
Weaving Security Aspects into UML 2.0 Design Models

Djedjiga Mouheb, Chamseddine Talhi,
Vitor Lima, Mourad Debbabi, Lingyu Wang

Computer Security Laboratory
Concordia University, Montreal, Canada

{d mouheb, talhi, v nune, debbabi, wang}@ciise.concordia.ca

Makan Pourzandi
Software Research

Ericsson Canada Inc.
Montreal, Canada

makan.pourzandi@ericsson.com

ABSTRACT
Security plays a predominant role in software engineering.
Nowadays, security solutions are generally added to existing
software either as an afterthought, or manually injected into
software applications. However, given the complexity and
pervasiveness of today’s software systems, the current prac-
tices might not be completely satisfactory. In most cases,
security features remain scattered and tangled throughout
the entire software, resulting in complex applications that
are hard to understand and maintain. In this paper, we
propose an aspect-oriented modeling approach to system-
atically integrate security solutions into software during the
early phases of the software development life cycle. First, we
present the security design weaving approach, as well as the
UML profile needed for specifying security aspects. Then,
we illustrate the approach through an example for injecting
the design-level security aspects into base models.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Design, Security

1. INTRODUCTION
Security plays a predominant role in software engineer-

ing. But, very often security solutions are added to existing
software either as an afterthought phase of the software de-
velopment life cycle, or manually injected into software code
or UML models. However, with the increasing complexity of
today’s software systems, adding security as an afterthought
leads to huge cost in retrofitting security into the software
and further can introduce additional vulnerabilities. Be-
sides, because of the pervasive nature of security, adding
security manually into a UML design is tedious, may lead to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOM’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-451-5/09/03 ...$5.00.

additional security vulnerabilities and security components
may become tangled and scattered throughout the whole
design. Consequently, the resulting UML design model will
most likely become difficult to understand and maintain.

Existing approaches on integrating security concerns into
UML design mostly focus on specifying security require-
ments and sometimes analyzing UML models against the
specified requirements (a more detailed review of related
work will be given in Section 2). How to systematically
enforce the specified requirements remains an open prob-
lem. On the other hand, our work is inspired by the AOM
methodology. Using AOM, security solutions can be pre-
cisely defined and injected into the base models at the matched
places. However, to date, there is no standard language to
support AOM, nor a standard mechanism for weaving as-
pects into the base models.

In this paper, we provide an end-to-end approach for sys-
tematically weaving security aspects into UML design mod-
els. By end-to-end, we mean an approach that starts from
specifying the needed security requirements and ends with
injecting the corresponding solutions at the appropriate lo-
cations in the design models. Our solution encompasses the
following: first, we devise UML profiles required for both,
capturing security requirements and specifying the corre-
sponding security solutions. Second, we study how to iden-
tify join points for the main UML behavioral diagrams as
there is no standard definition of UML join points. Third,
we propose a weaving procedure for injecting design-level
security aspects into base models.

The main contributions of our work are two fold. First,
the proposed AOM approach can separate security concerns
from the software functionalities. This separation of con-
cerns allows security experts to specify security solutions as
aspects including the details on how and where to apply
them in the application, and provide these solutions to de-
signers with limited security knowledge. Second, the novel
concept of design-level weaving of security aspects allows
designers to systematically integrate high-level security so-
lutions into the base models without having to understand
the inner working of the security solutions.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the related work. Afterwards,
in Section 3, we summarize our approach for weaving se-
curity aspects into UML design models. Section 4 presents
the AOSM profile, the UML join points, and the weaving
procedure. A case study is given in Section 5 to illustrate
the security design weaving approach. Finally, we conclude
the paper and present our future work in Section 6.

2. RELATED WORK
We present in the sequel two categories of related work.

First, we present approaches to design weaving of UML mod-
els. Second, we summarize the current literature related to
integrating security concerns at the design level. Regarding
AO modeling using UML, an overview can be found in [10].

Various approaches have been proposed for weaving UML
design models, the following is a brief overview of the exist-
ing contributions. [11] presents Motorola WEAVR, a tool for
weaving aspects into executable UML state machines. Mo-
torola WEAVR supports two types of join points that are
action and transition join points. However, this weaver is
based on the Telelogic TAU G2 implementation, therefore,
it is tool-dependent and not portable. [2] proposes a model
weaver for AO executable UML models. The considered join
point model intercepts only the interaction between objects.
The weaving engine is based on XSLT transformations that
manipulate UML models in XMI format. However, this ap-
proach targets only executable UML models. [3] presents
XWeave, a weaver that supports the weaving of models and
meta-models. XWeave is based on the Eclipse Modeling
Framework. In contrast to our approach that uses a UML
profile, pointcuts used by XWeave are expressed using oAW,
an expression language based on OCL.

Regarding the use of AOM for security, few approaches
have been published recently. [8] proposes an aspect-oriented
approach where the UML meta-model is augmented with
new diagrams to represent access control requirements. In
contrast to our approach that uses a UML profile to repre-
sent security aspects, this approach extends the UML lan-
guage by defining new artifacts to capture security features.
[9] proposes an aspect-oriented approach for modeling access
control requirements. This approach models access control
aspects as patterns using UML diagram templates [7] that
are instantiated by binding elements in the aspect models
to elements in the application domain. Then, the aspect
models are woven into the base model using a composition
algorithm.

Other approaches summarized and evaluated in [6] have
been proposed in the last years to integrate security features
during the early phases of software development life cycle us-
ing UML. The majority of these approaches propose exten-
sions of the UML language using standard UML extension
mechanisms to specify security requirements. The evalua-
tion of UML models against the specified requirements is
based on automatic verification tools such as model check-
ers and theorem provers [4]. These approaches are useful
attempts for specifying and verifying security requirements
on UML design, however, enforcing those requirements on
UML design is not their main concern as our approach.

3. APPROACH OVERVIEW
This section illustrates a summary of our approach for

weaving security aspects into UML 2.0 design models. The
approach architecture is depicted in Figure 1. The main
steps of our proposed approach are the following:

1. Specification of Security Requirements: The designer
should be able to specify the security requirements that
he/she wants to enforce on his/her design. To this
end, a UML profile is defined such that security re-
quirements can be attached to UML design elements as
stereotypes parameterized by tagged values. The cov-

Design

Weaving
Security ExpertDeveloper

Identifying

join points

Security Aspects

Library

1
2

2

3
3

4

Security

Requirements

Base Model Security Aspect

Model

Secure Woven Model

Figure 1: Overview of the Proposed Approach.

ered security requirements are those commonly spec-
ified and verified on software and for which a secu-
rity solution can be provided as an aspect. Examples
of these security requirements are secrecy, authentica-
tion, access control, etc. Due to space limitation, the
specification of security requirements is not addressed
in this paper. The reader can refer to [5] for more
details on security requirements specification.

2. Specification of Security Solutions: The security ex-
pert provides a security solution as a security aspect for
each security requirement covered by the security re-
quirements specification profile. Our solution is based
on AOM, i.e., these security solutions are specified us-
ing a UML profile for aspect-oriented security mod-
eling (See details in Section 4.1). Once designed by
security experts, security solutions are packaged into a
security aspects library and later woven into the design
model to enforce security requirements.

3. Definition of UML Join Points: A security solution
mainly consists of security behaviors (advices in AOP
jargon) that should be injected before/after/around
some specific points (join points in AOP jargon) of
the UML design. Since there is no standard definition
of join points for UML design, we provided a precise
definition of join points for the main UML diagrams
that are involved in design weaving (See Section 4.2).

4. Design Weaving: This represents the actual addition
of security solutions into UML design. Based on the
security requirements specified by the designer, the
corresponding security solutions are selected. Then,
the involved security advices are injected into the base
model based on the security solutions specification and
the join points specified by the security expert and spe-
cialized by the designer (See Section 4.3).

4. SECURITY DESIGN WEAVING
This section presents the main components needed by the

different steps of our approach. In this paper, we focus on
the design-level weaving aspect. In the following, we present
the AOSM profile needed for the specification of security
solutions for UML design. Next, we provide our definition of
UML join points. Then, we explain the weaving procedure.

4.1 UML Profile for Aspect-Oriented Security
Modeling (AOSM)

This section presents the meta-model specification of our
AOSM profile that allows the specification of security so-
lutions for UML design. This profile is based on aspect-
orientation to support the separation of security concerns
from the software functionalities.

4.1.1 Aspects Specification
Figure 2 presents the meta-model proposed for the spec-

ification of aspects. An aspect is modeled as a stereotyped
class. Advices are modeled as special kind of operations
stereotyped by the name ¿adviceÀ. The advice behavior
is specified in behavioral diagrams. The advice type is given
by a tag type whose values are provided in the enumera-
tion AdviceType. The location where an advice should be
injected is specified by the meta-element Pointcut. Section
4.1.2 presents the elements needed for specifying pointcuts.
Aspects may also introduce new features and relationships
to the existing base model. This is specified by the meta-
elements NewMember, Generalization, and Realization.

<<Enumeration>>

AdviceType
Before

After

Around

<<stereotype>>

Aspect

[Class]

- privilege: boolean

- instType:

InstantiationType

<<stereotype>>

Pointcut

[BehavioralFeature]

<<stereotype>>

Introduction

<<stereotype>>
Realization

[StructuralFeature]

- class : Class[1..*]

- interface : Interface[1..*]

<<stereotype>>
Generalization

[StructuralFeature]

- subType : Type[1..*]

- superType : Type[1..*]

<<stereotype>>

NewMember

[Feature]

- where : Type[1..*]

<<stereotype>>

Advice

[BehavioralFeature]

- type: AdviceType

<<Enumeration>>

InstantiationType

Perthis

Pertarget

Percflow

Figure 2: The Meta-Model for Specifying Aspects.

4.1.2 Pointcuts Specification
The meta-model proposed for the specification of point-

cuts is presented in Figure 3. The set of specified pointcuts
are those that are commonly used by the most popular AOP
languages. Since the join points that are matched by the
pointcuts are mainly UML actions, activity diagrams are
selected to model pointcuts. In addition, activity diagrams
offer elements that can represent scope and context infor-
mation (e.g., activity partitions, action pins) as well as the
parameters exposed by the pointcuts at the identified join
points that can be represented as activity parameter nodes.

<<stereotype>>

PointcutDesignator

<<stereotype>>

MethodPointcut

<<stereotype>>

ObjectPointcut

<<stereotype>>

ControlFlowPointcut

<<stereotype>>

ScopePointcut
<<stereotype>>

ContextPointcut

<<stereotype>>

Call

[Action]

<<stereotype>>

Execution

[Action]

<<stereotype>>

Create

[Action]

<<stereotype>>

Destroy

[Action]

<<stereotype>>

Cflow

[Action, Activity]

<<stereotype>>

Within

[ActivityPartition]

<<stereotype>>

This

[InputPin]

<<stereotype>>

Target

[InputPin]

<<stereotype>>

Args

[Pin]

order: Integer

Figure 3: The Meta-Model for Specifying Pointcuts.

4.2 Join Points Identification for UML Design
The set of pointcuts classes that can be specified using our

profile is selected such that it represents the common point-
cuts designators usually provided in the most popular AOP
languages. However, the actual join points that should be
matched by the pointcuts belong to the behavioral diagrams
specifying the behavior of the software under design. While
join points in programming languages are well studied, to
the best of our knowledge, there is no complete and well
elaborated study of join points for UML. Table 1 summa-
rizes our definition of join points for the main UML behav-
ioral diagrams. For space limitation, we only presented a
representative set of join points in Table 1. We will discuss
UML join points in details further in a separate paper.

Table 1: Join Points Definition for the main UML
Behavioral Diagrams.

Join
Point

Activity
Diagrams

Sequence
Diagrams

State Machine
Diagrams

Operation
Call

Call-
Operation-
Action

SendOpera-
tionEvent

Call operations
inside states and
transition effects

Operation
Execu-
tion

Execution of
the behavior
invoked by call
actions

Execution-
Specification

Execution of the
behavior invoked
by call operations
inside states and
transition effects

Object
Creation

CreateObject-
Action

Creation-
Event

None

Object
Destruc-
tion

DestroyObject-
Action

Destruction-
Event

None

Field
Refer-
ence

ReadStructural-
FeatureAction

None None

Field
Assign-
ment

WriteStructural-
FeatureAction

None None

Exception
Handler

Exception-
Handler

None None

4.3 Design Weaving
In this section, we show how security advices will be woven

into a base model design. The main steps of the design
weaving process are the following:

4.3.1 Pointcuts and Aspects Instantiation
During this step, the designer instantiates the generic as-

pects by choosing the elements of his/her model that are
targeted by the security solutions. The pointcuts specified
by security experts are chosen to match specific points of the
design where security advices should be injected. Since the
security solutions are provided as a library of aspects, point-
cuts are specified as generic patterns that should match all
possible join points that can be targeted by the security so-
lutions. However, a specific design can involve elements that
should be targeted by the security solutions while named by
the designer following a naming convention that is not ex-
pected by the security expert. For this reason, the designer
is given the opportunity to choose manually such elements.

4.3.2 Join Points Identification
During this step, the actual join points where the secu-

rity advices should be applied are identified and linked to
the corresponding advices. The elements selected by the de-
signer in the first step are elements of the class model. How-
ever, the actual join points where the weaving is done belong

mainly to the behavioral diagrams specifying the behavior
of the software/system under design. From the elements se-
lected by the designer during the first step of the weaving,
and following our join points definition, actual join points
are identified in the base model. The identified join points
are then linked to their corresponding advices by applying
stereotypes named with the advices to these join points.

4.3.3 Advices Injection and Actual Weaving
During this step, the advices are woven into the base

model at the identified locations according to the specifi-
cation of the security solution. Actually, depending on the
target diagram, the advice behavior can be packaged into
composed elements. For instance, in activity diagrams, the
advice behavior can be encapsulated in a CallBehaviorAc-
tion [7] that directly invokes the advice behavior. Injecting
the advices behavior as composed elements hides the com-
plexity of the advices to the designer. This solution helps
keeping the design as simple as possible by reducing the
number of elements directly added to the base model.

5. CASE STUDY
In this section, we illustrate our security design weaving

approach through an example shown in Figure 4. The ex-
ample depicts the process of a URL request from a user to
a Web server through an unsecure communication channel.
After the user initiates a request for accessing a Web page,
the Web server may require authentication from the user de-
pending on the requested URL. In this case, the user must
send his credentials to the Web server. If the user’s cre-
dentials are valid then the Web server will provide the user
with the requested page. Otherwise, the user’s request will
be rejected. However, the base model shown in Figure 4
specifies this functionality without any security mechanism.
In the following, we show how the designer can add SSL
(Secure Sockets Layer) [1] secure communication to his/her
application by weaving an SSL aspect into the base model.

user browser webServer authenticationServer dataBase

getURL()
HTTPRequest()

authenticationRequired()

loginWindow()

credentials()

validateCredentials()
credentials()

validationFailed

validationFailed

authenticationFailed

validationOK

getData()

data

page
showPage()

Generate

WebPage()

break

opt

Figure 4: URL Request Sequence Diagram.

We start by illustrating the SSL aspect specification using
the AOSM profile (See Figure 5). The SSL aspect provides
two advices (SSLHandshakeAdvice and SSLExchangeAdvice)
that implement the handshake and data exchange phases of
the SSL protocol. The locations where the advices should be
injected are captured by the pointcuts SSLHandshakePoint-
cut and SSLExchangePointcut. In addition, the SSL aspect
introduces two attributes (SSLUser and SSLServer) that
represent the client and the server sides of the SSL imple-

mentation. The following sections present the main steps of
the weaving. Currently, we are extending the IBM Rational
Software Architect tool to implement the weaving steps.

5.1 Pointcuts and Aspects Instantiation
The designer instantiates the pointcuts of the SSL as-

pect provided by the security expert by choosing the ele-
ments of his/her model where the SSL advices should be in-
jected. In our example, the designer selects the advice SSL-
HandshakeAdvice for the operation Browser.authentication-
Required() and the advice SSLExchangeAdvice for the oper-
ation Webserver.credentials() (See Figure 6).

Figure 6: User Defined Join Points.

5.2 Join Points Identification
The actual join points where the SSL advices should be in-

jected are identified and linked to the corresponding advices
(See Figure 7). In our example, the join points correspond to
the invocation of the operation calls browser.authentication-
Required() and webServer.credentials(). As shown in Figure
7, stereotypes¿SSLHandshakeÀ and¿SSLExchangeÀ are
applied respectively to the messages authenticationRequired()
and credentials() to link them to the corresponding advices.

user browser webServer authenticationServer dataBase

getURL()
HTTPRequest()

authenticationRequired()
loginWindow()

credentials()

validateCredentials()

credentials()

validationFailed

validationFailed

authenticationFailed

validationOK

getData()

data

page
showPage()

Generate

WebPage()

break

opt <<SSLHandshake>>

<<SSLExchange>>

Figure 7: Identifying Join Points in the Base Model.

5.3 Advices Injection and Actual Weaving
During this step, the advices of the SSL aspect are woven

into the base model of Figure 4 at the identified locations
(See Figure 8). The advices of the SSL aspect are packaged
into composed fragments called InteractionUse [7]. As the
reader can notice, the complexity of the SSL advices is not
shown to the designer in the woven model.

<<aspect, secrecy>> SSLAspect

<<newMember>> SSLUser:SSLImpl {where=Client}

<<newMember>> SSLServer:SSLImpl {where=Server}
<<pointcut>> SSLHandshakePointcut

<<pointcut>> SSLExchangePointcut

<<advice>> SSLHandshakeAdvice()

{type=After, pointcut=SSLHandshakePointcut}

<<advice>> SSLExchangeAdvice()

{type=Around, pointcut=SSLExchangePointcut}

SSLImpl

SSLSend()

SSLReceive()

SSLSender SSLReceiver

<<target>>

Server

SSLHandshakePointcut

<<target>>

Server

SSLExchangePointcut

<<call>>

sendCredentials(..)

<<call>>

sendRequest(..)

Activity

Diagram

:Sender :SSLSender :Receiver:SSLReceiver

message

breakFragment(message)

loop incrementSeqNumber()

createDigest()

concatenate()

encrypt()

concatenate

record

incrementSeqNumber()

fragment=decrypt()

alt getFragment()

getDigest()

alt
buildMsg()

[ret=OK]

[ret!=OK] alert(badRecordMAC)

messageFailed()

[fragment=NULL]

[fragment!=NULL]

sslMessage

:SSLReceiver:SSLSender

ClientHello

ServerHello

Certificate

CertificateRequest

serverHelloDone

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

SSLHandshakeAdviceSSLExchangeAdviceSequence Diagram

alert(decryptionFailed)

messageFailed()

ret=validateDigest()

Figure 5: The Specification of the SSL Aspect using the AOSM Profile.

user browser webServer authenticationServer dataBase

getURL()
HTTPRequest()

authenticationRequired()

loginWindow()

credentials()

validateCredentials()

validationFailed
validationFailed

authenticationFailed

validationOK

getData()

data

page

showPage()

Generate

WebPage()

break

opt

:SSLImpl

:SSLImpl

SSLImpl()

SSLImpl()

ref

ref

SSLExchangeAdvice

SSLHandshakeAdvice

credentials

credentials

Figure 8: Woven Model.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel approach for integrat-

ing security concerns into UML design models. We showed
how security solutions are specified using the AOSM pro-
file and incorporated into design models using a design-level
weaving mechanism. This approach is well suited for job
separation: security experts provide high-level security so-
lutions including the details of how to apply them in UML
models and the designers apply them in their design by
adapting them to the design context. With our approach,
even the designers with limited security knowledge can use
the security solutions to enforce the needed security require-
ments in a systematic way. In addition, our approach allows
transparent and automatic design weaving, the designer does
not need to perform any manual operation in the weaving
process. As another result of our contribution, security solu-
tions can be integrated into software from the early phases
of the development life cycle. This in turn helps acceler-
ating the development of secure applications and reducing

errors. In the future, we will investigate the generation of
secure code from the woven models. We will also extend the
AOSM profile with more aspect-oriented features to allow
the specification of more sophisticated security aspects.

7. REFERENCES
[1] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL

Protocol Version 3.0. Internet Draft, 1996.

[2] L. Fuentes and P. Sánchez. Designing and Weaving
Aspect-Oriented Executable UML Models. Journal of
Object Technology, 6(7):109–136, 2007.

[3] I. Groher and M. Voelter. XWeave: Models and
Aspects in Concert. In Proc. of the AOM’07, pages
35–40, New York, NY, USA, 2007. ACM.

[4] M. Huth and M. Ryan. Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge
University Press, 2004.

[5] J. Jürjens. Secure Systems Development with UML.
Springer Verlag, 2004.

[6] D. Mouheb, M. Debbabi, L. Wang, and M. Pourzandi.
UML-Based Approaches for the Development of
Secure Software and Systems: A Comparative Study.
In Proc. of PTITS’08, Montreal, CA, 2008.

[7] Object Management Group (OMG). Unified Modeling
Language: Superstructure, Version 2.1.2, 2007.

[8] J. Pavlich-Mariscal, L. Michel, and S. Demurjian.
Enhancing UML to Model Custom Security Aspects.
In Proc. of AOM@AOSD’07, 2007.

[9] I. Ray, R. France, N. Li, and G. Georg. An
Aspect-Based Approach to Modeling Access Control
Concerns. Information and Software Technology,
46(9):575–587, 2004.

[10] A. Schauerhuber, W. Schwinger, E. Kapsammer,
W. Retschitzegger, M. Wimmer, and G. Kappel. A
Survey on AO Modeling Approaches. Technical
Report, Vienna University of Technology, 2007.

[11] J. Zhang, T. Cottenier, A. Berg, and J. Gray. Aspect
Composition in the Motorola Aspect-Oriented
Modeling Weaver. Journal of Object Technology.
Special Issue on AOM, 6(7):89–108, 2007.

