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A new class of telerobotic applications is making its way into research laboratories, fine
arts or science museums, and industrial installations. Virtual laboratories and remote
equipment maintenance are examples of these applications, which are built exploiting
distributed computing systems and Internet technologies. Distributed computing tech-
nologies provide several advantages to telerobotic applications, such as dynamic and
multiuser access to remote resources and arbitrary user locations. Nonetheless, building
these applications remains a substantial endeavor, especially when performance require-
ments must be met. The aim of this paper is to investigate how mainstream and advanced
features of the CORBA object-oriented middleware can be put to work to meet the re-
quirements of novel telerobotic applications. We show that Real-Time CORBA extensions
and asynchronous method invocation of CORBA services can be relied upon to meet per-
formance and functional requirements, thereby enabling teleoperation on local area net-
works. Furthermore, CORBA services for concurrency control and large-scale data dis-
tribution enable geographic-scale access for robot teleprogramming. Limitations in the
currently available implementations of the CORBA standard are also discussed, along
with their implications. The effectiveness and suitability for telerobotic applications of
several CORBA mechanisms are tested first individually and then by means of a software
framework exploiting CORBA services and ensuring component-based development,
software reuse, low development cost, fully portable real-time and communication sup-
port. A comprehensive telerobotic application built based on the framework is described
in the paper and evaluated on both local and wide area networks. The application in-
cludes a robot manipulator and several sensory subsystems under concurrent access by
multiple competing or collaborating operators, one of which is equipped with a multi-
modal user interface acting as the master device. © 2005 Wiley Periodicals, Inc.
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1. INTRODUCTION

In the past few years, a number of novel applications
have emerged from the combination of distributed
computing systems, Internet technologies, and robot
teleoperation concepts. These applications, often
broadly termed as ‘‘networked’’ or ‘‘on-line’’ robot
systems,1 include teleteaching/telelearning, virtual
laboratories, remote and on-line equipment mainte-
nance, supervision of robotic systems at distant sites,
projects requiring collaboration among remote users,
experts, and devices, and large-scale monitoring of
scientific experiments, possibly including public out-
reach in media-covered events.1–9 General advan-
tages of telerobotic systems built on top of distributed
computing systems technology are arbitrary location
of users, dynamic and multiuser access to remote
sites, and reduced system cost thanks to the exploi-
tation of standard components and infrastructures.
Application-specific advantages include access to re-
mote expertise as needed (e.g., for telemedicine and
telesurgery), backup operator sites (e.g., for telepro-
gramming), decreased cost of operator training.10

New remote robot operation applications depart
in several ways from traditional robot teleoperation
systems. In the traditional approach to robot
teleoperation,11 the system architecture ensures tight
coupling of a single user device (master) and a server
robot (slave) by means of a dedicated connection. The
dedicated nature of the architecture makes this ap-
proach only suitable for critical teleorobotic applica-
tions.

New telerobotic applications often require the
ability to connect multiple users at the client side,
possibly operating from different locations and with
commanding roles dynamically shifting during task
execution. The teleoperated environment may even
include multiple robotic and sensory devices, which
can be controlled in a coordinated manner thanks to
the availability of multiple operators. Another distin-
guishing feature of novel applications is their exploi-
tation of standard components and technology as key
interconnection infrastructure. Distributed systems
technology allows a much broader set of applications
to be tackled in an economically sensible manner.
These telerobotic applications often become viable in
the context of an existing infrastructure or a con-
strained budget, which leads to the development of
heterogeneous systems built by integrating a mix of
new and legacy equipment, with a variety of hard-
ware, operating systems, and programming language
to be taken into account. When users have geographi-
cally distributed locations, or when distance, acces-
sibility, and cost factors dictate it, the interconnection
channel can be implemented through the Internet.

Several new telerobotic applications aim to pro-
vide access to remote robotic resources for a very
large number of users, for example by accepting mul-
tiple observing users or by queueing requests to gain
exclusive access. In these applications the user inter-
face is often a major issue, both to enable naive users
to easily access the remote system and to alleviate the
impact of network latency and limited bandwidth by
means of local predictive simulation. The user inter-
face plays an important role also for execution of
complex tasks (e.g., difficult assembly tasks, telesur-
gery), where operators should be provided with an
immersive environment integrating rich sensory in-
formation returned from the remote site. When an
open channel is exploited to access remote resources,
security and authentication are also important issues.

The set of features outlined above and character-
izing novel telerobotic applications are clearly incom-
patible with a traditional master-slave architecture.
They rather depict a scenario like the one shown in
Figure 1, with a community of users accessing mul-
tiple robotic devices in a dynamic but coordinated
manner. Accomplishing these features in telerobotic
systems must be achieved without dismissing the
consolidated challenges of the field, which include
ensuring real-time operation at the target, dealing
with large time delays, coordinating multiple robotic
devices, meeting some performance criteria (accu-
racy, speed), and, possibly, guaranteeing a degree of
fault-tolerance for more critical applications.

Moreover, component-based development and
software reuse are required to achieve the goals of
portability and low development cost of novel telero-
botic applications. Considering robots, sensors, and
controllers as objects,12 and networked robots as dis-
tributed objects3 has been the first step towards the
idea of open, reusable and scalable software architec-
tures for teleoperation.

The purpose of this paper is to describe how
mainstream and advanced features of the CORBA
object-oriented middleware can be exploited to meet
the requirements of novel telerobotic applications.
We review a number of CORBA services and show
how Real-Time CORBA extensions and asynchro-
nous method invocation meet performance and func-
tional requirements, thereby enabling teleoperation
on local area networks. Additional CORBA services
for concurrency control and large-scale data distribu-
tion provide an effective infrastructure to meet com-
mon requirements arising in geographic-scale access
for robot teleprogramming. Limitations in currently
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Figure 1. Scenario for novel telerobotic systems.
available implementations of the CORBA standard
(e.g., for fault-tolerance and security) are also dis-
cussed.

In this paper, we perform a thorough assessment
of required CORBA services once integrated in the
context of a software framework for telerobotic
systems.13,14 We also report results from a teleoper-
ated robot manipulation application with multiple
concurrent and cooperating users. The application
has been built using the CORBA-based framework
and experimented on both local and geographic area
networks.

The remaining of the paper is organized as fol-
lows. Section 2 describes the requirements of telero-
botic architectures for new applications. Section 3
summarizes related distributed computing technolo-
gies and briefly introduces the general features of the
CORBA standard. Section 4 illustrates and evaluates
CORBA services relevant to telerobotic applications.
Section 5 describes a telerobotic application built
based on a CORBA-based software framework and
reports the obtained results. Section 6 provides links
to other research and experimentation work in net-
worked and on-line robotics. Finally, Section 7 con-
cludes the paper and discusses its main results.
2. REQUIREMENTS OF NEW TELEROBOTIC
SYSTEM ARCHITECTURES

In order to make physical resources, such as robots
and sensors, available to multiple users, resources
must be managed by software applications (termed
servers) accepting incoming requests and providing
control and arbitration over their allocation. Users in-
teract with client applications for task programming
and monitoring. A key feature of the system architec-
ture in Figure 1 is thus the interconnection channel,
which now must be shared among multiple clients
and servers to enable distributed collaboration. De-
veloping a suitable system architecture meeting client
and server requirements remains a difficult and time-
consuming task. In many cases, the expensive devel-
opment of a new application can be avoided relying
on previous experience or, even better, on a common
framework from which specific architectures are in-
stantiated.

Stemming from the features characterizing novel
telerobotic applications, we identify the following set
of requirements for the system architecture.

The systems must ensure interoperability and
location transparency of resources and applications,
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enabling multiple operators to flexibly access avail-
able resources regardless of their physical location
and heterogeneity. To achieve portability, peers (ap-
plications which can act as a client, as a server, or
both) should be lightweight and runnable on several
platforms (from desktop workstations to embedded
systems), without increasing applications complexity.
Support for different robot programming methods
(on-line, off-line, hybrid) should be provided, along
with transparency (i.e., all accessible applications
should appear as if they were local).

Moreover, modern telerobotic systems (Figure 1)
tend to be dynamic in nature, with users and physical
resources, like sensor and robot controllers, which
need to be connected/disconnected at run-time to the
system (e.g., students or researchers from geographi-
cally distributed sites that want to access equipments
which are only part-time available, in a virtual labo-
ratory). Hence, support for multiple clients is re-
quired in the system, along with suitable authentica-
tion and concurrency protocols to ensure safe access
to resources according to prescribed policies and pri-
orities. Operators, in fact, may require or be entrusted
with different access levels: from simple sensor moni-
toring, to robot teleoperation, to system supervision.
Given the possibility of multiple concurrent clients,
servers should also provide synchronization mecha-
nisms for allocation of resources when they cannot be
shared among peers.

Servers should ensure real-time operation to al-
low implementation of the appropriate control laws
with guaranteed operation. Moreover, they should
accept and manage client requests preserving their
ordering, and exhibit differentiated reactions de-
pending on their urgency. The dynamics of multiple
client interaction results in changes in the number
and location of peers and in the need to preserve per-
formance of services also with variable system load.
A telerobotic system should also provide operators
with the guarantee of correct execution priorities of
application tasks at the server. Consistent, end-to-end
propagation of priority semantics is especially diffi-
cult when heterogeneous peers, with different oper-
ating systems and programming languages, must be
accommodated.

Control of several robots and sensors teleoper-
ated by multiple remote clients implies concurrency
in server operations and a multithreaded server
structure. This capability enables execution of paral-
lel independent or coordinated actions in the target
workcell, improves the response time perceived by
operators, and simplifies CPU sharing among com-
putational and communication services. Portable
thread synchronization mechanisms should therefore
be available to achieve reliable and efficient concur-
rency in servers.

The system should allow asynchronous (non-
blocking) client requests to servers. This feature is
not required for simple teleoperation applications
consisting in the stepping of one action at a time, pos-
sibly in stop-and-go mode, but becomes necessary for
advanced telerobotic scenarios where the user can in-
voke execution of multiple concurrent actions at the
server.5 Examples of such tasks are coordinated op-
eration of multiple arms or concurrent sensing and
manipulation.

In a telerobotic application, the timely availabil-
ity of adequate sensory data so as to emulate the op-
erator’s physical presence at the remote site is often
crucial.15,16 In new telerobotic applications, efficient
and scalable data distribution techniques must be
available to return sensory information to a poten-
tially very large and dynamic set of users. Regardless
of their number, users must be provided with suffi-
cient data for their real-time interaction with remote
systems.

Finally, many new telerobotic applications have
become viable thanks to the availability of standard
infrastructures and technologies.1 Furthermore, de-
ployment of telerobotic applications often depends
upon the cost factor. These considerations motivate
the adoption of components-off-the-shelf (COTS)
and component-based design in developing new tel-
erobotic applications. Approaches promoting soft-
ware reuse, such as developing a common frame-
work and exploiting COTS, have the potential of
drastically reducing development time and cost of
new telerobotic applications.

Technologies coping with these requirements and
suitable for the design of telerobotic systems are in-
vestigated in the following sections.

3. DISTRIBUTED COMPUTING TECHNOLOGIES
FOR TELEROBOTIC APPLICATIONS

In the previous section, features and requirements for
advanced telerobotic systems have been discussed.
Building such a type of teleoperation architecture
from scratch is often too demanding, due to economic
and time constraints. Following a trend in modern
distributed systems design, open, reconfigurable, and
scalable architectures can be built using standard
middleware software for distributed object comput-
ing. Available solutions include JavaSoft’s Java Re-
mote Method Invocation (Java RMI), Microsoft’s Dis-
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tributed Component Object Model (DCOM) and
OMG’s Common Object Request Broker Architecture
(CORBA).

Sun’s Java RMI (http://java.sun.com/products/
jdk/rmi) provides a simple and fast model for distrib-
uted object architectures. RMI extends the well-
known remote invocation model to allow shipment of
objects: data and methods are packaged and shipped
across the network to a recipient that must be able to
unpackage and interpret the message. The main
drawback of the RMI approach is that the whole ap-
plication must be written in Java. This constraint is
troublesome in common heterogeneous environ-
ments of robotic applications, often incorporating
legacy and specialized hardware and software com-
ponents.

Microsoft’s DCOM (http://www.microsoft.
com/com/tech/DCOM.asp) supports distributed
object computing allowing transparent access to re-
mote objects. While DCOM overcomes RMI reliance
on Java using an Object Description Language to
achieve language-independence, it still has limita-
tions concerning legacy code and scalability of appli-
cations. Developers’ options are indeed restricted,
since DCOM is a proprietary solution mainly work-
ing on Microsoft operating systems.

When language, vendor, and operating system
independence is a goal, CORBA (http://www.
corba.org) is a mature solution that provides similar
mechanisms for transparently accessing remote dis-
tributed objects while overcoming the interoperabil-
ity problems of Java RMI and DCOM. Moreover, its
most advanced and recent features (Real-Time
CORBA, AMI) provide functionalities almost essen-
tial in telerobotic applications, as will be discussed in
the next section. At the moment, CORBA seems the
logical choice for building complex distributed tel-
erobotic applications, thereby satisfying the interop-
erability, transparency, COTS availability,
component-based design, and software reusability
requirements previously highlighted.

3.1. CORBA Architecture Basics

Implementing a distributed architecture with
CORBA allows smooth integration of heterogeneous
software components. To ensure portability, reusabil-
ity, and interoperability, the CORBA architecture is
based on the Object Request Broker (ORB), a funda-
mental component that behaves as a system bus, con-
necting objects operating in an arbitrary configura-
tion (Figure 2).

To achieve language independence, CORBA re-
quires developers to express how clients will make a
request to a service using a standard and neutral lan-
guage: the OMG Interface Definition Language (IDL).
After the interface is defined, an IDL compiler auto-
matically generates client stubs and server skeletons
according to the chosen language and operating sys-
tem. Client stub implementation produces a thin
layer of software that isolates the client from the Ob-
ject Request Broker, allowing distributed applications
to be developed transparently from object locations.
The Object Request Broker is in charge of translating
client requests into language-independent requests
using the Generic Inter-ORB Protocol (GIOP), of com-
municating with the Server through the Internet
Inter-ORB Protocol (IIOP), and of translating again
the request in the language chosen at the server side.

Together with the Object Request Broker, the ar-
chitecture proposed by OMG introduces several
CORBA Services, providing capabilities that are
needed by other objects in a distributed system. We
refer to the literature for additional information on
general features of the CORBA Standard.17 Based on
CORBA technology, we have developed an object-
oriented framework for telerobotic applications.
Some of the features of the framework have been de-
scribed in refs. 13 and 14. The implementation of the
framework is written in C++ and based on The ACE
ORB (TAO),18 a freely available, open-source, and
standard-compliant real-time implementation of
CORBA.

4. CORBA FEATURES FOR TELEROBOTIC
APPLICATIONS

This section discusses recent CORBA features, intro-
duced starting from version 2.4 of the Standard,17 and
other CORBA Services relevant to telerobotic sys-
tems. Features and Services are evaluated by means
of simple distributed applications designed to assess
their suitability for telerobotics.

Figure 2. Basic CORBA architecture: Client/Server inter-
action through the ORB.
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4.1. Concurrency Among Clients

A requirement of advanced telerobotic systems is to
manage input from all operators while generating a
single and coherent control sequence for each robot,
allowing collaborative and coordinated teamwork.19

As a basic functionality, server application must
ensure atomicity of calls to library functions devoted
to the interaction with the robot controller, regardless
of the server thread-safety. Potential conflicts arising
from multiple Clients can be avoided forcing an ex-
clusive access to library functions through the
RTCORBA�Mutex construct, implementing the mu-
tual exclusion lock. The server side is solely respon-
sible for the implementation of this functionality,
since Mutexes are introduced in the servant code.

In addition to ensuring single command consis-
tency and atomicity, concurrent access control at ses-
sion level must be implemented to guarantee full ro-
bot control without undesired interferences from
other operators. Implementation of a coordination
scheme allowing multiple clients to control a single
robot through a coherent and logically safe pattern of
interaction can be obtained exploiting the CORBA
Concurrency Control Service.20 This Service allows
several Clients to coordinate their concurrent ac-
cesses to a shared resource so that the resource con-
sistent state is not compromised. The Concurrency
Service does not define what a resource is. It is up to
the developer to define resources and identify situa-
tions where concurrent accesses to resources conflict.

The coordination mechanism provided by the
Concurrency Service is the lock. Each shared resource
should be associated with a lock, and a Client must
get the appropriate lock to access a shared resource.
Several lock modes (read, write, upgrade, intention
read, intention write) are defined, allowing different
resolution of conflict among concurrent Clients. The
specification defines two types of Client for the Con-
currency Service: a transactional Client, which can ac-
quire a lock on behalf of a transaction, and a non-
transactional Client, which can acquire a lock on
behalf of the current thread. Our tests adopt a non-
transactional style, since most available RT CORBA
implementations do not support transactional Clients
yet.

In a scenario where several users compete to con-
trol a single robot and/or access data from multiple
sensors, exclusive control of the robot must be
granted only to one user in a given interval of time,
while simultaneous read of sensor data should be al-
lowed to other users as well. The scheme in Figure 3
shows how to cope with this requirement using the
Concurrency Service. For each robot a Robot and a
RobotStatus objects are created. The RobotStatus
class maintains information about a robotic device,
whereas the Robot class controls movements and sets
parameters. Then, for each Robot object, a CORBA�

CosConcurrencyControl�LockSet object is created
and registered in the Naming Service.

At the client side a RobotWrapper object contains
all the references to CORBA objects and interacts with
the Concurrency Control Service to enforce the cor-
rect concurrent access. As shown in Figure 4 (scenario
1), the client invoking commands on the Robot object
holds a write lock ensuring exclusive control. Indeed,
as the write lock conflicts with any other lock, a client
requesting a lock on the same resource will be sus-
pended waiting its release. Clients invoking methods
on the RobotStatus object, instead, are not required to
hold locks as the class has only ‘‘accessor’’ methods.

To preserve generality and cover a wider domain
of applications,19 an alternative scenario can be out-
lined, where a group of users want to control a single
robot in a collaborative way (e.g., a ‘‘primary’’ opera-
tor with some ‘‘backup’’ operators), while preventing
further operators from obtaining exclusive control of
the robot. In this scenario (Figure 4, scenario 2), a col-
laborating client holds a read lock. Since the read lock

Figure 3. UML Collaboration diagram describing a Client
(whose core is an object of the RobotWrapper Class) that
asks a lock before it is able to control a Robot object.

Figure 4. Two scenarios of concurrent access to a single
robot device from several Clients.
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conflicts only with write and intention write locks, it
allows sharing of robot control with other clients
holding read locks, whereas client requesting exclu-
sive control through a write lock are suspended in the
waiting queue.

We defer the experimental evaluation of access
control mechanisms for multiple concurrent clients to
the complete telerobotic application experiment in
Section 5.

4.2. Concurrency in the Server and Real-Time
Guarantees

Control of several robots and sensors teleoperated
from multiple remote clients requires one or more
multithreaded servers allowing concurrency among
actions. Moreover, servers should be able to discrimi-
nate among services, granting privilege to critical
tasks (emergency stop, reading of safety sensors), and
should avoid priority inversion, with low-priority
tasks blocking high-priority ones.

With the Real-Time CORBA specification,21 OMG
released a set of standard CORBA APIs for multi-
threading, thereby avoiding the use of proprietary
ORB features to program multithreaded real-time
systems. The core mechanism of RT CORBA is the
Thread Pool, enabling preallocation of Server re-
sources. With the Thread Pool mechanism, a group of
threads is statically created by CORBA in the server
at start-up time. These threads are always ready to be
bound to requested methods. To achieve predictabil-
ity, a fixed cap is set for dynamic threads, which are
created only once static threads are exhausted. The
Thread Pool avoids the overhead of thread creation/
destruction at run-time and helps in guaranteeing
performance by constraining the maximum number
of threads in each host.

Under the extreme condition where its whole set
of threads has been bound to low-level requests, a
server could miss the deadlines of high-priority ac-
tions, a situation clearly unacceptable in a robot te-
leoperation system. To avoid depletion of threads by
low-priority requests, a Thread Pool can be further

partitioned in Lanes of different priority. This parti-
tioning sets the maximum concurrency degree of the
server and the amount of work that can be done at a
certain priority. Partitioning in Lanes and related pa-
rameters cannot be modified at run-time; the only
freedom is reserved to higher priority methods which
can ‘‘borrow’’ threads from lower level Lanes once
their Lane is exhausted.

Servers in telerobotic applications should also
provide clients with the guarantee of correct execu-
tion priorities of application tasks. Heterogeneity of
nodes, in distributed applications, precludes the use
of a common priority scale, forcing users of earlier
CORBA versions to concern about low-level details of
threads on different OSes. The Real-Time CORBA pri-
ority mapping mechanism converts CORBA priority
levels, assigned to CORBA operations, to OS native
priority levels (and vice versa).

Teleoperation applications also require task ex-
ecution at the right priority on the Server side. RT
CORBA defines two invocation models:
SERVER�DECLARED, in which objects are created
with assigned execution priority, and
CLIENT�PROPAGATED, in which the Client estab-
lishes the priority of the methods it invokes, and this
priority is honored by the Server.

Thanks to the Thread Pool and Priority features,
a server based on RT CORBA can thus guarantee real-
time execution of critical computations and achieve
coherent, end-to-end priority semantics.

Another client mechanism enabling to take ad-
vantage of available concurrency in the server has
been introduced in the CORBA 2.3 Messaging
Specification.17 Standard service requests in CORBA
systems rely on the Synchronous Method Invocation
(SMI) model, that blocks the client until the server no-
tifies the end of the requested activity. Non-blocking
invocations with earlier CORBA versions either relied
on methods not guaranteeing the delivery of the re-
quest or on techniques requiring significant program-
ming efforts and known to be error prone.22

The Asynchronous Method Invocation (AMI)
model23 provides a more efficient way to perform
nonblocking invocations with either a Polling or a
Callback approach. The AMI interface allows a
CORBA-based system to efficiently activate multiple
concurrent actions at a remote teleoperated site.
Moreover, as AMI and SMI share the same object in-
terface, clients can choose between synchronous or
asynchronous calls while server implementation is
not affected.

The AMI interface, however, cannot guarantee
that a set of parallel actions will be actually executed
at the ‘‘same’’ time. When a server receives non block-
ing requests from a client, it dispatches them to the
Thread Pool according to their priorities and they are
started as soon as possible. Due to the communica-
tion delays of the distributed system, requests will
reach the server at different and unpredictable times.
Synchronized parallel action execution is thus un-
likely. This behavior is not satisfactory for many ro-
botic applications, where a set of parallel actions
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Figure 5. Precedence graph of a concurrent task, consisting of an initial action start() followed by four concurrent actions
with different priority.
must often begin at the ‘‘same’’ time and coordination
of their execution is required to ensure logical correct-
ness or safety. This is the rationale for the introduc-
tion of a waiting rendezvous strategy24 in a telerobotic
framework. An instruction termed cobegin(n) pre-
fixes the invocation of parallel actions in a server, act-
ing as a barrier for the next n method invocations,
whose execution, therefore, does not start until all
calls have reached the server. Without cobegin(n), the
server schedules actions invoked by AMI requests as
soon as they arrive.

4.2.1. Experimental Evaluation

In the experiment reported in this section, a server ap-
plication controls a manipulator and the sensors
which are directly related to the manipulator. The
Thread Pool is set up to include three Lanes (low, me-
dium, and high priority). Low and medium priority
Lanes supply threads for the execution of requested
actions. The high-priority Lane supplies threads for
emergency actions, so as to guarantee their immedi-
ate dispatch. The scheduling algorithm is a Priority
Level Round Robin (SCHED�RR), which is available
in any POSIX-compliant operating system.

Many experiments involving simulated work-
load have been carried out to evaluate the correctness
and robustness of the server, which has been tested
with a variety of sets of concurrent actions, with dif-
ferent priority levels and synchronization require-
ments. A goal of these experiments was to verify the
effectiveness of cobegin(n) in avoiding priority inver-
sion in the execution of parallel actions. One of the
experiments is described in Figure 5, showing the
precedence relations, duration and priority of each
method call. The correct outcome of this experiment
requires that the four concurrent methods be ex-
ecuted according to their priority. Figure 6 compares
two experimental executions of the task. Without
cobegin(n) (top diagram), the medium priority action
(ID 4), whose request is the first reaching the server,
is executed before the high priority action (ID 1). With
cobegin(n) (bottom diagram), the priority of threads
is always guaranteed and no priority inversion oc-
curs.

4.3. Data Distribution

A data distribution subsystem for networked robot
applications should be able to efficiently exchange
significant amount of data from the sensors located at
the remote site (Suppliers) to the operators

Figure 6. Experimental results of concurrent actions
without (top) and with (bottom) cobegin(n).
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Figure 7. CORBA Event Service architecture.
controlling/monitoring the remote environment
(Consumers). Moreover, it should be able to cope with
the heterogeneity of consumers, its performance
should scale with the number of connections, and it
should minimize the load on both sides avoiding
polling operations.

These requirements cannot be fulfilled by the
classical Remote Procedure Call (RPC) mechanism
that is, instead, suitable for transmission of control
commands. Indeed, polling operations, required by
RPCs, introduce well known saturation effects on
both the network, due to the useless flow of requests
and responses, and the Supplier, unable to answer to
a large number of simultaneous Consumer requests.

Current solutions proposed by CORBA for trans-
mission of time-critical streaming data are quite lim-
ited. A standard for Audio/Video Streaming25 is in-
cluded among CORBA specifications, but it only
defines common interfaces for negotiation of the con-
nection among distributed applications, lacking de-
tails on its use and control. Due to the weakness of
this standard, most existing CORBA implementation
do not take advantage of the CORBA Audio/Video
Streaming specification to handle multimedia
streams. It should be mentioned that OMG is cur-
rently working on a new standard to facilitate the ex-
change of continuous data. This new specification is
now in the Draft Request for Proposal stage.26

A data distribution technique alternative to
Audio/Video Streaming, less efficient but more por-
table, adopts a Publisher/Subscriber communication
model.27 Whenever the Publisher (sensor) changes
state, it sends a notification to all its Subscribers. Sub-
scribers in turn retrieve the changed data at their dis-
cretion. OMG introduced two variants of the
Publisher/Subscriber communication model in the
CORBA standard, the Event and Notification Services,
that strongly decouple Publisher and Subscribers by
means of an ‘‘Event Channel.’’ Exploitation of these
services for data distribution is investigated next.
Event Service. We implemented a first version of
the data distribution subsystem based on the CORBA
Event Service.28 This component allows Suppliers
and Consumers to exchange data without requiring
the peers to know each other explicitly. The general
idea of the Event Service is to decouple Suppliers and
Consumers using an Event Channel that acts as a
Proxy Consumer for the real Suppliers and as a Proxy
Supplier towards the real Consumers. Therefore, the
Supplier can perform a non blocking send of sensory
data in the Event Channel, while the interested Con-
sumers can connect to that channel to get the ‘‘event’’
(Figure 7). This implementation also allows a trans-
parent implementation of the broadcast of sensory
data to multiple Consumers.

The CORBA standard proposes four different
models interleaving active and passive roles of Sup-
pliers and Consumers. We discarded models with ac-
tive Consumers as they can produce blocking com-
munications when new data are not available at
Sensor Proxy. For telerobotic applications, the only
reasonable model seems to be the Canonical Push
Model, where an active Supplier pushes an event to-
wards passive Consumers registered with the Event
Channel.

Despite the benefits introduced by an Event
Channel, experimenting with this Service brings in
several matters of discussion. Firstly, to avoid
compile-time knowledge of the actual type of the
‘‘event,’’ sensor data must be communicated as an
OMG Interface Definition Language (IDL) any type,
that can contain any OMG IDL data type. The com-
munication is therefore type-unsafe and Consumers
are charged with the duty of converting the any type
toward the data type they need. Secondly, the Event
Service specification lacks event filtering features: ev-
erything is conveyed through the Event Channel, that
in turn sends everything to any connected Consumer.
Therefore, the load of a missing property is laid on
Consumers, that are forced to filter the whole data
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looking for the ones they really need. Moreover, the
flow of unrequested data can again introduce the
problem of network saturation. Finally, the Event Ser-
vice specification does not consider QoS properties
related to priority, reliability, and ordering. Attempt-
ing to ensure these properties in an application re-
sults in proprietary solutions that prevent ORB in-
teroperability.

Notification Service. A second solution investi-
gated for the data distribution subsystem is based on
the CORBA Notification Service,29 recently intro-
duced in the CORBA Standard to overcome the limi-
tations of the CORBA Event Service.

The Notification Service is essentially a superset
of the Event Service; most components of the Event
Service architecture (Figure 7) have been enhanced in
the Notification Service. Notable improvements with
respect to the Event Service include filtering and QoS
management. In the Notification Service each Client
subscribes to the precise set of events it is interested
in receiving through the use of filter objects, encap-
sulating one or more constraints. Two filter types are
defined: a forwarding filter, that decides whether the
event can continue toward the next component, and
a mapping filter, that defines event priority and life-
time. Moreover, QoS properties for reliability, prior-
ity, ordering, and timeliness can be associated to a
Channel, to a Proxy, or to a single event.

4.3.1. Experimental Evaluation

The communication models described in the previ-
ous section have been evaluated in a CORBA-based
telerobotic application requiring to distribute sensory
data to a number of clients. The experiments reported
in the following only assess the relative performance
in terms of latency and scalability of the two pro-
posed data distribution mechanisms. All experiments
reported in this section follow the Push Model: a Sup-
plier generates data and sends them to the Event
Channel, when available, or directly to Consumer
processes. A single Supplier and one or more Con-
sumers, all requiring the same sensory data, are con-
sidered. Both Supplier and Consumer(s) are located
on the same host, whereas the Event Channel can be
on a different host.

Two host machines exploited in the experiments
are listed in Table I along with their features. The
hosts are connected via a Fast Ethernet switch. Unless
stated otherwise, the network had no significant traf-
fic, nor was any other processing taking place on
these hosts.

In the first three sets of experiments, a 64 Byte
packet is pushed by the Supplier to a single Con-
sumer and minimum, average, and standard devia-
tion (jitter) values of interarrival times are evaluate on
a set of 50,000 samples. Consumer activity is limited
to the update of the latency value so far. Figure 8
shows the average time interval between two succes-
sive 64 Byte packet receptions (interarrival time) in-
creasing the number of Consumers from 1 to 100.
Event and Notification Services results are compared
with those of a Distributed Callback implementation
based on the Observer patter,30 i.e., a pattern where
new sensor data, when ready, are sent by the Supplier
application to all Consumers previously registered as
Observers.

At the beginning of the investigated range (inset
graph in Figure 8), the Callback implementation has
slightly better performance than Event Channel-
based ones, because it requires data to cross a lower
number of hops. However, Event Service and Noti-
fication Service implementations have better scalabil-
ity: they achieve a performance comparable to the
Callback implementation starting from 10 Consum-
ers, and significantly better performance starting
from 70 Consumers.

Table I. Host features for data distribution subsystem
evaluation.

Hardware configuration Operating system

PIV 2.4 GHz, 512 MB RAM SuSE Linux 8.0

Athlon 800 MHz, 256 MB RAM Mandrake Linux 9.2

Figure 8. Average Interarrival Time (in ms) with a 64
Byte packet, increasing the number of Consumers. Suppli-
ers and Consumers are on the slower machine, and Event
Channel is on the faster machine.
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Figure 9. Interarrival time exploiting three different Publisher/Subscriber models. Test 1 involves two Consumers with
similar characteristics; in Test 2 one of the Consumers (dashed bar) is on a slower machine.
The second set of experiments investigates syn-
chronization among Consumers on the reception of
data packets. Figure 9 shows the interarrival time for
two Consumers when they are on two machines with
similar characteristics (Test 1) and when one of them
is on a slower machine (Test 2). In TAO standard con-
figuration, Event and Notification Services pair to-
gether the two Consumers, forcing the packet recep-
tion rate to the one permitted by the slower one. This
limitation, however, can be overcome thanks to the
flexibility of the Notification Service in TAO. With
proper configuration, in fact, the Notification Service
deploys a thread at each proxy supplier, and Con-
sumers are fully decoupled, as shown in the third dia-
gram of Figure 9.

Despite the benefits achieved by decoupling Con-
sumers, the slower one can still experience a higher
delay with respect to the fast Consumer due to packet
accumulation. Figure 10 shows the arrival time of
30,000 packets for two Consumers. The slow Con-

Figure 10. Cumulative packet arrival times for two de-
coupled Consumers with different performance.
sumer lags behind in received packets because it can-
not consume them at the rate at which they are sup-
plied.

The problem of the increased delay for slow Con-
sumers can be overcome using QoS properties of the
Notification Service. When the size of the buffer
queue is set to one and a policy always discarding the
older packet is applied, packets received by the two
Consumers show an almost constant, small delay, as
shown by the two parallel lines in Figure 11. In the
experiment in Figure 11, the slow Consumer is fur-
ther hampered by a heavy network load, purposely
introduced to stress the features of the Notification
Service. The drawback in the use of this setting is the
reduction in the number of packets received by the
slower Consumer. As shown in the inset graph in Fig-
ure 11, due also to the high network load only one
packet on 500 is received by the slow Consumer.

To summarize, for robot servers performing sev-
eral complex tasks (e.g., sensor data acquisition and
distribution, motion planning, actuator control) and
dealing with a large number of attached clients, the
Event Channel represents an effective tool to main-
tain the overall workload under control. When Cli-
ents have different QOS needs and at the expense of
a slight overhead, the Notification Service is the most
appropriate solution, thanks to its configurability op-
tions not available in Callback and Event Service
implementations.

4.4. Security

Security is a main problem in the development of dis-
tributed systems communicating through a shared
channel, more vulnerable to intrusion than tradi-
tional systems. To guarantee multilateral security,
OMG has defined a quite large and complex stan-
dard, the Security Service Specification,31 trying to
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encompass several solutions proposed by its mem-
bers. A goal of the standard is to allow the implemen-
tation of the application components independently
from the concrete security mechanisms, encapsulated
in a small trusted core that cannot be bypassed by
principals, i.e., human users or objects operating in the
system.

The TAO implementation of the security service
focuses on enforcing the security attributes of the prin-
cipals through the use of SSLIOP, an implementation
of IIOP over SSL. Identification and authorization of
principals are achieved using certificates issued by a
Certification Authority on registration phase. Once
that the secure connection from a recognized princi-
pal is accepted, the server controls its privilege at-
tribute before allowing access to the target object. It is
the server that defines the levels of privileges re-
quired to access its robotics components and, at run-
time, grants authorizations on the base of the certi-
fication owned by principals.

4.4.1. Experimental Evaluation

The main goal of this evaluation session is the analy-
sis of the performance penalty introduced by the Se-

Figure 11. Cumulative packet arrival time for two decou-
pled Consumers with different performance when the
buffer size is set to one and older packets are overwritten.
curity Service. All the experimental results refer to a
client-server application with client authentication
and authorization. Real-Time CORBA features could
not be used because a bug in the current TAO release
makes its real-time features incompatible with
SSLIOP. This fact prevented the possibility to exploit
both real-time and Security TAO features in our ex-
periments. (The bug has been signalled to TAO de-
velopers and should be corrected in the next release.)
Table II reports the overall wall clock time required to
push 50,000 times a 64 Byte packet from the Supplier
to a single Consumer. Consumer activity is negligible.
Experimental results show that the use of SSLIOP
greatly affects performance of the system, with an
overhead that can reach 86%. Therefore exploitation
of the Security service should be limited at the invo-
cation of sensitive actions on target objects, such as
for commands affecting robot movements.

5. A CORBA-BASED TELEROBOTIC SYSTEM

In the previous section, CORBA Standard and Ser-
vices relevant to telerobotic applications have been
introduced and evaluated using microbenchmarks.
The aim of this section is, instead, to describe and as-
sess a complete telerobotic application, based on the
framework integrating various CORBA services.

5.1. The Application

The telerobotic system is illustrated in Figure 12. The
remote site includes an Unimation PUMA560, a six
d.o.f. robot arm, whose controller is interfaced to a
Pentium-based workstation running the RCI/RCCL
robot programming and controlling environment.
Mounted on the arm is a parallel gripper, pneumati-
cally actuated with a maximum opening of 80 mm;
the gripper is provided with a binary sensor able to
detect its closure. The same host controlling the arm
performs as a supplier for sensory data generated by
an eye-on-hand microcamera and an IR proximity
sensor positioned near the gripper. The system fea-
tures additional sensoriality, including a video cam-
Table II. Overhead introduced by the Security Service when a 64 Byte packet is pushed by a Supplier
to a single Consumer for 50,000 times.

Supplier Consumer without SSLIOP with SSLIOP �% Overhead�

Faster Machine Faster Machine 9.270 17.310 86%
Faster Machine Slower Machine 30.430 51.270 68%
Slower Machine Faster Machine 36.790 52.270 42%
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Figure 12. The experimental testbed.
era mounted on the ceiling and shooting the testbed
area and a stereo vision system in front of the robot
workspace.

Clients are connected to the remote robot either
with a local (Ethernet LAN) or a geographical net-
work (DSL connection with 256KB/s downlink and
64KB/s uplink).

To allow the clients to interact with the remote
environment, program and monitor the task, each cli-
ent is provided with a set of applications. Using a
Graphical User Interface (GUI) the operator can dy-
namically configure his environment, adding new
sensoriality and moving available hardware. The in-
set graph in Figure 13 shows the GUI with windows
displaying sensory information received from the IR
Proximity Sensor, the eye-in-hand camera, and one
image of the stereo camera.

Authorized clients can submit motions to the re-
mote robot either defining a sequence of single com-
mands or writing a program in a C-like language.
More advanced Client stations also support the con-
trol of the robot using an 18-sensor CyberTouch (a vir-
tual reality glove with tactile feedback from Immer-
sion Corp., Inc.) and a six degree of freedom
Polhemus tracker (Figure 13).

Several telerobotic manipulation tasks, including
pick and place, stacking of objects, and simple peg-
in-hole operations, have been implemented using the
system.
5.2. Performance Analysis

The experimental results in this section refer to a ma-
nipulation task requiring the operator to stack three
blocks (Figure 14). The clients can move the robot ei-
ther using a textual interface in a step-by-step control
or using the virtual glove and tracker. While perform-
ing the task, the system returns to connected users the
visual information generated by a camera shooting
the workspace and by the eye-in-hand camera.

In the first test four clients participate to the ex-
ecution of the stacking manipulation task. Clients are
connected to the robotic server through a Fast Ether-
net switch with negligible latency. The main goal of
the experiment is to investigate the reliability of the
mechanisms for concurrency among clients described
in Section 4.1.

Figure 15 traces the main environmental values
during a task section. The first row shows the evo-
lution of the distance between the robotic gripper and
the table (Z), sampled at 1 Hz, during the execution
of the manipulation task. Management of concurrent
client access is described by the next four rows of Fig-
ure 15. Each client can go across four states: exclusive
control, collaborative control, waiting for control, ob-
serving. Waiting slots are experienced by clients ask-
ing for control when the robot is already controlled in
an incompatible mode by other client(s). The last row
of Figure 15 shows the total number of clients cur-
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Figure 13. An example of the Client Setup and a snapshot of the output with windows displaying sensory information
received from the remote site.
rently connected to the system including slot time
when they are connected as ‘‘observer.’’

Several task sessions demonstrated the reliability
of the concurrency mechanisms. The task was ex-
ecuted multiple times, and the presence of multiple
clients controlling the robot never prevented their
successful completion.

In the second test, a single client is connected to
the robot server through a wide area network (WAN).
When the robot is located at a remote site accessed
through the Internet, its control becomes problematic
due to communication delays. The higher latency
prevents real-time user interaction, and the variable
network load changes the time required to update
sensory data at the clients.

The experimental performance observed in this
test was mainly influenced by the time delay and
frame rate of the visual information received from the
two cameras using the CORBA-based data distribu-
tion mechanisms integrated in the application (la-
tency ranging from 2 to 5 seconds, frame rate below
0.5 fps). To improve the visual feedback, a data chan-
nel based on RTP on top of a UDP/IP connection was
set up outside the CORBA infrastructure. While this
setting requires that client and server agree on the use
of non-CORBA communication, it is currently the
only solution for efficient streaming of video images
over the Internet, since current CORBA support for
video streaming is too limited. The specific RTP data
channel allowed a time delay around 2 seconds and
a frame rate around 10 fps with a compressed video
stream at a resolution of 160�120. The drawback of
this solution was of course the lower quality of the
image due to the lossy compression.

As reported by Hashimoto et al.,32 the limit for
psychological presence, i.e., the time range which is
perceived as present when phenomena happen con-
tinuously, is around two to three seconds. When the
time is longer human captures the period internally
by evaluating or estimating the phenomena that oc-
cur.

Our experience confirms that delays larger than
two seconds do not allow the operator to move con-
tinuously the objects. Instead, objects are moved in a
stop-and-go way: after each movement the operator
controls the results of the command and the state of
the objects in the workspace before issuing the next
command. Depending on the task phase, the operator
uses alternatively the information received from the
sensors. While approaching the grasping or releasing
of objects, the operator prefers to use the eye-in-hand
camera, which returns more accurate information
about the gripper-object alignment. When ample
movements are required, the position of the robot
arm is more important and the operator prefers snap-
shots received from the RTP streaming.

Figure 16 shows the distance between the gripper
and the table during two teleoperated assembly
tasks. The top diagram shows the gripper height dur-
ing a task performed using the virtual reality glove
and 3D tracker. The bottom diagram shows the same
data obtained using the textual interface. Comparing
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Figure 14. A stacking manipulation task (left to right, top to bottom).
the two diagrams, we can observe that using the tex-
tual interface the task was performed in a few steps
interleaved by long time periods; instead, using the
virtual reality glove the task was performed more
quickly, although control was less precise.
Comparison between these graphs and the first
graph in Figure 15 shows that manipulation task ex-
ecuted upon a WAN drastically increases the time re-
quired to stack the cubes. This can lead to operator
fatigue, an important factor as a major source of er-
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Figure 15. Tracing of a teleoperation experiment involving four clients that concurrently access the robot arm. Top
diagram: vertical height of the gripper. Remaining diagrams: client access policy information.
rors. Nevertheless, several task sessions successfully
executed demonstrate the possibility to manipulate
objects remotely on a WAN using the proposed tel-
erobotic architecture.

6. RELATED WORK

Our work relates to the area of Internet-based telero-
botics, whose aim is to build flexible, cheap, dynamic,
heterogeneous distributed telerobotic systems and
applications. A broad perspective on these applica-
tions is given in the collection.1 The main issue in
many of these projects is the interaction with web us-
ers who, lacking technical skills, require easy-to-use
command interfaces.

Other research views Internet-based telerobotics
as distributed robotic systems,5 addressing the issues
arising in the implementation of Client/Server sys-
tems.

A few recent papers are concerned with teleop-
eration of multiple robotic devices by one or multiple
users.34–36 A taxonomy for classifying various kinds
of teleoperation systems based on number of robots
and operators is proposed in ref. 19. In ref. 37 a mod-
eling and control method for Internet based coopera-
tive teleoperation is proposed. This method combines
Petri Net model and event-based planning and con-
trol theory to face the complexity of cooperative te-

Figure 16. Distance between the gripper and the table
during assembly tasks teleoperated over the Internet. Con-
tinuous control with virtual reality glove and 3D tracker
(top) and step-by-step control with textual interface (bot-
tom).
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leoperation involving geographically distributed
sites, with multiple operators and robots, connected
through the Internet.

A fundamental problem arising teleoperating a
robot over the Internet, but also over any TCP/IP
based network, is the unpredictable time delay of
communications.38,39

Internet based teleoperation enhanced by a col-
lection of sensorial feedback (video, audio, haptic in-
formation, temperature, and other) and experi-
mented with mobile robots and mobile manipulators
is presented in ref. 40.

A few papers exploit the interoperability and lo-
cation transparency provided by CORBA to ease sys-
tem implementation in applications such as a distrib-
uted laboratory,41 a supervisory control scheme,42 or
an Internet telerobotic system conceived to provide
assistance to aged and disabled people.43,44

Two papers are more directly concerned with the
implementation of systems supporting distributed
telerobotic applications. Hirukawa and Hara2 pro-
pose a framework based on OO programming for ro-
bot control, whereas Dalton and Taylor5 advocate
nonblocking asynchronous communications, viewed
as essential to build a distributed robotic systems.
Since this feature was not available in the CORBA
implementation they relied upon, the architectural
framework in ref. 5 exploited nonstandard middle-
ware. A recent work describes a virtual laboratory ac-
cessible through the Internet33 developed upon an ar-
chitecture based on the recent CORBA Components
Model (CCM).

Our research departs from this prior art in several
respects. Our telerobotic framework exploits COTS
middleware not merely for interoperability or loca-
tion transparency, but taking full advantage of its
multithreading and real-time features. No previous
work in the area has used the Asynchronous Method
Invocation model, even though an asynchronous in-
terface is deemed an essential feature.5 Now that RT
CORBA technology has matured, it can be leveraged
upon to develop reliable COTS-based telerobotic sys-
tems with strict control over computational re-
sources.

7. CONCLUSIONS AND DISCUSSION

The viability and cost effectiveness of new telerobotic
applications such as virtual laboratories, networked
and on-line robots can be widely enhanced exploiting
COTS-based software components. Moreover, sys-
tems implementing those applications pose also de-
manding challenges: they should be dynamically re-
configurable and highly scalable to deal with a
potentially large number of peers, they should pro-
vide real-time features, guaranteed performance and
efficient concurrency mechanisms, both locally and in
a distributed environment. The CORBA middleware,
especially with its recent extensions, has proven well
suited for the needs of many distributed telerobotic
systems. In this paper we have summarized our ex-
perience resulting from development and application
of a software framework for telerobotics based on
Real-Time CORBA, ensuring proper real-time opera-
tion of the server and managing concurrent control
and data distribution with multiple Clients.

The results obtained show that exploitation of
CORBA brings a number of remarkable advantages
in the telerobotic domain, enabling portable, highly
reconfigurable applications with support for concur-
rency and real-time features. Furthermore, CORBA
standard services for naming resolution, data distri-
bution and concurrency control avoid the need for ad
hoc solutions, which are often error prone, require sig-
nificant development effort, and prevent portability.

Of course, providing transparency and high level
services in CORBA is not without cost. The overhead
in communication and in services such as the security
service, along with the limited performance and re-
liability of available network infrastructures, may
prevent exploitation of a CORBA-based architecture
in critical telerobotic applications, unless suitable
control and predictive simulation techniques are also
put into operation. We expect that with the scaling of
network and Internet infrastructures to higher levels
of performance and QoS guarantees, such perfor-
mance limitations will become less relevant. Addi-
tional drawbacks encountered in our experience stem
from the incompleteness in the implementation of the
CORBA standard suite. None of the available CORBA
ORBs offers a full implementation of the CORBA
standard, i.e., covering aspects such as dynamic
scheduling, fault-tolerance, fully compliant CORBA
services. Furthermore, some extensions of the stan-
dard would be useful, e.g., higher-level synchroniza-
tion mechanisms (condition variables, barriers) and
more effective and useable services for streaming and
continuous media management. These deficiencies,
however, are widely acknowledged by OMG and in
the CORBA standard community, and for some of
them solutions are in the making.
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