain maps (which
are usually not known), themodels are easier to validate. In fact, using
these concepts it is possible to perform a data driven receiver
operating characteristic (ROC) analysis for assessment of fMRI data
analysis methodologies (Kjems et al., 2002; LaConte et al., 2003; Shaw
et al., 2003; Strother et al., 2002b).

A TABS implementation represents an active system based on
these concepts. With it, experiments can be designed and interfaces
can be controlled. Importantly, the experiment can fail. If the brain
state models do not generalize well, and the human is not able to
compensate for deficits in the model, then the human–machine
system will not assert meaningful control of the interface. A
functioning system implies that it is capturing at least some relevant
aspect of the relationship between the brain images and the stimulus
or behavioral responses, which can play a vital role in increasing our
understanding of brain function.

Decoding brain states is usually donewithmultivariate, supervised
learning approaches. As described by Hansen et al. (1999), supervised
and unsupervised learning constitute two important classes of
learning problems. Supervised approaches deal with learning from
examples, aiming to capture the functional relationships between
variables, whereas unsupervised learning captures statistical relation-
ships from the dataset itself. Examples of unsupervised learning
applied to fMRI include principal components analysis (Hansen et al.,
1999), independent component analysis (Beckmann and Smith, 2004;
Calhoun et al., 2001; Himberg et al., 2004; McKeown et al., 1998; Yang
et al., 2008), and clustering techniques (Baumgartner et al., 1998;
Ngan and Hu, 1999). For brain state analyses, we are interested in the
multivariate relationships between fMRI images and the
corresponding behavior or sensory parameters, i.e. supervised
learning. Emphasizing themultivariate aspect of brain state predictive
analyses, several reports refer to this as “multi-voxel pattern analysis
(MVPA)” (Norman et al., 2006).

The viewpoint that multivariate approaches can lead to new
insights and should be viewed as complementary to univariate
analyses has been widely recognized over the years (Friston et al.,
1995a; McIntosh et al., 1996; Moeller and Habeck, 2006). Moreover it
is known that every method (whether univariate or multivariate)
emphasizes particular aspects of the data and cannot be highly
sensitive to all possible relationships (Lange et al., 1999; McKeown et
al., 1998; Moeller and Habeck, 2006; Strother et al., 2002b). To
increase our understanding of brain function with fMRI, we must
understand the relationships between highly multivariate brain
images and categorical quantities describing discrete stimuli or
behavioral responses (Victor, 2005). Comparing both ends of the
modeling spectrum, univariate approaches in fMRI have benefited
from greater methodological scrutiny, are highly interpretable, and
are often more statistically powerful in revealing localized responses.
Their primary drawbacks are high vulnerability to detection limita-
tions imposed by multiple comparisons, and validation of the
resulting statistical maps is difficult (LaConte et al., 2003; Strother
et al., 2002b). Multivariate approaches capture distributed relation-
ships, are more powerful at detecting whether a particular stimulus
condition is reflected in the data, and have been reported to reveal
more information than univariate analyses (Fletcher et al., 1996; Lin
et al., 2003). Some drawbacks are that multivariate models can be
more difficult to interpret, especially those that use non-linear
kernels. In addition, these techniques are vulnerable to image artifacts
such as head motion and eye movement.
Brain state patterns are largely thought to be consistent (across
scanning sessions and even across individuals). Cox and Savoy (2003)
used classifiers trained for 10 classes of objects and showed that these
classifiers were still accurate across sessions separated by more than a
week. Fig. 1 shows reproducible prediction accuracies for a single
subject using data from scanning sessions separated by 4 days and by
2 years. Brain state can also be predicted across groups for PET, e.g.
(Lautrup et al., 1994; Strother et al., 2002b) and fMRI (Mitchell et al.,
2004; Strother et al., 2004). This consistency reflects experiments in
which human adaptation is not expected. As elaborated upon in the
section on future challenges, one exciting challenge for the field is to
address the case where these patterns are not consistent. Specifically,
in the case of TABS, there is potential to use feedback for performance
enhancement, rehabilitation, therapy, etc. This implies changing the
“system” (the brain responses) over time. The expectation, then, is
that the supervised models will become less relevant over time, and
methods of ongoing re-training will need to be explored.

It is very possible that fMRI can help shape future work in machine
learning. While not singularly so, fMRI data are rather unique from the
point of view of classical statistics, machine learning, and other related
fields. Not only are the number of features relatively large (current
whole-brain studies can have 10 to 30,000+ voxels), but also the
relative ratio of features to observations (ranging roughly from 100 to
1000 time samples) is atypical of many machine learning problems.
Because predictive modeling does work, this analysis of fMRI data is
unique in another way. Computer vision systems, faced with the
problem of trying to achieve recognition capabilities equivalent to the
human visual system, generally and predictably fail. No human, though,
can learn to sort, image-by-image, fMRIdata into twoormore categories
of sensory and/or behavioral states. In this case, the computerwins, and
the deciding factor is the subtle signal structure distributed in the
unimaginably huge dimensionality of the data. These considerations
strongly suggest that fMRI could be a key to profound progress and
deeper insights into modeling special types of very high dimensional
data sets. The curse of dimensionality (Bishop, 2006; Cherkassky and
Mulier, 2007), which arises when trying to estimate high-dimensional
functions with a finite amount of samples, can be helped with
improvements in isolating the signal sources present in a given fMRI
data set and a focus on understanding voxel interdependencies. There is
a great need for ongoing work examining fundamental methodological
and statistical issues, such as visualizing and interpreting predictive
fMRI models, evaluating preprocessing issues, maximizing information
extraction, and characterizing signal-to-noise properties of fMRI data.
Further advancement of these technical issues will lead to increased
sensitivity to andunderstandingof fMRImeasurements of thebrain, and
perhaps to entirely new approaches to machine learning and statistical
modeling of high dimensional systems.



Fig. 2. Progression of a TABS real-time experiment. A basic demonstration of a TABS
system can be performed during a session that lasts less than twenty minutes. Initial
anatomical scans include a localizer run for prescribing the volume coverage in all
subsequent scans as well as a high resolution T1-weighted scan. The high-resolution
anatomical scan is not essential, but it provides an anatomical underlay that can be used
for the real-time display, and (if desired) for anatomically selecting regions of interest. If
anatomically prescribed ROIs are not used, then a brief masking run is performed that
consists of a few time-points of a T2*-weighted sequence with parameters matching all
subsequent runs. Image processing detects which areas are part of the brain vs. regions
outside the brain. Next the scanner is run in training mode; as fMRI brain volumes are
being acquired, machine learning algorithms are processing the images and the task
condition labels to create a predictive model. Finally, the scanner can be run in feedback
mode, using the training run model to decode brain states for each new image and
transmitting a control signal to modify the stimulus being presented to the volunteer.
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Implementation, resources, and methodology

Implementation

Currently the number of sites actively performing rtfMRI is low,
probably because these systems do not exist “out-of-the-box,” and
they increase experimental complexity. This section discusses aspects
of rtfMRI architecture to provide an overview of the trade-offs
involved and options that are available to get started. These details
shouldhelp thosewhoare readingprimary reports on this topic aswell
as thosewhowant to implement their own systemsor are interested in
currently existing resources. The issue of rtfMRI increasing experi-
mental complexity is not directly discussed, but TABS implementa-
tions provide easy flexibility because the same experimental setup can
be used for entirely different fMRI tasks (LaConte et al., 2007). Fig. 2
shows an example timeline for a TABS experiment, showing that it is
possible to demonstrate a working system in a matter of minutes.
Starting up a new experiment should not be much more difficult than
preparing the software for a new fMRI stimulus paradigm, which is
necessary for any new fMRI study. The only additional aspect to the
presentation software is that it must receive and process the real-time
feedback signal. For any rtfMRI approach, once a system is physically
configured, experimental complexity is largely mitigated by well-
designed software.

What is required to build an rtfMRI? Although vendor hardware
and software architectures vary greatly, an important subsystemof the
scanner is the receiver A/D and image reconstruction hardware. In
addition to the vendor-supplied equipment, fMRI usually uses at least
one additional computer dedicated to controlling the stimulus
delivery and any desired behavioral or physiological recording. To do
anything in “real-time” during the fMRI experiment requires at least
some access to the reconstruction system, which can range from a
shared file system to custom reconstruction code that has direct access
to the data. Thus the real-time software could run on a separate
computer (with shared file and/or network access) or be integrated
with (or even fully replace) the image reconstruction software. In
terms of making the actual connections, the physical layout of the
machines could favor one solution over another as could the actual
hardware on the computers (for example parallel, RS232 serial, and
firewire ports are currently rare compared to USB2 availability). Even
local computer security policies could impact the design. Ethernet
connections through switches support data communication through
protocols such as TCP and hard disk file sharing through NFS and
SAMBA. Bluetooth and wireless connections are even possible. A
detailed comparison of all of these options is beyond the scope of this
review (and these details, by their nature, are outdated quickly), but
themain concerns are that the processor power and data transmission
bandwidth are adequate to perform whatever is needed for the
experiment. Again these are similar issues as those recognized early on
(Goddard et al., 1997). Image data requires the most RAM and/or disk
utilization while BCI control signals from ROIs or classifiers usually
require only a few bytes. Further, even “fast” TRs (MR sampling rates)
are much slower than existing computer communication protocols,
and fMRI signal changes are likely to be the ultimate rate-limiting
factor for bandwidth requirements for the foreseeable future.

As stated by Cox et al. (1995), in a real-time application, it is
unacceptable to have a calculation that grows as more data are
collected.What are some solutions, then? The preferred approach is to
develop recursive calculations and/or approximations (Cox et al.,
1995). If this is not possible, a compromise might exist that is suitable
for performing the experiment at hand, for example, capping the fMRI
run to a length that can be safely performed with the given
computational limitations. A relatedmethod is to use a slidingwindow
that can safely accommodate the calculations and perhaps even help
with trade-offs between the amount of data and the sensitivity to
changes over time (Gembris et al., 2000). While not intrinsically
satisfying, as hardware capabilities continue to improve, many “brute
force” software implementations are possible. For a TABS system, the
situation is fortunate since the prediction of brain states using a trained
model is the same for every volume and the computational demand
remains fixed for the entire feedback run.

For real-time to be meaningful, at least one of two things also
should be available: (1) the capability to display results to the
experimenter, and (2) the ability to adapt the stimulus presentation.
For a TABS system, training the supervised model requires not only
access to the images, but also to the brain state labels. This is also
required to generate functional maps with a general linear model. For
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ROI-based approaches, a method to define ROIs is required. In theory,
everything (stimulus presentation, image reconstruction, and real-
time processing) could be completely integrated into one physical
“box” and exist as tightly integrated code. This extreme case could be
reasonable for MRI vendors in the future, or possibly for some highly
demanding experiment in which disk and other I/O communication
would be too time consuming. Generally, the greater the integration,
the better potential performance, but the more difficult the computer
software maintenance and flexibility over time. Also, the implemen-
tation has to be more specific to the scanner hardware and is thus
difficult to share with research sites having different equipment (but
possibly easier among sites that have similar set-ups).

The implementation reported in LaConte et al. (2007) is close to
this extreme, but relies on a separate stimulus presentation computer.
All of the reconstruction and real-time processing is performed
through completely integrated software and executes on the vendor's
computer, using port I/O communication (serial or parallel) with the
stimulus presentation software. Beyond the fact that this uses an
already existing computer, the benefit of this design is that the major
data handling of the images are performed with software pointer
operations and minimize hard disk and network demands. The I/O
transmissions need to only communicate scalar values representing
data labels and brain state predictions. Since the stimulus presented to
the volunteer gives rise to signal changes in the fMRI data and this can
be decoded and used to adapt the stimulus, this configuration
constitutes a closed-loop experimental system. In practice, what
varies most across experiments is the stimulus presentation. This
remains flexible because it is not tightly integrated with the rest of the
components, allowing different groups to use their favorite setup for
the stimulus. Other than being able to see the feedback signal
presented to the volunteer, though, our early system was limited in
terms of the display information provided to the experimenters. Our
current system is configured as illustrated in Fig. 3. As shown, we have
added a new computer for real-time display, using AFNI (Cox, 1996),
Fig. 3. Schematic of a current TABS hardware setup in which arrows indicate the direction
system, which include the MRI scanner, console, and image reconstruction. In the implement
real-time calculations (estimating a classification model during training runs and using thes
the stimulus computer. For real-time display, an additional computer running AFNI has sin
reconstruction computer to send image data to the real-time display computer with TCP
computations, such as generating brain vs. non-brain mask images, tracking motion, and upd
observation computer at a distant site. Future plans include transferring all of the real-
enhancements and our efforts to build plugins (like 3dsvm—http://lacontelab.org/3dsvm.ht
as described further in the next section. Currently the primary real-
time calculations and feedback signal still rely on the image
reconstruction computer.

Resources

The major MRI vendors now provide basic capabilities for GLM-
based mapping in real-time as well as motion tracking and correction.
Beyond this basic support, individual labs have at least three third-
party software options. One of these is TurboFire (Gembris et al.,
2000). The other two come from major fMRI software packages,
namely Turbo-BrainVoyager, a commercial product (Brain Innovation,
Maastricht, The Netherlands)(Goebel, 2001), and AFNI (Cox, 1996),
which is a free open source package. To use any of these solutions still
requires some degree of integration with the scanner, most easily
(and commonly) by network file sharing (e.g. via NFS or SAMBA) to
access the image data. As discussed previously, whether or not the
system is custom-built, it is uncommon to be completely integrated
with the scanner. As an improvement over file sharing, the work in
Yang et al. (2005) used software that they developed to directly send
data from the scanner by TCP/IP. The implementation by LaConte et al.
(2007) was almost completely integrated on the vendor-supplied
equipment (with only port I/O sending control signals to a separate
stimulus presentation computer).

Based on demonstrations and published reports, TurboFire, Turbo-
BrainVoyager, and AFNI are fairly similar in their basic functionality.
These systems originated with the goal of processing data with a mass
univariate approach. BrainVoyager and AFNI both have very good
visualization capabilities for browsing through voxel time series and
for 3D volume visualization. Currently Turbo-BrainVoyager provides
convenient support for GLM contrasts in real-time. Based on published
reports (Weiskopf et al., 2004a,b), Turbo-BrainVoyager updates an ROI
file that can contain data for multiple ROIs and can be shared (e.g. over
SAMBA) and read by presentation software to generate displays,
of communication. The dotted box represents the relevant subsystems of a typical MRI
ation reported by LaConte (2007), the image reconstruction system performed all of the
e models to classify new images during feedback runs) as well as communicating with
ce been added. For this to work, additional software was written to run on the image
/IP, using AFNI's real-time plugin. This machine is currently also used for auxiliary
ating brain maps. The real-time display computer can also act as a server for the remote
time calculations to the real-time display computer to fully utilize AFNI's real-time
ml) for AFNI.
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control BCI devices, etc. AFNI additionally enables TCP and serial
transmission of multiple ROIs as well as motion parameters. Fig. 4
shows a screen shot from our display computer in Fig. 3. The layout of
maps, time series, and motion plots as well as options like statistical
thresholds can be controlled by the user interface, or automatically
configured through environment variables, and modified dynamically
through plug-out commands that drive AFNI.

None of the available packages currently provide TABS capabilities,
but it is very likely that the capability to perform real-time pattern
classification will soon be more widely available. Although a good
framework for pushing the computational limits of supervised
learning-based rtfMRI, one drawback to the system we developed is
that it can only be readily shared with sites that are on specific
Siemens’ software platforms. BrainVoyager QX 2.0 has SVM capabil-
ities, making it possible for this capability to be incorporated into the
Turbo-BrainVoyager product. Similarly our group has developed
3dsvm for AFNI. 3dsvm is a command line program and plugin for
AFNI, built using SVM-Light (Joachims, 1999) for its core computa-
tions. It provides the ability to analyze fMRI data as described in
LaConte et al. (2005a). As shown in Fig. 5, 3dsvm enables visualization
of SVM maps and model parameters within AFNI's environment. It is
distributed with AFNI and reads AFNI-supported formats including
NIfTI (http://nifti.nimh.nih.gov/), thus all preprocessing and data
manipulation of the major software packages are available. Features
that make 3dsvm particularly well suited for fMRI analysis is that it is
easy to spatially mask voxels (to include or exclude them in the SVM
Fig. 4. An example AFNI rtfMRI display with stimulus window. This display allows the ex
updated fMRI results, real-time motion parameters, intensity of any chosen voxel, and the
analysis) as well as censoring training samples. 3dsvm has its own
multi-class classification implementation and supports non-linear
kernels and regression functionality implemented in SVM-Light
(Joachims, 1999). The next step in software development for 3dsvm
is for it to be real-time enabled such that its testing mode can utilize
AFNIs realtime output capabilities (file, TCP, and serial). Source code
and compiled binaries are distributed with AFNI, and descriptions and
further information are maintained at http://lacontelab.org/3dsvm.
html. Further, since 3dsvm is, itself, open source, this enables other
sites to inspect the source code, build custom capabilities for their own
experiments, and even contribute to ongoing development efforts.

The core of a TABS implementation is the machine learning
approach. Although our reported real-time system used an SVM
implementation (Joachims, 1999), this is really a modular part of the
system that allows future extensions in which multiple classifiers
(either individually or combined) can be used (LaConte et al., 2007).
Recently Eklund et al. (2009) have reported a neural network-based
system andHollmann et al. (2009) used the relevance vectormachine.
For offline analysis, many groups have used their own implementa-
tions of machine learning methods or have used general purpose
machine learning software. For offline fMRI analysis, BrainVoyager's
SVM and 3dsvm in AFNI are convenient to use. Additional recommen-
dations include the Princeton Multi-Voxel Pattern Analysis (MVPA)
Toolbox (www.csbmb.princeton.edu/mvpa/), PyMVPA (www.
pymvpa.org), PLSNPAIRS (http://code.google.com/p/plsnpairs/), and
the Lyngby Toolbox (http://neuro.imm.dtu.dk/software/lyngby/).
perimenter to simultaneously monitor the stimulus seen by the subject, continuously
AFNI interface.

http://nifti.nimh.nih.gov/
http://lacontelab.org/3dsvm.html
http://lacontelab.org/3dsvm.html
http://www.csbmb.princeton.edu/mvpa/
http://www.pymvpa.org
http://www.pymvpa.org
http://code.google.com/p/plsnpairs/
http://neuro.imm.dtu.dk/software/lyngby/
image of Fig.�4


Fig. 5. The 3dsvm plugin. 3dsvm is a command line program and plugin for AFNI, built using SVM-Light (Joachims, 1999) for its core computations. (A) The gui interface allows the
user to specify important training and testing parameters. (B) A variable block length task consisting of a left vs. right visual wedge stimulus (screen shots and red time course),
support vector machine weightings of each time volume (green), and voxel time series (white). (C) SVM-based map from this paradigm. (D) Closer look at a green trace from B.
Circled time points represent support vectors. Source code and compiled binaries are distributed with AFNI, and descriptions and further information are maintained at http://
lacontelab.org/3dsvm.html.
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Methodology

Supervised learning is one of the last steps in the chain of
experimental and data processing for both offline analysis and for
TABS. The use of specializedMRI sequences may be beneficial for real-
time applications, such as the multi-echo sequences for improving
image distortion artifacts (Posse et al., 1999; Weiskopf et al., 2005)
and sequences that update to minimize the effects of motion (Thesen
et al., 2000) or provide adaptive capabilities during the experiment
(Yoo et al., 1999). In addition, parallel MRI acquisition, using multiple
coils (Pruessmann et al., 1999; Sodickson and Manning, 1997), is
revolutionizing all facets of MRI and will likely be a routine aspect of
most future protocols.

Strother (2006) has reviewed the preprocessing steps that
occur after data acquisition and before the final statistical test and
emphasized their importance to fMRI experiments. Each additional
step adds processing time and special considerations (for example,
spatial smoothing can be done as soon as an image is reconstructed,
but detrending requires multiple time points). At the extreme end
of computational execution, Bagarinao et al. (2005) have demon-
strated preprocessing and incremental GLM analysis in real-time
using computational grid technology done on a network of remote
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computing resources. Comprehensive real-time analysis that includes
behavioral and physiological recordings in the statistical analysis has
also been demonstrated (Voyvodic, 1999). Further Bodurka et al.
(2009) has recently shown the use of neurofeedback with rtfMRI to
suppress physiological noise. For TABS-based systems, feature
selection (Craddock et al., 2009; Mitchell et al., 2004), sample
selection, and quality of the labels are additional preprocessing
steps that could be beneficial (LaConte et al., 2007). Strother et al.
(2002a) proposed a framework (called NPAIRS) for evaluating the
experimental chain defined by all choices in the acquisition,
reconstruction, preprocessing, and data analysis steps that is
especially well suited to supervised learning methods (Kjems et al.,
2002; LaConte et al., 2003; Shaw et al., 2003; Strother et al., 2002b).

Subject motion may be one of the most critical data quality issues
for TABS. In fact head motion is even more problematic in adaptive
designs and particularly neurofeedback, since it may be inadvertently
“trained” instead of or in addition to the neuronal BOLD response.
While intra-imagemotion is reduced in fast imaging sequences such as
single shot echo planar imaging (EPI), inter-image motion remains a
problem in routine fMRI data collection and is one of the single largest
challenges to data quality for studies involving clinical populations,
children, and the elderly. As a source of unwanted variance,motion can
reduce sensitivity to true BOLD effects, and, when coupled to the
timing of stimulus presentation, even result in erroneous patterns of
activity (Hajnal et al., 1994). It has been previously shown that
alignment between functional runs and correction for motion within
runs can have a major impact on both prediction accuracy of
supervised learning models as well as reproducibility of fMRI maps
evenwhenmotion is small relative to voxel size (LaConte et al., 2003).
Rapid retrospective correction of fMRI data is possible (Cox and
Jesmanowicz, 1999; Mathiak and Posse, 2001), but these approaches
cannot easily correct for largemotion, primarily because they aremore
likely to result in changes infield homogeneity and through-plane spin
history effects. Using the implementation of Cox and Jesmanowicz
(1999) andMathiak and Posse (2001), feedback ofmotion estimates to
the volunteer is possible and has been reported to reduce subject
motion and (at least for one task) has minimal interference with the
fMRI paradigm (Yang et al., 2005).

Given all of the possible processing steps that could be desired,
implementing and testing all of them with limited resources and time
becomes impractical and represents either a duplication of existing
work or raises the question of how to best share any new capabilities.
Thus preprocessing demands highlight another advantage to inte-
grating within a major software package, since this gives access to
all of the preprocessing and display capabilities that come with it,
as well as the ability to readily share any new methods that are
developed.

Future challenges

Looking to the future, fMRI will continue to evolve in areas of
acquisition, experimental design, and data analysis. As the field
furthers its understanding of the BOLD signal, optimal tradeoffs in
field strength, voxel size, and stimulus parameters will be refined. MRI
is sensitive to a host of physical parameters that can give rise to
meaningful contrast in neuroimaging, and work on multimodal
imaging is likely to continue. Information rates and data quality will
continue to improve, as will statistical approaches. Real-time fMRI
could play an important role in the future of fMRI. This section looks
ahead to some important challenges, opportunities, and directions for
TABS fMRI and rtfMRI in general.

Expanding the experimental capabilities

For a TABS system, the implementation reported in LaConte et al.
(2007) primarily served as a proof of principle. As more work emerges
in the field, many challenges will be met and new capabilities will be
implemented to add experimental flexibility. Two areas that we are
exploring include re-using a subject's model across multiple sessions
or after head movement and obtaining a brain state model from every
run, including feedback runs.

Model-to-scan alignment

The ability to spatially align supervised learning models to new
fMRI volumeswould addflexibility for a variety of situations, including
movement between runs within a session, progressive training and
testing across sessions, and the use of groupmodels for neurofeedback
applications such as addiction and stroke (where the group could be
comprised of recovered individuals and used to guide a new
individual's recovery). Alignment across runs in the same session for
classification has been previously reported (LaConte et al., 2003), as
has the use of group-based models applied to new individuals
(Mitchell et al., 2004; Strother et al., 2004), although registering
between subjects might benefit from future work using concepts such
as similarity of functional organization across the population.

Incorporating this capability into a TABS system would also make
it possible to share models across labs. Such an extension would be
relatively straightforward, requiring a mechanism to spatially align
the supervised model and the test data. One practical way to do this
would be to train the supervised learning model prior to the real-time
session, find alignment parameters during the session, and apply the
transformation only once (to themodel). Computationally, this would
be preferable to retraining (especially if themodels take a long time to
converge) or to having to apply a transformation to bring every time-
point of the test data to the model space during acquisition.

Model updates during real-time feedback

It could be extremely beneficial to be able to use the images that
are being decoded during real-time feedback runs to additionally
serve as new training data to update the TABS model. One motivation
is that this addresses the requisite start-up cost to brain state
feedback–that it is impossible to provide real feedback without an
existing model, but during feedback, there might be important
differences since the subject is doing the base task and simultaneously
monitoring feedback. It is likely that having the capability for ongoing
machine learning can significantly decrease training time for
therapeutic applications. Given a start-up model, it might be possible
to proceed to training and testing with progressively more relevant
feedback. Further, the presence of brain state-controlled feedback
allows for an adaptive paradigm and for learning and/or change in
strategy on the part of the volunteer. Thus using a true brain state
feedback experiment allows for human learning and machine re-
learning as discussed next.

Detecting and correcting temporal non-stationarity

Like most statistical models, supervised learning methods were
developed under the assumption that the measured system (in this
case the volunteer's brain response) is constant over time. Indeed, this
premise of temporal stationarity underlies the majority of current
neuroimaging studies, where the implicit assumption (which is made
by repeating stimulus conditions several times throughout a run) is
that the measured responses are more or less constant over time.
While these assumptions are often reasonably satisfied, in general, a
human subject is prone to factors such as varied attention, fatigue, and
learning. Moreover, one major goal of rtfMRI can be to stimulate
positive change through adaptive feedback experiments. It is
currently unknown how a subject's behaviorally demonstrated
learning corresponds to detectible changes in the brain and if this is
directly observable using pattern-based brain state prediction.
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To promote human learning and adaptationwhile still maintaining
the capacity to provide relevant feedback, the feedback system itself
must be able to adapt. We have begun to study the issue of the
performance of predictive algorithms on a time-varying system using
motor learning experiments and support vector machine regression
of button press rate as a model system for studying this effect
(LaConte et al., 2005b). Our preliminary results support the idea that
behaviorally demonstrated learning by a subject (quantified by
increases in button press speed, while maintaining a high degree of
accuracy) corresponds to changes in the image data and that these
changes are directly observable using prediction.

We used a finger sequence task as described in Rao et al. (1993),
and adapted the motor learning study of Lafleur et al. (2002), which
reported regional activation changes with overt motor learning.
Right-handed volunteers were asked to perform a button press
sequence (middle, pinkie, ring, index) with their left hand as
accurately and rapidly as possible on a four-button, fiber optic button
box (Current Designs, www.curdes.com). An experimental run
consisted of four, 16 s periods of continued button presses inter-
spersed between five 16-s control periods. Periods were visually
guided, with control periods displaying a fixation cross and motor
periods displaying text reminding the volunteer of the proper finger
sequence. The scanning session consisted of four repeated fMRI runs,
each spaced approximately five minutes apart. Volunteers were
instructed not to mentally rehearse when not overtly performing the
task. Imaging was done on a 3 T Siemens Trio, with 27 axial EPI slices
(TR/TE=2000/31 ms, voxel=3.4×3.4×5 mm). Scans during motor
Fig. 6. Motor learning as a model system for studying non-stationarity. (A) Behavior, predi
subject with little motor improvement, in agreement with both t-maps and prediction accu
similarly constant, and prediction accuracy was constant as well.
blocks from run 1 were used to build a support vector regression
model relating all brain voxels to the number of button presses at each
TRwithin these blocks. For each subject, models from run 1 were used
to estimate the button rate in successive runs.

The degree of increased rate (arising from short-term motor
learning) varied greatly across subjects. Nevertheless, data from all
subjects demonstrated brain state model errors were highly correlat-
edwith theirmean performance: (7 subjects: r=0.75, 0.94, 0.94, 0.80,
0.91, 0.99, 0.99). The task's block design convolved with an ideal
hemodynamic response function was used to produce t-maps for each
run for each subject. These were then thresholded at a FDR-corrected
value of 1×10−6. Fig. 6 gives examples of (a) one individual who
demonstrated learning, (b) onewho did not, and (c) one performing a
control task (paced, dominant index finger button press task). Note
that the button press behavior, estimation error, and t-maps are all in
agreement. Even though this is a uni-manual task bilateral activation
is common difficult tasks (Rao et al., 1993). In general for subjects that
demonstrate learning, initially have a bimanual BOLD response in
primary sensory motor, supplemental motor, and parietal areas with
decreasing spatial extent of response in these areas (especially
decreased in ipsilateral regions) over time (Fig. 6A). For subjects
who do not demonstrate learning and for subjects who perform the
control task, the t-maps, button press rate and support vector
regression accuracy remain relatively constant across runs (Fig. 6B
and C, respectively).

These experimental results demonstrate that human learning is
observable through increased prediction error in multivariate SVM
ction accuracy and changes in t-maps for a subject who demonstrated learning. (B) A
racy. (C) Control task. No learning behavior was expected (or observed). t-maps were

http://www.curdes.com
image of Fig.�6
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models of fMRI data. As a practical matter, these temporal changes are
often a hindrance to the analysis process, but for effects such as
learning they represent a fascinating dynamic component to
neuroimaging experiments. Motor learning is an ideal experimental
model for this phenomenon since it is supported by a vast behavioral
and neuroimaging literature and lends itself to behavioral recordings
as an external measure of learning.

The future challenge of this line of research is to detect and correct
for the time-based changes in volunteers participating in TABS-based
rtfMRI studies. Approaches for doing this could be algorithmic or
patient initiated. For an algorithmic approach, we note that in the
machine learning literature, such changes are often referred to as
concept drift. One of the simplest approaches to correct for this effect is
to use time windows of data. Intuitively, a window approach tries to
balance the quality and quantity of training data. That is, sufficient data
is required to obtain reasonable models, but, in the presence of
nonstationarity, too much data allows for irrelevant or misleading
training examples and poor predictive performance. Klinkenberg and
Joachims (2000) note that windowing works well but requires
application-specific tuning. For a patient-signaled approach, the idea
would be to give the volunteer a way to signal that the interface “is no
longerworking.” For example, rather than having the algorithmdetect
discrepancies, it might be possible to detect frustration or to have a
robust behavior that the volunteer can use to signal the computer to
re-train.

Feedback interfaces

Feedback can take on a wide variety of forms. At one extreme task
difficulty could be titrated based on brain signals without a subject
knowing that feedback was taking place. In this case, the explicit real-
time “feedback” might be solely targeted to providing the most
information possible to the experimenter. Another goal might be a
steadily growing independence from the neurofeedback to promote
long-term efficacy or a move from an external to an internal
representation of a task. Recently, Bray et al. (2007) proposed
monetary rewards, rather than a more direct transduction of BOLD
signal in an operant conditioning framework. The appropriate
feedback stimulus for the question or task at hand remains an open
and intriguing issue. In the rtfMRI literature several variations have
arisen in different groups, some of which are demonstrated in Fig. 7.
Furtherwork is needed to understand andoptimizehowcontrolling an
interface ties into reward systems and promotes desired plasticity.
This area has great potential as a fascinating new frontier of scientific
discovery.

The potential of TABS

This review is intentionally optimistic, but further work is
necessary. One outstanding major issue is that current rtfMRI studies
fall short of being able to make strong claims that voluntary self-
regulation of hemodynamic processes is a main effect of neurofeed-
back (and not confounded by coaching subjects on potential mental
strategies). Another issue is that over the past several decades of EEG-
based neurofeedback research, the mechanisms underlying self-
regulation are still not well elaborated. A comprehensive treatment
of EEG-based neurofeedback is beyond the scope of this review, but
many of the same issues that will be important for rtfMRI have been
discussed by the EEG neurofeedback and biofeedback community
(Hinterberger et al., 2004; Kotchoubey et al., 2002; Fetz, 1969; Lacroix
and Roberts, 1978; Elbert et al., 1984; Birbaumer et al., 1999;
Kotchoubey et al., 2001).

At the moment we have a wealth of capabilities and the testable
hypothesis that TABS and other rtfMRI systems can serve as a valuable
tool for measuring brain function and can enable feedback-aided
plasticity. This cannot be tested with the next single experiment, but
will require a body of converging evidence, hopefully from a broad
scientific community. This endeavor is so rich in challenges there can
be little doubt that future work will continue to form the foundation
for future directions of innovation and discovery.

The best possible trajectory will be fueled by well-designed
experiments that include scientific controls. For clinical applications,
it is even possible that developing effective protocols will not be
enough. Meeting the challenge of efficacy might not remove the
specter of cost. Some of the following comments add to and reaffirm
similar statements made in deCharms (2008). The issue of cost can be
dealt with in a number of ways. One is bymaking the technologymore
affordable. Cost can be reduced throughMR technology breakthroughs
or through economic changes (e.g. increased commercial competition
and manufacturing specialized rtfMRI systems). In addition, costs can
be better justified for therapies in which rtfMRI provided the best or
only solution. It is also quite possible that rtfMRI could serve as an
adjuvant to existing therapies andwould augment these by improving
efficacy or by leading to beneficial results on a faster time scale.
Similarly there are several ways in which rtfMRI might complement
cheaper and more portable neurofeedback technologies such as
electroencephalography or near infrared sensors, and even guide
improvements in their use. For now, fMRI is the best imaging tool for
providing non-invasive, spatially resolved measurements of brain
activity in humans. Thus as a research tool, it remains the method of
choice for understanding the neural correlates of BCI-feedback.

In terms of assessing and evaluating TABS fMRI, ROI-based rtfMRI,
and other available neurofeedback technologies such as EEG and near
infrared spectroscopy (NIRS) (Birbaumer et al., 2009) future work
providing direct comparisons are necessary. Within the BCI literature,
bit rate is one important characteristic of the system (Wolpaw et al.,
2002) that should be considered by the rtfMRI community. This
measure captures the capacity with which brain measurements can
be translated to useful information to control interfaces such as word
processors, slider bars, or even robots. Strategies for increasing bit rate
include faster “switching” capability and maximizing prediction
accuracy for TABS systems that use classification and regression. For
classification, the more categories that the system uses, the higher the
number of bits (e.g. classification of two stimulus categories is
represented by 1 bit, whereas four classes are represented by 2 bits).
For ROI-based methods, bit rate can likely be increased by using
multiple locations (Yoo et al., 2004). Sorger et al. (2009) have
exploited spatio-temporal properties of the BOLD signal, in order to
increase the information transfer rate. In addition, as basic imaging
improvements provide greater SNR and more specific image contrast,
it may be possible to robustly classify based on the earliest BOLD
signal changes (Yacoub and Hu, 1999). Finally, properly designed
tasks may ultimately be able to capitalize on the spatiotemporal
capabilities of MRI and multivariate techniques to decode complex
streams of ongoing sensory and behavioral combinations. With these
considerations, the ultimate limit on bandwidth is very much an
unexplored matter in rtfMRI.

Of the most exciting possibilities for TABS is that of allowing
individuals to gain awareness of brain processes that are not usually
consciously accessible or rely on non-reliable self-report. Going
beyond what is available from behavioral measures and moving into
these realms–like pain, memory encoding and recall, and emotional
regulation–makes full use of the technology. At the same time, we
cannot hope to build reliable real-time systems and apply them in
evidence-based protocols if we are not grounded by behavioral
measures when building the system and by experimental controls
while developing the protocols. At least three things are desired. First,
technology development should use well-parameterized sensory
stimuli or measurable behavior. For example, button responses
provide a good external measure when building new capabilities
into a system. The brain states then correspond to recordings that can
be verified in terms of timing and correctness of response. Second,



Fig. 7. Real-time interfaces. Currently there are no strong guiding principles to optimize a display's effectiveness of neurofeedback. (A) A continuous display representing percent
signal change of rostral anterior cingulate by the size of a virtual fire. Modified from (deCharms et al., 2005). (B) The difference between signal from the right anterior insula and a
large reference ROI was used to give feedback with a thermometer display. Task instructions were cued with symbols to the right of the thermometer. Modified from (Caria et al.
(2007). (C) A set of inner, middle, and outer four-way arrows, indicating degree of motion (in this case a second level motion threshold has been exceeded). This configuration was
found to minimize distractions and be more effective than showing subject their actual direction of motion. Task stimuli are presented in the center of the arrows (the center “+”

symbol represents the rest condition in the task). Modified from (Yang et al., 2005). (D) A running plot (yellow trace) of the difference between two brain regions, making the control
signal for this interface conceptually similar to the thermometer of B. In the actual experiment, the colored columns indicated the task condition (arrows and red trace were added
after the experiment). Modified fromWeiskopf et al. (2004a,)b. (E) Images from the first real-time FMRI experiment, showing the evolution of a map using sequential finger tapping
task. The display was intended for the experimenter. Modified from Cox et al. (1995). (F) Interface in which the goal is tomove the needle cursor to the target. This was demonstrated
using classification of whole brain fMRI data in to various task categories for different subjects. Modified from (LaConte et al. (2007). (G) A red inverted pendulum that subjects
controlled with a classifier that gave right, left, and rest output signals. Modified from Eklund et al. (2009). (H) A slider bar and smoking cues that show smokers feedback based on
“enhanced” or “suppressed” craving states. Modified from LaConte et al. (2009). (I) An unpublished interface used for ongoing rtfMRI development. Subjects fixate on the white base
of the feedback needle and task instructions can be displayed below the meter.
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experimental controls are necessary. Scientific progress depends on
experiments that are backed by positive and negative controls. For
example, using technology tested with button presses provides a
positive control against a negative result (the experimenter knows
the system works for a well-characterized task), and using a model
from a completely different task serves as a negative control against a
positive result (the experimenter has ruled out the possibility that the
feedback results in the test data could be generated from any arbitrary
training task). In general, negative controls should be performed for
all reasonable alternative explanations for a positive result. For
example, deCharms et al. (2005) used four control groups that
included extended practice without rtfMRI feedback, doubling the
duration of training to focus attention away from pain, training using
rtfMRI data from a different ROI, and using sham rtfMRI data taken
from a different participant. Third, confirmatory analysis should be
performed using brain and behavioral recordings. Just as data-driven
results place the burden of interpretation on the experimenter and
ROI-based results need to acknowledge other mechanisms for
changing localized signal, TABS results need to be scrutinized with
an appropriate degree of skepticism. One way to do this is to examine
the training model – do the model maps involve areas that are
consistent with the task instructions and any related reports in the
literature? Thus as non-linear approaches are applied (such as non-
linear kernel methods), it will be important to develop interpretation
strategies that relate to the brain's anatomy. This scrutiny will be
especially important if TABS is to be used for the exciting applications
that elude reliable external behavioral measures. Along similar lines,
for any feedback system, there can be a real danger that behavioral/
imaging artifacts arising from physiology, subject motion, or eye
movements get reinforced during the experiment (Zhang et al., 2009).
These three concepts are not independent of each other. Further
special applications such as rehabilitation will involve several
additional considerations, including the demonstration of long-term
efficacy, adaptation of training to a clinical setting, and potential side-
effects. These are issues that are discussed in the EEG feedback
literature (Strehl et al., 2006).

image of Fig.�7
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Returning to the issue of controls, negative controls are crucial to
the field, and though the proper controls will vary for each study, it is
clear that the goal should be to protect against over-stating rtfMRI
results. Positive controls, however, should be viewed as important
building blocks to move forward. Questions such as “Can this task and
real-time system enable a volunteer to control an interface?” are
important and non-trivial. In a TABS experiment, if we are trying to
control an interface, we do so with supervised models that link task
conditions with the degrees of freedom of the interface (e.g. pressing
left and right buttons is linked through the training step with the
ability to move a cursor to the left or the right). The “treatment” is the
task that the subject is asked to perform. As we have stated, simple
sensory or motor tasks (e.g. viewing left and right flashing wedges or
performing left and right button presses) can generally serve as
positive controls. Before being able to embark upon a full-fledged
rehabilitation study, it is necessary to investigate an important
underpinning—the degree to which interface modulation is obtain-
able. This is an important step to demonstrate the feasibility for future
rehabilitation designs because it disentangles the interface aspect
from any feedback-based affects. The feedback interface converts
brain patterns into a computer display. It is critical to establish
whether variation in a volunteer's fMRI data can be modulated to a
great enough extent such that it can be translated into feedback
information. Otherwise a null result (no change in the feedback
interface) could indicate either that the measure is not appropriate or
that the feedback therapy is fundamentally flawed. Thus the first
question when studying a new cognitive domain or study population
is: Can the subjects learn to control a computer interface based on the
task design? For example, can smokers enhance and suppress craving
to control an interface (LaConte et al., 2009). Further, the degree of
success can be answered quantitatively through measures such a
prediction accuracy (or equivalently bit rate (Kjems et al., 2002)).

Conclusion

Feedback-based rtfMRI represents an experimental system that
goes beyond observational findings into the domain of falsifiability.
This framework can allow investigators to test the neuroscience
knowledge base with a system that demonstrably works or fails,
based on model generalization as it is used to provide neurofeedback.
While predictive models are not guaranteed to capture all relevant
fMRI signals, the ability to actively test predictions enables progress
toward a more refined understanding of brain function.

The experimental flexibility provided by TABS and other rtfMRI
approaches allows the implementation of adaptive paradigms.
Conventional fMRI paradigms implicitly rely on a linear systems-
based characterization of brain function, because the input stimulus
paradigm is not dependent on brain or behavioral respones to
previous stimuli. Because rtfMRI enables feedback, it allows for
characterization of both the linear and nonlinear properties of brain
responses. Breakthroughs will only be possible, though, through a
growing research community that is willing to expand current real-
time capabilities, share software, and develop experimental frame-
works to serve as tangible examples of adaptive paradigms. Going
beyond the limitations of conventional stimuli and the harnessing of
the utility of feedback and adaptive experiments is an exciting new
frontier for scientific discovery.
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