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Automatic Gait Recognition
Based on Statistical Shape Analysis
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Abstract—Gait recognition has recently gained significant at-
tention from computer vision researchers. This interest is strongly
motivated by the need for automated person identification systems
at a distance in visual surveillance and monitoring applications.
As a newly emergent biometric feature, gait is a particularly at-
tractive modality from the surveillance point of view. This paper
aims to propose a simple and efficient automatic gait recognition al-
gorithm using statistical shape analysis. For each image sequence,
an improved background subtraction procedure is used to extract
moving silhouettes of walking figures from the background. Tem-
poral changes of the detected silhouettes are then represented as an
associated sequence of complex vector configurations in a common
coordinate frame, and are further analyzed using the Procrustes
shape analysis method to obtain mean shape as gait signature. Su-
pervised pattern classification techniques based on the full Pro-
crustes distance measure are adopted for recognition. This method
does not directly analyze the dynamics of gait, but implicitly uses
the action of walking to capture the structural characteristics of
gait, especially the shape cues of body biometrics. The algorithm is
tested on a database consisting of 240 sequences from 20 different
subjects walking at 3 viewing angles in an outdoor environment.
Experimental results are included to demonstrate the encouraging
performance of the proposed algorithm.

Index Terms—Biometrics, gait recognition, statistical shape
analysis, visual surveillance.

I. INTRODUCTION

THE demand for automated person identification systems
is significantly growing in many important applications

such as visual surveillance, access control, and smart interface.
Biometrics is intended to address such a need by making use of
the physiological or behavioral characteristics of people [46].
Biometric features used currently include fingerprint, voice, iris,
face, signature, etc. Face and fingerprint are the two most widely
used in some commercial and law applications.

Recently, vision-based human identification at a distance has
been strongly driven by the need for automated person identi-
fication systems for visual surveillance and monitoring appli-
cations. In 2000, DARPA sponsored the Human ID program
[1] whose focus is currently on gait, face or activity-specific
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recognition. The goal of this program is to develop a full range
of multimodal surveillance technologies for successfully de-
tecting, classifying, and identifying humans in order to enhance
the protection of facilities from terrorist attacks. Although there
is a rich body of work describing vision systems to deal with
human detection, tracking, and action recognition [23], [51],
computer vision researchers have only recently begun to inves-
tigate gait as a biometric feature. Gait recognition aims essen-
tially to discriminate individuals by the way they walk, and it is
closely related to vision-based human motion analysis methods,
especially to methods that deal with whole-body human move-
ments [10].

Gait has the advantage of being noninvasive, just like auto-
matic face recognition. It is less likely to be obscured than other
biometric features [21]. Most first-generation biometrics such as
fingerprint and face usually require proximal sensing or phys-
ical contact, whereas gait is the only biometric feature perceiv-
able at a distance where face or iris information is not avail-
able in a resolution high enough for recognition. Hence, from
the perspective of surveillance, gait is a particularly attractive
modality. Apart from being noninvasive, gait is also hard to con-
ceal (i.e., people need to walk, so gait is usually apparent [21]).
Gait is also readily captured without a walker’s attention, so the
walkers seldom hide or disguise their gait deliberately. Although
it could be argued that some physical factors such as drunken-
ness, fatigue, pregnancy, and injuries involving joints may affect
an individual’s gait motion since they will inevitably bring con-
siderable changes to the normal walking pattern, these factors
are also similar in principle to factors affecting other biometrics
[8].

There is a great deal of related studies on gait, including phys-
ical medical studies [33]–[35], psychology [29], [42], and ap-
proaches aiming to model human body and to track human mo-
tion [21], [23], [39], [51]. In addition, gait classification [37],
[38] is the recognition of different types of human locomotion
such as running, walking, limping, and jumping. All these re-
lated subjects lend ample support to the view that gait has clear
potential as a biometric feature for recognition.

The purpose and major contributions of this paper are as fol-
lows.

• By applying the statistical shape analysis method to auto-
matic gait recognition, this paper aims to develop a simple
and effective method for gait-based human identification.

• The proposed method does not directly analyze the dy-
namics of gait, but derives a compact statistical descrip-
tion of gait as a continuum from its spatio-temporal mo-
tion pattern. So it implicitly captures the body structural
(appearances) characteristic of gait.

1057-7149/03$17.00 © 2003 IEEE
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• An integrated background subtraction procedure is pro-
posed. It combines some effective methods demonstrated
in different change detection approaches and obtains
smoother gait detection results (which are critical to gait
analysis).

• Instead of silhouette images usually used in existing work,
here we only analyze binary silhouette boundary shape
(i.e., outer-contour). This greatly reduces the computa-
tional cost.

• Performance evaluation is performed on our newly es-
tablished database. Unlike most previous small databases
which only involve a lateral view with respect to the image
plane, the database used in this paper includes image se-
quences taken from three different views.

• A large number of papers in the literature usually reported
good recognition results on databases of limited size, but
few made informed comparisons among different algo-
rithms due to the lack of a standard test protocol. Here,
we provide some quantitative and qualitative comparative
experiments to examine the performance of the proposed
algorithm.

• The proposed method has several desirable properties: 1)
it is very easy to comprehend and implement; 2) as a sil-
houette-based method, it is insensitive to the color and tex-
ture of cloth; 3) the statistical nature of signature extrac-
tion makes the method considerably robust to noisy data;
4) it does not require precise segmentation of body parts;
5) it has a relatively lower computational cost; and 6) gait
sequences of just over 60 frames with respect to a frame
rate of 25 fps are sufficient to obtain a good steady recog-
nition performance.

The remainder of this paper is organized as follows. Section II
introduces previous related work. Algorithm overview is given
in Section III. Section IV describes human silhouette extraction
and representation. Section V discusses gait signature extraction
and classification. A large number of experimental results are
presented and discussed in Section VI. Section VII concludes
this paper.

II. RELATED WORK

Human gait has always been an active research topic in
biomechanics, kinesiology, physical medicine for therapy, etc.
Medical study from Murray [35] supported the view that if
all gait movements were considered then gait was unique.
Another psychological research from Johansson [29] showed
that people did have a remarkable ability to recognize different
types of motion (e.g., gait patterns) even only by watching
video sequences of light points affixed to joints of the walker.
The earliest attempt to recognize people by gait was probably
due to Cutting and Kozlowski [28]. A more recent study by
Stevenage [19] again confirmed the possibility of learning gait
patterns and recognizing people by their gait using video rather
than markers usually used in medical work.

Interest in automatic gait recognition in the computer vision
community only began recently, but considerable efforts have
already been made and a large number of methods have been
proposed [2]–[14], [20], [22], [24]–[26], [30], [31], [36],

[40], [41], [43]–[45], [47]–[50], [52]. These methods can be
roughly divided into two major categories, namely model-based
methods [5], [6], [12], [14], [20], [24], [25], [30], [31], [36],
[48]–[50] (which usually model the human body structure and
extract image features to map them into the structural compo-
nents of models or to derive motion trajectories of body parts)
and motion-based methods [2]–[4], [7]–[11], [22], [26], [41],
[43], [44], [47], [52] (which generally characterize the whole
motion pattern of the human body by a compact representation
regardless of the underlying structure).

Model-based approaches aim to explicitly model the human
body or motion, and they usually perform model matching in
each frame of a walking sequence in order that the parameters
such as trajectories, limb lengths, and angular speeds are mea-
sured on the model. As a typical example of model-based ap-
proaches, Cunado et al. [5] considered legs as an interlinked
pendulum, and gait signatures were derived from the frequency
components of the variations in the inclination of human thigh.
These features were analyzed using the phase-weighted Fourier
magnitude spectrum to recognize different people. Johnson and
Bobick [14], [20] used activity-specific static body parameters
for gait recognition without directly analyzing the dynamics of
gait patterns. Little and Boyd [6] used frequency and phase fea-
tures from optical flow information of walking figures to recog-
nize individuals. In addition, Yam et al. [24] first used running
to recognize people as well as walking. Later, they further ex-
plored the relationship between walking and running that was
expressed as a mapping based on phase modulation [48]. The
effectiveness of model-based methods is still limited and their
computational cost is relatively high.

The majority of current approaches are motion-based. They
typically analyze the image sequence by motion or shape that
subjects make as they walk to recover gait features for recog-
nition. In an early work, Niyogi and Adelson [4] distinguished
different walkers through extracting their spatio-temporal gait
patterns obtained from the curve-fitted “snake.” Using human
shapes and their temporal changes, Murase and Sakai [2] pre-
sented a template matching method based on eigenspace rep-
resentation to distinguish different gaits. Using temporal tem-
plates of optical flow, Huang et al. [3] extended the approach
of [2] by adding canonical analysis for better discrimination.
More recently, Shutler et al. [7] extended statistical gait recog-
nition via temporal moments, Hayfron-Acquah et al. [8] de-
scribed an automatic gait recognition method using the gen-
eralized symmetry operator, and Foster et al. [9] presented an
area mask based metric for gait recognition. In addition, Ben-
Abdelkader et al. [10], [52] proposed an eigengait method using
image self-similarity plots, Phillips et al. [47] described a base-
line algorithm based on spatial-temporal silhouette correlation
for the gait identification problem, and He and Debrunner [45]
recognized individual gaits via HMMs that used the quantized
vector of Hu moments of a moving person’s silhouette as the
input.

These early results further confirm that gait has a good poten-
tial for personal recognition. Compared with other widely used
biometric features such as face and fingerprint, gait recognition
is still in its infancy. Gait-based human identification is a chal-
lenging problem touching on many hard computer vision prob-
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lems, e.g., matching temporal signatures, automatic figure and
background segmentation, modeling and describing human mo-
tion and dynamics, etc. Vision-based gait recognition will thus
offer us an interesting research topic.

III. ALGORITHM OVERVIEW

Human gait is usually determined by the persons’ weight,
limb length, habitual posture and so on. It includes both the body
appearances and the dynamics of human walking motion [41].
In theory, joint angle changes are sufficient for recognition by
gait. However, their recovery from a video of walking person
is an unsolved problem for current vision techniques. The par-
ticular difficulties of joint angle computation from monocular
video sequences are self-occlusions of limbs and joint angle
singularities. Empirically, recognizing humans by gait can be
achieved by applying the statistical analysis to the temporal
patterns of individual subjects, which has been well demon-
strated in gait recognition [2], [3], [7], [10], [22], [41], [43],
[44], [52]. These techniques remain statistical in essence, de-
scribing human motion by a compact representation of motion
or structural statistics of a sequence of area distributions rather
than the attempt to match the data to a model. Intuitively, recog-
nizing people through gait depends greatly on how the silhou-
ette shape of an individual changes over time. Therefore, we
may consider gait to be composed of a set of static poses and
their temporal variations can be analyzed to obtain distinguish-
able signatures. Based upon the above consideration, here we
present a model-free automatic gait recognition algorithm using
the Procrustes shape analysis method.

Fig. 1 gives an overview of the proposed method. For each
input sequence, an improved background subtraction procedure
is first used to extract the spatial silhouettes of walking fig-
ures from the background. Pose changes of these segmented
silhouettes over time are then represented as an associated se-
quence of complex configurations in a two-dimensional (2-D)
shape space and are further analyzed by the Procrustes shape
analysis method to obtain an eigen-shape as gait signature. The
standard pattern classification techniques such as the -nearest
neighbor classifier and the nearest exemplar classifier based on
the full Procrustes distance measure are respectively adopted
for recognition. Like many previous work, this approach also
does not directly analyze gait dynamics. It includes the appear-
ance as part of gait recognition features. It is in essence holistic
because gait is implicitly characterized by the structural statis-
tics of the spatio-temporal patterns generated by the silhouette
of the walking person in image sequences.

IV. HUMAN SILHOUETTE EXTRACTION AND REPRESENTATION

A. Silhouette Extraction

Gait detection is the first step to gait analysis. To extract
walking figures from the background image, change detection
based on background subtraction is adopted. Background
subtraction is widely used in motion detection, where a fixed
camera is usually used to observe dynamic scenes. Generally

Fig. 1. Overview of the proposed method.

speaking, it involves background modeling, the arithmetic
subtraction operation and the selection of a suitable threshold.

Background image can be generated by a variety of methods.
A potentially more robust approach is to dynamically generate
background image from some portion of image sequence and
periodically update it to account for possible changes in the
background. Here the Least Median of Squares (LMedS) method
is used to construct the background image [15]. Let rep-
resent a sequence including collected images. The resulting
background can be computed by

(1)

where is the background value to be determined for the pixel
location , and is the frame index ranging within 1– .

The brightness change is usually accomplished by differ-
encing between the background and current image. However,
the selection of threshold for binarization is very difficult,
especially in the case of low contrast images as most of moving
objects may be missed out since the brightness change is too
low to distinguish changing regions from noise. To solve this
problem, we use an extraction function to indirectly perform
differencing operation [16]

(2)

where and are the brightness of current image
and the background at the pixel position respectively,

and . This function
can arrange the change sensitivity according to the brightness
of each pixel in the background image.
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Fig. 2. Example of gait detection. (a) Background image; (b) original image; and (c) extracted silhouette.

For each image, the changing pixels can be detected by com-
paring the above extraction function against a suitable threshold

decided using the traditional histogram method

(3)

As no change detection algorithm is perfect, there will in-
evitably be spurious pixels, holes inside moving objects, and
other anomalies in the detected sections. Morphological opera-
tors such as erosion and dilation are therefore used to further
filter spurious pixels and fill small holes inside the extracted
silhouettes. Finally, a binary connected component analysis is
utilized to extract a single-connectivity moving region. An ex-
ample of gait detection is shown in Fig. 2.

B. Representation of Silhouette Shapes

An important cue in determining underlying motion of
a walking figure is the temporal changes in the walker’s
silhouette shape. To make the proposed method insensitive to
changes of color and texture of clothing, we ignore the color
of the foreground objects and only use the binary silhouette.
Further, for the sake of reducing redundant information, we use
spatial edge contours to approximate temporal patterns of gaits.

Once the spatial silhouette of a walking subject is extracted,
its boundary can be easily obtained using a border following al-
gorithm based on connectivity. Then, we can compute its shape
centroid by

(4)

where is the total number of boundary pixels, and is
a pixel on the boundary. Let the centroid be the origin of the 2-D
shape space. We can then unwrap each shape anticlockwise into
a set of boundary pixel points sampled along its outer-contour
in a common complex coordinate system. That is, each shape
can be described as a vector of ordered complex numbers with

elements

(5)

where . The extraction and representation process
of the silhouette’s boundary is illustrated in Fig. 3, where the
black dot indicates the shape centroid, and the two axes Re and
Im represent the real and imaginary part of a complex number,
respectively. Therefore, each gait sequence will be accordingly
converted into an associated sequence of such 2-D shape con-
figurations.

We need one method that allows us to compare a set of static
pose shapes in gait pattern and is robust to changes of position,
scale, and rotation. A mathematically elegant way for aligning
point sets in a common coordinate system is Procrustes shape
analysis [17]. So it is expected that it can be easily adapted to
handle spatial patterns of gait motion. In the following section,
we will give a brief introduction to the Procrustes shape analysis
method and show its application in gait signature extraction and
classification.

V. GAIT FEATURE EXTRACTION AND CLASSIFICATION

A. Procrustes Shape Analysis

Procrustes shape analysis [17] is a particularly popular
method in directional statistics [18]. It is intended to cope with
2-D shapes and provides a good method to find mean shapes.
A good brief review can be found in [11].

A shape in 2-D space can be described by a vector of com-
plex numbers, , called a configuration. For
two shapes, and , if their configurations are equal through
a combination of translation, scaling, and rotation

(6)

where translates , and and scale and rotate ,
respectively, we may consider they represent the same shape
[11].

It is very convenient to center shapes by defining the cen-
tered configuration

. The full Procrustes distance between
two configurations can be defined as

(7)
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Fig. 3. Illustration of silhouette shape representation.

which minimizes

(8)

Note that the superscript represents the complex conjugation
transpose and . The Procrustes distance allows
us to compare two shapes independent of position, scale, and
rotation.

Given a set of shapes, we can find their mean by finding
that minimizes the objective function

(9)

To find , we compute the following matrix:

(10)

The Procrustes mean shape is the dominant eigenvector of ,
i.e., the eigenvector that corresponds to the greatest eigenvalue
of [11].

B. Gait Signature Extraction

Our approach uses these single shape representations from
a gait sequence to find their mean shape as gait signatures for
recognition. Similar to Eigenface [32], we call this gait signature
as “Eigenshape.” The following summarizes the major steps in
determining the Procrustes mean shape for a sequence of shapes
from frames, e.g., a gait pattern.

1) Select a set of points from the boundary to represent a
2-D shape as a vector configuration in the manner dis-
cussed in Section IV-B. We tackle the point correspon-
dence problem through interpolation of boundary pixels
so that the point set is the same for each image.

2) Set the centered configuration. When we represent the sil-
houette shape, we have used shape centroid as the origin
of 2-D space to move all shapes to a common center to
handle translational invariance. So, we can directly set

.
3) Compute the matrix using (10). Then, compute the

eigenvalues and the associated eigenvectors of .

4) Set the Procrustes mean shape as the eigenvector that
corresponds to the maximum eigenvalue, and this mean
shape is used as the gait signature.

C. Similarity Measure and Classifier

To measure similarity between two gait sequences, we make
use of the Procrustes mean shape distance (MSD) in the fol-
lowing way.

1) Compute the Procrustes mean shape and of the two
gait sequences as discussed in Section V-B.

2) Find the full Procrustes distance between the two mean
shapes by

(11)

The smaller the above distance measure is, the more sim-
ilar the two gaits are.

Gait recognition is a traditional pattern classification
problem which can be solved by measuring similarities among
gait sequences. We try three different simple classification
methods, namely the nearest neighbor classifier (NN), the

-nearest-neighbor classifier ( NN), and the nearest neighbor
classifier with class exemplar (ENN).

Let represent a test sequence and represent the th refer-
ence sequence, we may classify this test sequence into the class

that minimizes the similarity distances between the test se-
quence and all reference patterns by

(12)

where is the similarity measure defined in (11).
No doubt, a more sophisticated classifier could be employed,

but the interest here is to evaluate the genuine discriminatory
ability of the features. We use the leave-one-out cross-validation
rule in our experiments in order to obtain an unbiased estimation
of recognition accuracy.

VI. EXPERIMENTAL RESULTS

To verify the usefulness of the proposed algorithm, we have
performed a number of experiments. We also present detailed
analysis and discussion on the experimental results.

A. Data Acquisition

A new gait database, called the NLPR database, has been
successfully established for our experiments. A digital camera
(Panasonic NV-DX100EN) fixed on a tripod is used to cap-
ture gait sequences at a rate of 25 fps on two different days
in an outdoor environment. Here we assume that a single sub-
ject moves in the field of view without occlusion. All subjects
walk on a straight-line path at natural cadences and in three dif-
ferent viewing angles with respect to the image plane, namely
frontally (90 ), laterally (0 ) and obliquely (45 ). The images
are recovered from video storied in DV tapes to a Microsoft
AVI wrapper with an IEEE 1394 interface offline, and finally
transcoded using the Sthvcd2000 decoder into 24-bit full-color
BMP files with a resolution of 352 240. The resulting NLPR
gait database includes 20 different subjects and 4 sequences
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Fig. 4. Sample images of gait sequences in the NLPR database. (a) Lateral view; (b) oblique view; and (c) frontal view.

Fig. 5. Temporal changes of moving silhouette in a gait pattern (Frame 28–Frame 35).

per view per subject. The database thus includes a total of 240
(20 4 3) sequences. The length of each collected sequence
varies with the pace of the walker, but the average is about 90
frames. Some sample images are shown in Fig. 4, where the
white line with arrow represents the walking path.

B. Processing

For each sequence, we perform motion segmentation using
the method described in Section IV-A. An example of tem-
poral changes of moving silhouettes in a gait pattern is shown
in Fig. 5.

Each sequence is accordingly converted into a sequence of
shape representations with the associated configurations in 2-D
space (the vector dimensionality is set to 360 here) in the manner
described as Section IV-B. Then, we can obtain their associated
mean shapes in the manner described in Section V-B. Note that
the walking direction is pre-normalized here to avoid the effect
on recognition performance, e.g., all sequences with the lateral
view are flipped from right to left. Further, we use the class

average of mean shapes derived from the same-view sequences
of a subject as an exemplar for that class, which aims to avoid
selecting a single and random reference sample. Fig. 6 shows
plots of mean shapes and their exemplar of four sequences of
the same subject and plots of the exemplars of five different
subjects (note that Exemplars 1–5 are corresponding to Subjects
5, 8, 14, 16, and 20, respectively) from which we can see that the
intra-subject changes in eigenshapes are very small, while the
inter-subject changes are more significant. Such result implies
that the mean shapes have considerable discriminating power
for identifying individuals.

C. Results

We have tried three classification methods. In the NN test,
each sequence is classified as belonging to the class of its nearest
neighbor. In the NN test , we find the three nearest
neighbors, and choose the class of the majority, or if no majority,
simply the nearest neighbor. The exemplar method (ENN) clas-
sifies a sequence as the class of its nearest-neighbor exemplar.
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Fig. 6. Plots of mean shapes and the exemplars for different views. (a) Mean shapes and their exemplar of four sequences of the same subject and (b) exemplars
of five different subjects.

First, we evaluate the performance of our approach using clas-
sification error in identification mode in which the classifier de-
termines which class a given measurement belongs to. For a
small number of examples, we expect to compute an unbiased
estimate of the true classification rate using the leave-one-out
cross-validation rule since the leave-one-out error rate estimator
is known to be an almost unbiased estimator of the true error
rate of the classifier. We label the order for the 80 same-view
gait sequences subject by subject from 1 to 80. Then we leave
one example out, train on the rest, and classify the left-out ele-
ment according to its MSD differences with respect to the rest
examples. This process is repeated 80 times, and the recognition
rate is obtained as the ratio of the number of correctly classified
test samples out of the total 80 for each viewing angle. The cor-

rect classification rates (CCR) are summarized in Table I. Note
that here testing and training are consistent with respect to view-
points. From Table I, it can be seen that the recognition perfor-
mance under the frontal walking is better than other two views.
This is probably due to the averaging associated with the mean
shape analysis owing to less severe shape variations in such gait
patterns. It can also be seen that the ENN classifier consistently
outperforms the other two. For each subject, although his or her
gaits at different times are perceived to be almost invariable,
there are still slight changes between them. Multiple sample se-
quences’ average may serve to provide a more standard gait pat-
tern for that specific person than a single and random sample se-
quence. Although as a whole the results are very encouraging,
more experiments on a more realistic database still need to be
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further investigated in future work in order to be more conclu-
sive.

Another useful classification performance measure that is
probably more general than classification error is the rank order
statistic, which was first introduced by the FERET protocol for
the evaluation of face recognition algorithms [27]. It is defined
as the cumulative probability that the real class of a test
measurement is among its top matches. The basic models for
evaluating the performance of an algorithm are the closed and
open universes. In the closed universe, every probe (unknown
measurements) is in the gallery (known measurements). While
in an open universe, some probes are not in the gallery. The
performance statistics are reported as the cumulative match
scores. The rank is plotted along the horizontal axis, and
the vertical axis is the percentage of correct matches [27].
Here, we use the closed-universe model and the leave-one-out
cross-validation rule with the NLPR database to estimate the
identification performance of the proposed method. Fig. 7
shows the cumulative match scores (CMS) for ranks up to 20
in Fig. 7(a) based on NN and 10 in Fig. 7(b) based on ENN
respectively. It is noted that the correct classification rate is
equivalent to (i.e., ).

For completeness, we also use the ROC (Receiver Operating
Characteristic) curve to report results. For verification mode,
the pattern classifier is asked to verify whether a new measure-
ment really belongs to certain claimed class. As before, we esti-
mate FAR (False Acceptance Rate) and FRR (False Reject Rate)
via the leave-one-out rule. That is, we train the classifier using
all but one left-out sample, and then verify the left-out sample on
all 20 classes. Note that in each of these 80 iterations for each
viewing angle, there is one genuine attempt and 19 imposters
since the left-out sample is known a priori to belong to one of
the 20 classes. By varying the decision threshold for the accep-
tance, we can produce various combination pairs of FAR and
FRR. Fig. 8 shows the ROC curve, from which we see that the
EERs (Equal Error Rate) are about 8%, 12%, and 14% for 0 ,
90 , and 45 views respectively.

D. Evaluation

The performance of the algorithm is further evaluated with
respect to the length of the training sequence and the vector
dimensionality of shape representation on the NLPR database
with the lateral view.

1) Influence of the Dimensionality of Shape Representa-
tion: The influence of the dimensionality of shape represen-
tation (i.e., the number of points sampled along the boundary
contour) is examined by changing the sampling interval. Fig. 9
shows the general trend of correct classification rate vs the
dimensionality of shape representation, from which we can see
that the CCR starts to level off at 36 points. That is, 36 points
may be sufficient to represent a shape in 2-D space as far as gait
recognition is concerned. Clearly, the reduced dimensionality
results in a concomitant decrease in computational cost.

2) Influence of the Training Sequence Length: To evaluate
the effects of the length of training samples, we conducted five
tests which respectively make use of the first 15, 30, 45, 60,
and 75 frames corresponding approximately to one, two, three,
four and five walking cycles from each gait sequence captured

TABLE I
CCRS OF DIFFERENT CLASSIFIERS UNDER

DIFFERENT VIEWING ANGLES.

at a rate of 25 fps. (Note that cycles.) An
average cycle is typically 15 frames in term of a frame rate of
25 fps according to the study of biomechanics though it seems
to have a little difference on cadences of different people). The
comparisons of recognition performances are shown in Fig. 10.
The results reveal that the best performance is achieved by using
just over four walking cycles of training samples from each sub-
ject (i.e., 60 frames). Furthermore, the recognition performance
is improved by increasing the number of training samples. The
results thus appear to confirm recognition sensitivity to the se-
quence length and imply that in a more extended analysis, care
must be taken to include sufficient samples in the training data-
base.

E. Comparisons

Identification of people by gait is a challenging problem and
has attracted growing interests in the computer vision commu-
nity. However, there is no baseline algorithm or standard data-
base for measuring and determining what factors affect perfor-
mance. The unavailability of an accredited common database
(e.g., something like the FERET database in face recognition)
of a reasonable size and evaluation methodology has been a
limitation in the development of gait recognition algorithms. A
large number of papers in the literature reported good recogni-
tion results usually on a small database, but few of them made
informed comparisons among various algorithms due to the lack
of a standard test protocol. To examine the performance of the
proposed algorithm, here we provide some basic comparative
experiments.

The first comparative experiment is to test our method on the
early SOTON gait database [8]. This database collected six sub-
jects and four sequences of each subject. Walkers are required to
move frontal-parallel to the image plane. The gray images were
captured by a fixed camera with a stationary indoor background
at a rate of 25 fps, and the original resolution is 384 288. The
length of each sequence is about 60 frames except that the se-
quences of two subjects have only 30 frames. Fig. 11 gives sev-
eral samples in the SOTON gait database. Nixon and his research
group have made one of the first attempts on gait recognition
and have developed many algorithms [3], [5], [7]–[9], [24], [30],
[43], [48], most of which evaluate performance on the whole or a
subset of the SOTON database. Hence we evaluate the proposed
algorithm on such a database so as to make a direct quantitative
comparison with some of their recent methods. Table II shows
the comparison results of several different approaches, where
we directly select the best recognition accuracy reported in [7],
[8], and [9] without re-implementing them. From Table II, we
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Fig. 7. Identification performance results in terms of the FERET protocol’s CMS curve.

Fig. 8. Verification performance results reported by the ROC curves.

Fig. 9. Performance evaluations with respect to the shape dimensionality.

can see that the recognition performance of our method is su-

Fig. 10. Performance evaluations with respect to the training sequence length.

perior to others. Also, we plan to test the proposed method on
their new larger dataset if available.

Another comparative experiment is to compare the perfor-
mance of the proposed algorithm with those of five recent
methods which are from Maryland [10], [52], CMU [26], MIT
[41] and USF [47] respectively, and to some extent reflect
the best work of these research groups in gait recognition.
BenAbdelkader et al. [10] used image self-similarity plots
as the original measurements to recognize gait based on the
idea that the image self-similarity plot of a moving person is
a projection of its planar dynamics. Reference [52] is a slight
extension of [10]. Based on body shape and gait, Collins et
al. [26] established a template matching method based on
body silhouettes in key frames for human identification. Lee
et al. [41] described a moment-based representation of gait
appearance features for the purpose of person identification and
classification. Phillips et al. [47] proposed a baseline algorithm
for human identification using spatio-temporal correlation of
silhouette images. Here, we re-implement these methods using
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Fig. 11. Some samples in the SOTON gait database.

TABLE II
COMPARISON OF SEVERAL DIFFERENT APPROACHES ON THE SOTON

DATABASE.

the same silhouette data from the NLPR database with a lateral
viewing angle. The results are summarized in Table III. From
Table III, we can see that our method compares favorably with
others, with performance very similar to [41]. Gait feature
vector of [41] is composed of parameters of moment features
in image regions containing the walking person aggregated
over time. Intuitively, the mean features describe the av-
erage-looking ellipses for each of the regions of the body; taken
together, the 7 ellipses describe the average shape of the body,
which is in essence similar to the idea of our method. We see
that our method outperforms the methods described in [10],
[52], [26], and [47]. From experiments it is also found that the
computational cost of [26] and [47] was relatively higher than
that of [10], [52], [41] and our method.

The above only provides preliminary comparative results and
may not be generalized to say that a certain algorithm is al-
ways better than others. Algorithm performance is dependent
on the gallery and probe sets. Some similar-size [26], [41], [52]
or larger [47] databases have concurrently emerged, so further
evaluations and comparisons on a larger and more realistic data-
base are needed in future work.

We also make the following qualitative comparisons. Com-
pared with previous work, our method has several desirable ad-
vantages:

1) It is easier to comprehend and implement owing to its
simple feature selection. From the segmented silhouette
images, past silhouette-based work extracted the features
including optical flow [3], [6], [36], [43], image self-sim-
ilarity plots [10], [52], and so on [7], [8], [13], [41], [45],
[47]. However we obtain the feature only from the outer-
contour of the extracted silhouette, which naturally re-
duces subsequent computational cost. Our method also
requires no precise segmentation of particular body parts
to obtain parameters like those used in [14], [20], [25]. As
it is well known, extraction of such body parts is a non-
trivial problem.

TABLE III
COMPARISON OF SEVERAL RECENT ALGORITHMS ON THE NLPR

DATABASE (0 ).

2) Our performance evaluation is performed on a relatively
large database (20 subjects, 240 sequences). Most of past
work was realized on a smaller database of usually no
more than 6 subjects/40 sequences at the most [2]–[10],
[13], [22], [24], [30], [31], [36], [43]. Although our recog-
nition rates are probably a little lower than those reported
by others based on a small database, the results on a larger
database is more convincing. Compared with other two
recent nonsilhouette-based approaches [12], [25] (a best
recognition rate of 73% on a database including 18 sub-
jects/106 sequences in [12], and a nearly 45% recognition
rate on a database including 17 subjects/131 sequences in
[25]), our results are clearly better.

3) Previous work was mainly carried out on a database with
only a lateral view [2]–[10], [12], [22], [24], [26], [31],
[36], [41], [43], [47], [48] ([13] actually used a synthetic
virtual lateral view from four viewing angles). Here, we
tried three different viewing angles, namely lateral view,
frontal view and oblique view.

F. Discussions and Future Work

To provide a more general approach to human identification
in unconstrained environments, much work remains to be done.

1) Although our results are encouraging, we are limited in
our ability to extrapolate them. Our sample size is still
small and no steps are taken to ensure a random sample,
though it is far lager than most previous databases. We
are planning to establish a larger database which will scan
multiple days, multiple views, clothing variations, etc.

2) Clothes in different seasons will bring considerable ef-
fects on the shapes of moving people (e.g., loose vs. close-
fitting). Our proposed method is based on the appear-
ance shape just like others [2]–[4], [6], [7], [9], [10], [26],
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[36], [41], [45], [47], [52], so it is inevitably affected. In
fact, except [5] and [12], previous work also resulted from
the influences of shape owing to their direct use of mo-
tion segmentation information accordingly. Creating mul-
tiple reference sequences with different clothes is prob-
ably useful to solve this problem. Although we obtained
very clean segmentation results on our data set, it should
be mentioned that results might degrade significantly with
video captured by a poor quality camera. Therefore, more
robust motion detection algorithm needs to be developed
for reliably handling low quality images.

3) The main drawback of the current method is that it is
view-dependent, which is analogous to the state of the art
of past algorithms except [20], [25], and [40]. There is
no reason to expect that extracted features are invariant
to viewing angle. As shown in our experiments, the same
feature extraction with different viewing angles has dif-
ferent recognition ability. So a useful experiment would
be to determine the sensitivity of the features to viewing
angles. The results would enable a multicamera tracking
system to select an optimal view for the purpose of recog-
nition. Additionally, an obvious way to generalize the
views is to store training sequences taken from multiple
viewpoints, and classify both the subject and the view-
point [26]. In a word, such factors as clothing and viewing
angles will undoubtedly be of concern in later work.

4) Both static and dynamic information derived from gait
plays an important role in gait recognition. Our work
has focused more on model-free recognition based on the
static shapes. It may be more useful for recognition to ex-
tract dynamic information such as the oscillatory trajecto-
ries of joints or limbs as determined by model parameters
though it is very hard to be well solved in computer vi-
sion. Therefore, 3D human body modeling and tracking
might prove to be of benefit [49], [50]. The combination
of static and dynamic information must be a promising di-
rection, and this work is under development at our group.

Also, some efforts will be taken to select better similarity
measure, design more powerful classifier, extract the extended
gait features, develop more robust segmentation methods, etc.

VII. CONCLUSION

With the increasing demands of visual surveillance systems,
human identification at a distance has recently gained more in-
terests. Gait is a potential behavioral feature, and many allied
studies have demonstrated that it can be used as a useful bio-
metric feature for personal recognition. The development of
computer vision techniques has also assured that vision-based
automatic gait analysis can be gradually achieved.

This paper has described a novel gait recognition method
based on statistical shape analysis. An improved background
subtraction technique is used to segment silhouettes from the
background. Shape changes of these silhouettes over time are
then represented as the associated configurations in the common
coordinate system, and are analyzed using the Procrustes shape
analysis method to obtain eigenshape signatures representing
implicitly the structural shape cue of the walking figure’s ap-

pearance. The standard pattern classification technique is uti-
lized for recognition. Experimental results have demonstrated
the effectiveness and advantages of the proposed algorithm.
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