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a b s t r a c t

Opportunistic networks (OppNets) are modern types of intermittently connected networks in which mobile
users communicate with each other via their short-range devices to share data among interested observers. In
this setting, humans are the main carriers of mobile devices. As such, this mobility can be exploited by
retrieving inherent user habits, interests, and social features for the simulation and evaluation of various
scenarios. Several research challenges concerning human mobility in OppNets have been explored in the
literature recently. In this paper, we present a thorough survey of human mobility issues in three main groups
(1) mobility characteristics, (2) mobility models and traces, and (3) mobility prediction techniques. Firstly,
spatial, temporal, and connectivity properties of human motion are explored. Secondly, real mobility traces
which have been captured using Bluetooth/Wi-Fi technologies or location-based social networks are
summarized. Furthermore, simulation-based mobility models are categorized and state-of-the art articles in
each category are highlighted. Thirdly, new human mobility prediction techniques which aim to forecast the
three aspects of human mobility, i.e.; users' next walks, stay duration and contact opportunities are studied
comparatively. To conclude, some major open issues are outlined.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Opportunistic networks (OppNets) (Conti et al., 2010) are
emerging paradigms of human-associated ad hoc networks in
which mobile users interact with each other based on their
geographical proximity. The communication in OppNets is per-
formed in a peer-to-peer fashion using short-range and low-cost
mobile devices (such as smartphone and tablet) via Bluetooth or
Wi-Fi technologies. In this setting, humans are the main carriers of
mobile devices and hence, mobility of devices mirror movement
patterns of their owners. This raises the problem of how to
generate realistic human mobility traces in order to evaluate the
performance of networking protocols in OppNets accurately.

The first generation of networking protocols in traditional
mobile ad hoc networks was mainly evaluated using synthetic
movement models, such as random way point (RWP) (Bettstetter
et al., 2003) or random walk models such as Brownian motion
(Groenevelt et al., 2006). However, several research efforts such as
Jungkeun et al. (2003) validate that human mobility is rarely
random and random models often fail to analyze the performance
of encounter-based protocols in OppNets accurately. However, it
should also be noted that human movement and random walks
contain some statistical similarities (Injong et al., 2011).

In reality, human mobility is strongly dependent to users'
personal and social characteristics and behaviors as well as
environmental parameters (Aschenbruck et al., 2011). For instance,
mobile carriers which are attracted to specific locations or indivi-
duals, may have significant correlation between their respective
localization constrains and movement patterns. These different
dimensions of human mobility patterns have been characterized
in the recent studies. For example, an experimental analysis in
Phithakkitnukoon et al. (2012) demonstrate that users frequently
visit the locations with which they have strong social ties.
Furthermore, mobile users tend to visit just a few locations, where
they spend the majority of their time (Song et al., 2010a). In most
cases, they often travel over short distances and rarely migrate
long distances (Gonzalez et al., 2008).

Characteristics of human movement can be explored in three
main categories: spatial, temporal, and connectivity. The spatial
features refer to the trajectory patterns in physical space. Temporal
aspects are related to the time-varying features of user mobility,
whereas connectivity properties concern the contact information
of users. Quite recently, several statistical analysis have been
carried out in an effort to better comprehend the properties of
human mobility and uncover hidden patterns. Comparatively, it
can be seen that there is not a general consensus on the
characteristics of human mobility, even on some fundamental
features such as the distribution of travel distance. Consequently, it
is of paramount importance to obtain insight into these attributes
and study the latest findings in this area.

Considering the characteristics of mobility features, an appro-
priate trace(s) and model(s) for the simulation and evaluation of
protocols in OppNets should be wisely selected. As several traces
and models that have been proposed are highly similar in nature,
it serves a great purpose to have a clear comprehension of the
plethora of existing models and data sets. Broadly, human mobility
datasets can be obtained in two main methods: realistic and
simulation-based models. Majority of the real traces have been
registered in bounded environments such as campuses and con-
ferences using Bluetooth or Wi-Fi technologies. In order to gen-
erate large scale traces, mobility information has also been
acquired using location-based social networks. The simulation-
based mobility models are alternative approaches to generate
mobility traces synthetically. The main motivation to employ such
mathematical methods is to generate scalable and flexible mobility
traces. However, the key statistical properties of simulation-based

models can be validated using real traces. Despite the fact that the
simulation-based models have some spatio-temporal and connec-
tivity dependencies, they can be re-parameterized to be applicable
for various scenarios in OppNets.

Human mobility prediction is another challenging issue that
has attracted significant attention recently. Undoubtedly, forecast-
ing users' future walks, stay duration and contact properties, based
on their mobility characteristics and history has many applications
in OppNets. For example, it is remarkably important for an
opportunistic data forwarding algorithm to predict the next venue
a mobile user will visit, her stay duration and the even the
individuals she will contact. By forecasting human mobility,
networking protocols can take advantage of the expected informa-
tion in order to streamline the performance of the algorithms
significantly.

In this paper, we study recent solutions for human mobility
challenges in OppNets with respect to three major aspects: human
movement characteristics, mobility models and prediction meth-
ods. Firstly, we categorize the fundamental features of human
mobility along the three aspects of spatial, temporal, and con-
nectivity properties. Secondly, commonly used real mobility traces
which have been captured using Bluetooth/Wi-Fi technologies and
on-line location-based social networking services are summarized.
We also present a thorough survey on recently proposed
simulation-based human mobility models for OppNets. Thirdly,
we categorize human mobility prediction methods into three
classes and explore some new techniques in each class. Based on
our discussion, we point out some improvements that can be
made in the different aspects of human mobility models.

The three topics we study in this paper are closely related to
each other. Analyzing different characteristics of human mobility
(such as travel distance, contact time) could result in useful
indicators and metrics. These measurements are of significant
value to uncover meaningful mobility patterns and also to validate
available mobility traces. On the other hand, spatio-temporal and
contact characteristics of human mobility can be used as useful
estimation criteria to predict users' future trajectories.

The remainder of this paper is organized as follows. Section 2
provides an overview on the related work. Section 3 covers
definitions and terminologies related to characteristics of human
mobility. Human mobility models which are categorized into two
major classes: trace-based models and simulation-based mobility
models are introduced in Section 4. Recently proposed human
mobility prediction methods are presented in Section 5. Some
major open research issues are presented in Section 6. Section 7
concludes the paper.

2. Related work

There have been some general surveys as well as a few specific
surveys for human mobility models. Camp et al. (2002) study
mobility models for ad hoc networks in two categories: entity
models and group models. In addition, they provide a performance
evaluation concerning the impact of the different models on
multi-hop routing protocols. However, this work mainly focus on
random mobility models which are not appropriate movement
models for human motion.

Musolesi and Mascolo (2009) categorize human mobility mod-
els into real world traces and synthetic mobility trace and study
advantages and disadvantages of both types. They also, for the first
time, introduce the concept of social networks into mobility
models. Similarly, Aschenbruck et al. (2011) provide a survey of
real world and simulation-based traces as well as synthetic
mobility models for multi-hop wireless networks. The focus of
this paper is on mobility traces/models that include position
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information. Similarly, a categorization on the current mobility
models, both from an individual perspective and also from a group
perspective is presented in Andrea and Sofia (2011). Furthermore,
a brief analysis on their applications is presented.

Karamshuk et al. (2011) present a survey paper on simulation-
based mobility models for OppNets. They also discuss properties of
movement and extend it with the notion of predictability and
patterns. Munjal et al. (2012) study properties of some synthetic
and trace-based mobility models comparatively. Moreover, the
changing trends in modeling human mobility are summarized.

Despite the fact that some efforts have been carried out to
make a classifiable observation to enumerate mobility issues in
OppNets, they have been neither comprehensive nor detailed. To
the best of our knowledge, there has never been a clear categor-
ization followed by a comprehensive clarification on human
mobility issues in OppNets. To this end, we categorize these issues
in three main groups, human mobility characteristics, mobility
models, and mobility prediction methods, and explain novel
approaches for possible solutions, as outlined in Fig. 1.

3. Human mobility characteristics

Statistical features of human mobility are extracted and mea-
sured to discover non-homogenous behavior and movement
patterns of mobile users in space and time. In addition, they are
widely used to predict users' future walks and contacts. These
explorations can provide valuable insights into different aspects of
human mobility which have many practical applications in wire-
less networks such as predicting the spread of electronic viruses
(Chao and Jiming, 2011), epidemics (Poletto et al., 2013), and
recommendation systems (Quercia et al., 2010). In OppNet context,
the available characteristics can be exploited to validate the
synthetic mobility models (Nguyen and Szymanski, 2012) and
study the impact of mobility in the design and performance of
routing protocols (Mashhadi et al., 2009; Thakur et al., 2012; Ze
and Haiying, 2013).

The most important characteristics of human mobility can be
discussed in three main classes, named spatial, temporal and
connectivity properties (Karamshuk et al., 2011). The spatial or
geographical features refer to location information of mobile users
and their trajectories in physical space. For example, physical
length a user travels during a time period. Temporal features
explore time-varying properties of human mobility such as the
times a user visits some specific locations. Connectivity informa-
tion of human mobility explore contact and interaction patterns of
mobile users which are closely related to social relationships and
similarities between mobile users.

In the rest of this section, detailed explanations on human
mobility characteristics, based on the recent literature, are inves-
tigated comparatively.

3.1. Spatial characteristics

Over the last years, analyzing movement of particles in physical
space has attracted a lot of attentions by the researchers in the
physical, social and geographical sciences. It has been highlighted in
almost every quantitative study that a close relationship exists
between mobility, space and distance. Random walk models such as
Brownian motion (Groenevelt et al., 2006) characterize the diffusion of
tiny particles with a mean free path (a flight) and a mean pause time
between flights. It is shown that the probability that such a particle is
at a distance from the initial position after a time has a Gaussian
distribution (Gonzalez et al., 2008). The mean squared displacement
(MSD), which is a measure of the average displacement of a given
object from the origin, is proportional to r (normal diffusion). However,
there are other objects in the physical world whose mobility cannot be
characterized by normal diffusion and its MSD is proportional to
rγ (γo1) (super-diffusion) (Shlesinger et al., 1982).

Capturing realistic traces from user movements, a huge
research effort has been started in order to characterize the spatial
properties of human mobility. The first step is to understand how
users move across locations. In contract with random dispersal
trajectories in particles, human movement on many spatial scales
is not random and exhibits high level of spatial regularity
(Brockmann et al., 2006; Song et al., 2010b). However, patterns
of human movement and random walks contain some statistical
similarity (Injong et al., 2011). Furthermore, it is found that users
tend to travel most of the time along short distances while only
occasionally following very long paths (Gonzalez et al., 2008). The
origin of this dependence of mobility on space and distance is an
open question since a statistically reliable estimate of human
dispersal comprising all spatial scales does not exist. In this
subsection, the most important spatial properties of human
mobility, based on the recent literature, are outlined.

Travel distance or jump size (Δr) is an important feature of
human walks to characterize the spatial dimension of users.
Average travel distance can be defined by ΔrðlÞ ¼∑n

i ¼ 2jri�ri�1j
where rl¼{r1,r2,…,rn} be the sequence of n geographical displace-
ments user l travels during a time period (e.g., one hour) and
jri�ri�1j is the distance between locations ri and ri�1. We note
that travel distance can range from a few to thousands of kilo-
meters over a periods of time. This measure has a huge impact on
the way messages are spread across the network. For example,
users that travel over longer distances become bridges between far
away communities, and this can be decisive, e.g., for the distribu-
tion of messages. However, there are many factors that influence

Location Time

Bluetooth/Wi-Fi Traces
Location-based Social 
Network Traces 

Map-based Models 
Location-based Models 
Community-based Models 
Sociological Models

Spatial

Temporal

Connectivity

Contact

Simulation-based 
Models

Real Traces

CharacteristicsHuman 
Mobility

Prediction

Models

Travel Distance
Radius of Gyration
Levy walk Features

Contact Times 
Inter-contact Times
Aggregated Contact
Graph-based Analysis 

Return Time
Pause Time

Fig. 1. Three aspects of human mobility namely characteristics, models and prediction methods.
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this metric, ranging from means of transportation to job-and-
family-imposed restrictions and priorities.

There is an agreement in some literature that the probability
distribution of displacements over all users can be well approxi-
mated by a truncated power-law (TPL), that is P(Δr)�Δr�(1þβ)

with the displacement exponent or scaling parameter 0oβr2
(Brockmann et al., 2006; Song et al., 2010a). This fits the intuition
that we usually move over short distances, whereas occasionally
we take rather long trips. We note that a power-law is a functional
relationship between two quantities, where one quantity varies as
a power of another. Furthermore, a truncated power-law distribu-
tion follows power-law up to a certain time after which it is
truncated by an exponential cut-off. The previous finding are
complimented in (Gonzalez et al., 2008) with an exponential
cutoff, P(Δr)�(ΔrþΔr0)�βexp(Δr/κ), where β¼1.7570.15 (mean7
standard deviation), threshold Δr0¼1.5 km, and κ a cutoff value
varying in different experiments.

The above-mentioned studies suggest the existence of a uni-
versal power-law distribution observed for data of humans carry-
ing mobile phones which is in contradiction with observations
that displacements strongly depend on where they take place. For
instance, a study of hundreds of thousands of cell phones in Los
Angeles and New York demonstrate different characteristic trip
lengths in the two cities (Isaacman et al., 2010). This observation
suggests either the absence of universal patterns in human
mobility or the fact that physical distance is not a proper variable
to express it. To address this problem, Noulas et al. (2012) focus on
human mobility patterns in a large number of cities across the
world upon a dataset collected from a large location-based social
network called, Foursquare (https://foursquare.com). Computing
the distribution of human displacements in this dataset, it is
observed that the distribution is well approximated by a power-
law with exponent β¼1.50 and a threshold Δr0¼2.87 which is
almost identical to the value of the exponent calculated in
Brockmann et al. (2006), Gonzalez et al. (2008).

Radius of gyration (rg) is a single scalar quantity which well
summarizes the spatial extent of a user's total mobility pattern
observed in a time period. According to Lu et al. (2013)), rg for user
l can be defined by rgðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞ∑n

i�1jrj�rj2
q

where r¼ ð1=nÞ∑iri
is the user's center of mass of the trajectory. In comparison toΔr , it
can be seen that rg could be smaller or larger than Δr in different
movement patterns. Traveling in a bounded space results in a
small rg even though the traveler covers a large distance, whereas
this value can be larger if the travelers moves with small walks but
in a fixed direction.

The rg probability distribution P(rg) can be approximated with
a truncated power-law, that is P(rg)¼(rgþr0g)

�βexp(rg/κ) with
r0g¼5.8 km, β¼1.6570.15 and κ¼350 km. This means that the
majority of people usually travel in close distances around their
home location, while few of them frequently make long travels. To
support this result, Bagrow and Lin (2012) show that individual
mobility is dominated by small groups of frequently visited,
dynamically close locations which are called habitats. To support
this idea, the reduced rg is computed for each habitat, considering
only those locations and calls contained within that habitat. The
population distributions of three habitats show that the spatial
extent of habitats tends to be far smaller than the total mobility,
often by an order of magnitude, and that most users have a habitat
rg between 1 and 10 km.

Some recent work explore human walks to find similar proper-
ties between human mobility and Lévy walks. A Lévy walk is a
random walk in which the step-lengths have a probability dis-
tribution that is heavy-tailed. Intuitively, the Lévy walks consist of
many short flights and occasionally long flights where a flight is
defined to be a longest straight-line trip of a human from one
location to another without a directional change or pause.

Brockmann et al. (2006) analyze bank notes and show the Lévy
walk patterns in human travels over the scale of a few thousands
of kilometers. Similarly, Gonzalez et al. (2008) track location
information of mobile phone users at every 2 h intervals with
resolution 2–3 km2 to show that human walks have heavy-tail
flight distributions such as Weibull, lognormal, Pareto, and trun-
cated Pareto distributions, and their MSDs are characterized by
super-diffusion.

However, both the above-mentioned works have captured
coarse-grained location information since their resolution is low
(e.g., kilometers) and any flights or travels that occurred between
consecutive sampling points cannot be tracked accurately. Conse-
quently, it is hard to apply these features to a detailed simulation
in mobile networks, which requires resolutions of a few meters
and a few seconds due to short radio ranges of mobile devices. To
cope this issue, Injong et al. (2011) study the mobility patterns of
humans up to the scales of meters and seconds and find that
human walks at outdoor settings within less than 10 km contain
statistically similar features as the Lévy walks including heavy-tail
flight and the super-diffusion followed by sub-diffusion, which is
an indication of heavy-tail flights in a confined area.

3.2. Temporal characteristics

Analyzing trajectories of mobile carriers can help us to discover
meaningful temporal patterns in their movements and predict
time periods they would stay in some specific locations periodi-
cally. During a daily movement, it can be seen that people visit a
few number of locations with high probability regularly. The
corresponding locations mostly mirror their social roles and
characteristics such as their jobs, interests, habits, etc. For exam-
ple, in a daily routine, a student goes to university, library, gym,
etc. at different times of a day and then comes back home at the
end of the day.

The probability that a random walker returns regularly to the
location he was observed before after t hours is called first-passing
time probability (Condamin et al., 2007) and the time period t is
called return time. In particular, Gonzalez et al. (2008) show that
the probability of finding a user at a location of rank R, where R
represented the R-most visited location, is approximated by R�1,
independent of the number of locations visited by the user.
Furthermore, it is found that the return probability is characterized
by several peaks at 24 h, 48 h and 72 h.

Pause time is another important temporal characteristic which
indicates the time period that a user stays in a specific position, i.
e., the interval of time when the user's speed is zero or close to
zero. Some models prior to social mobility models such as RWP
model assumed pause time to be a value randomly picked out
from a uniform interval. Analyzing real world data sets,
Brockmann et al. (2006), Gonzalez et al. (2008)) indicate that the
probability pause time distribution characterizing human trajec-
tories are fat-tailed, that is P(Δt)�(Δt)�(1þβ) with 0oβr1, where
Δt is the time spent by an individual at the same location. For
example, Song et al. (2010a) find that P(Δt) follows P(Δt)�
|Δt|�(1þβ) with β¼0.870.1 and a cutoff of Δt¼17 h, probably
capturing the typical awake period of an individual.

Self-similar least action walk (SLAW) (Kyunghan et al., 2009) is
one of the first models to consider pause time. Based on a global
notion, the authors define pauses considering a TPL distribution,
where each visit point has a specific pause value, and the average
pause time is adjusted for the whole trip to be completed in 12 h.
However, the way the individual routine was modeled is still
artificial in the sense that it just takes into account a potential split
in terms of time, and disregards any time and space correlation.
Quite recently, Ribeiro et al. (2012) propose pause time modeling
assuming that there are several social attractiveness properties
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instead of providing an approximation to traces. Hence, a function
is proposed that takes into consideration the attractiveness
between nodes to model pause times. As experimental basis, one
of the most popular mobility models, CMM is considered for the
modeling, which provides a movement function based upon a
social attractiveness function.

3.3. Connectivity characteristics

In OppNets, a contact occurs when two mobile devices are
within mutual radio transmission range of each other. Since every
contact is an opportunity to forward content and bring it prob-
abilistically closer to a destination (or a set of destinations),
understanding statistical properties of contacts is vital for the
design of algorithms and protocols in intermittently connected
networks. Contact times (CTs) or contact durations is defined as
the time intervals during which two devices are in a radio range of
one another. Depending on the scenario considered, it can be the
duration either of a Bluetooth association or of the staying under
the coverage of the same access point. The CTs is a main factor in
determining the transmission capacity between encounter devices
in a mobile network. Obviously, two devices can exchange more
messages with longer CTs.

Inter-contact times (ICTs) is another important factor which is
essential building block for the network properties. An ICT is the
amount of time elapsed between two successive contact periods
for a given pair of devices. It characterizes the frequency with
which data can be transferred between networked devices. This
indicator is particularly important in OppNets, since it defines the
frequency and the probability of being in contact with the
recipient of a message or a potential message carrier in a given
time period. However, some new metrics like inter-transfer time
(Chul-Ho et al., 2013) have been also introduced which aim to
characterize and evaluate the actual off-duration of the connec-
tivity link in OppNets.

Characterizing the ICTs is essential for analyzing the perfor-
mance of networking protocols in OppNets. For example, shorter
ICTs between two nodes means that the nodes encounter each
other often and they could exchange data among each other
directly whereas for longer ICTs, other encounter nodes in the
network could be selected as data carrier to deliver data. It can
also be deduced that nodes with shorter ICTs do not have new
information to share every time they meet. On the other hand,
new data is shared among nodes with longer ICTs.

On an individual pair-wise level, most trace analysis research
has focused on CTs and ICTs statistics to investigate whether these
distributions are power-law, have exponential tail, have an expo-
nential cut-off, or have qualitatively different behavior from one
pair to another.1 The first body of work, to the best of our
knowledge, which highlights the importance of ICTs for character-
izing OppNets is presented in Chaintreau et al. (2007)) using eight
distinct experimental real-world data sets. They also find very
important theoretical results showing that naive forwarding pro-
tocols may diverge in homogeneous networks if individual pair
ICTs are heavy tailed. Analyzing the same datasets, these results
are refined in Karagiannis et al. (2010) that the distribution of ICT
does not only follow a power-law, but exhibits an exponential
cutoff.

Conan et al. (2007) explore to uncover the distributions of
individual pair ICTs. Based on extensive analysis, they show that
this feature is actually heterogeneous, and that an exponential
distribution fits well a significant fraction of individual pair ICTs,

while Pareto and Lognormal distributions also show a good fit
with other subsets of the pairs. Gao et al. (2009) also analyze the
MIT Reality Mining trace (Eagle and Pentland, 2006), finding that
exponential distributions fit over 85 percent of the individual
pair ICTs.

Studying the characteristics of the ICT on pair-wise level is
difficult since there are many such distributions for each individual,
and that some of them may only include a few observed values. To
tackle this problem, some of the literature use aggregate ICTs
distribution, i.e. the distribution obtained by considering the samples
from all pairs together, to characterize the properties of contacts
between mobile users. There is an agreement in some literature such
as Boldrini and Passarella (2010), Injong et al. (2011), Kyunghan et al.
(2009) that aggregate ICTs distributions feature a power-law with
exponential cutoff, and do not pay attention to the possible difference
of the individual level distributions. Chaintreau et al. (2007) also
analyze a popular set of real traces finding that the aggregate ICTs
can be approximated with a Pareto distribution with shape less than
one. This result is then softened in Karagiannis et al. (2010), who
reanalyze the same traces and verify that the aggregate ICTs
distribution might indeed present an exponential cutoff in the tail,
following the Pareto shape.

With respect to the above works, Passarella and Conti (2013)
provide an analysis of the dependence and the key differences
between individual pairs and aggregate ICTs distributions. Based on
detailed analysis, it is shown that in heterogeneous networks, when
not all pairs contact patterns are the same, most of the time the
aggregate distribution is not representative of the individual pairs
distributions, and that looking at the aggregate can lead to comple-
tely wrong conclusions on the key properties of the network.

Some proposals focus on the graph structure of human contacts
because of the social nature of human mobility. In this trend, two
main steps have been conducted. First, contacts are presented in a
compact way as a directed or weighted contact graph, where the
directions show contact order and weights express contact fre-
quency or contact duration between two encounter nodes. In
some cases, a social graph is constructed which is an intuitive
source for many social metrics. In a social graph, nodes correspond
to social entities (e.g. individuals), and edges represent social ties
between the social entities that may be inferred from the fre-
quency of observed contacts, shared interests, or geographic
preferences. In the second step, social network analysis (SNA)
techniques (e.g., connectivity metrics, community detection, etc.)
can be utilized to explore and reveal meaningful contact patterns
in the underlying mobility scenario.

Considering the above descriptions, some recent work investi-
gate contact properties of human mobility based on the graph
structure and social network analysis methods. Shunsen et al.
(2010) present a social-based human mobility model based on
centrality and community structure. Instead of extracting commu-
nities from artificially generated social graphs, their model man-
ages to construct an overlapping community structure which
satisfies the common statistical features observed from distinct
real social networks. Similarly, physical proximity and overlapping
community concepts have been utilized in Yoneki et al. (2009) in
order to analysis dynamics of meeting times and inter-meeting
times between mobile users and infer meeting groups.

Hossmann et al. (2011) represent real world mobility traces as a
weighted contact graph to show that the structure of human
mobility has small-world properties. Furthermore, a community
detection mechanism is utilized to show that human mobility is
strongly modular. Furthermore, Mayer and Waldhorst (2011)
utilize a spectral graph theory to analyze the impact of the
underlying graph characteristics on ICTs. Based on synthetically
and real mobility traces, it is found that ICTs are strongly
influenced by graph structure in random and social mobility

1 We note that in a network of n nodes, there are n(n�1)/2 inter-contacts
distributions.
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models. Secondly, real-world city maps do not exhibit sufficient
difference in structure to effectively influence ICTs of a social
mobility model.

Taking the above discussions into account, it can be seen that
various aspects of movement and mobility patterns have been
characterized in the recent literature in different ways. Despite the
fact that human motion exhibits structural patterns due to geo-
graphic and social constraints, there is not a general agreement on
most of their specifications and properties even on some basic
features such as travel or ICTs distributions. In some cases, the
main reason is that reliable large scale human mobility data has
been hard to acquire which makes this research area quite
challenging and there exists several open issues without any
proper answer.

4. Human mobility models

Availability of human movement traces which are collected
from real-life human mobility or generated using simulation-
based methods make it possible to analysis and explore pattern
of trajectories of mobile carriers in OppNets. Traces from the real
world are mostly recorded from opportunistic contacts between
the users using small portable wireless devices in campuses,
conferences, entertainment environments, etc. However, most of
these realistic movement traces are not scalable, flexible or
accessible for the public. To this end, synthetic models have been
proposed to capture the movement patterns of nodes in a realistic
way. In the rest of this section, state-of-the art of human mobility,
based on the recent literature, are categorized and studied.
Furthermore, the most important properties are featured.

4.1. Real mobility traces

In the last few years, several real life human mobility traces
have been collected in order to explore human motion and
evaluate the performance of human-associated networking proto-
cols. The mobility traces have been acquired using various kinds of
communication systems and devices such as a global positioning
system (GPS), user phone calls, and WLAN Access Point associa-
tions. Because of their realistic nature, the obtained traces provide
huge volume of mobility information in a large scale, although
they are captured on different accuracy and granularities. Depend-
ing upon collection devices and filtration techniques, they include
different features of human mobility such as location, time and
contact information.

Quite recently, the performance of networking protocols and
algorithms in infrastructure-less settings like OppNets have been
evaluated using realistic and non-random mobility datasets. In
contrast to traditional ad hoc networks, users' movements in this
setting have some regularities. Therefore, their spatio-temporal,
context and contact patterns can be captured aim to discover new
properties in human mobility and streamline networking proto-
cols in OppNets.

Broadly, real world human mobility traces for OppNets are
obtained using two different methods: Bluetooth/Wi-Fi enabled
devices and location-based social networking services. The first
category of traces can be collected directly or indirectly using
Bluetooth or WLAN ad hoc wireless technologies. These methods
are able to collect users' location and contact information in
medium-scale environments such as conferences, universities,
etc. Commonly, two types of mobile devices are carried by mobile
participants to collect mobility data in this method. There are
particular participants those carry special sensor devices called
internal devices. Those which carry Bluetooth/Wi-Fi enabled
devices are called external devices. However, capturing users'

contact traces using short range wireless sensors is usually
complex and expensive. Furthermore, contact information
obtained in this method are limited with respect to the practical
number of sensors that can be deployed as well as the number of
available human volunteers.

Table 1 outlines common real world mobility datasets and
provides brief descriptions for them. Furthermore, their important
characteristics are featured in this table. We list traces that are
collected via Bluetooth or Wi-Fi technologies and they are pub-
lically available. Most of these data can be accessed on the
CRAWDAD (crawdad.cs.dartmouth.edu) archive.

Location-based social networks (LBSNs) are alternative source
of human mobility traces which are collected from online services.
In this method, users share their location information with their
friends by checking-in their visiting locations and putting mes-
sages, or other location-related information on social networks
like Facebook. In addition, their context, social ties and offline
information can also be linked to their mobility traces. Comparing
to the Bluetooth/Wi-Fi data, mobility traces which are collected in
this method are reliable and scalable which allow researchers to
access to a large volum of accurate mobilty data. However, some
incentive methods should be utilizeed in these methods to
encourge users to report their visiting places persistencly.

Gowalla (http://blog.gowalla.com/) is a pioneering LBSN service
created in 2008 which allows users to report their location
information in a website or using a mobile application and share
their locations with their friends. Users in this system could
broadcast their location information to their friends. Gowalla users
can also connect their accounts to their Twitter account. Gowalla
application programming interface (API) allow researchers to
access to their contents such as users' check-ins, social relation-
ships and friend information. The available data are of great value
to evaluate human mobility dynamics in OppNets. However,
Gowalla has been purchased by Facebook recently and is no longer
accessible freely.

Recently, several researches have been conducted to analysis
properties of human mobility using Gowalla data. Nguyen and
Szymanski (2012) study the power and limitation of the data
captured from Gowalla for providing insights on how distance
limits the possibility of friendship. Similarly, Allamanis et al.
(2012) presents social links created and places visited by users in
Gowalla data as an undirected graph in order to study the
evolution of the social graph of a location-based service and
the effect of spatial and temporal factors on the growth of the
network.

Stumbl is a Facebook API that allows users to create an
application and access to location, communication and content
information of Facebook users. In a recent work Hossmann et al.
(2012), the mobility, social and communication information of
mobile users are explored using Gowalla and Stumbl data. Based
on the evaluation, it is concluded that the three dimensions of tie
strength, i.e., mobility, social ties, and communication depend on
each other. For instance, it can be seen that social ties and mobility
ties as well as communication and mobility dimensions are tightly
related to each other.

Foursquare (https://foursquare.com) is a leading LBSN applica-
tion with more than 20 million users as of April 2012. The
Foursquare mobile application allows users to check in venues
using a website or via their smartphones. Submitting a venue, a
user is asked to provide a few attributes of the venue such as
venue's name, address, location, zip code, etc. Foursquare API can
return a list of venues in a region which can be specified by the
latitudes and longitudes of the region bounding box. Yanhua et al.
(2013) study the common characteristics of popular venues in
Foursquare. Specifically, they investigate how the completeness of
venue profile information impacts the venue popularity and
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Table 1
Characteristics of common real-life Bluetooth/Wi-Fi connectivity traces. (Patterns: “NA” – stands for not available cases. In the column Network Type, “B” – stands for Bluetooth and “W” – stands for Wi-Fi).

Trace Characteristic Network
type

Duration
(day)

No.
internal
device

No.
external
device

No.
internal
contacts

No.
external
contacts

UCSD (McNett and
Voelker, 2005)

In the UCSD, approximately 300 wireless PDAs running Windows CE were used to collect Wi-Fi access point information
periodically for 11 weeks.

W 77 275 NA 195,364 NA

Proximity This data includes a number of traces sightings by groups of users carrying small devices in office environments,
conference environments, and city environments. (http://kdl.cs.umass.edu/data/msn/msn-info.html)

B NA NA 27 NA NA

Dartmouth (Henderson
et al., 2004)

This dataset about traffic in the access points was extracted from the SNMP logs of the Dartmouth College Campus
between 2001 and 2004.

W 114 6648 NA 4,058,284 NA

Infocom 2005 (Hui et al.,
2005)

This trace includes sightings by groups of users carrying iMotes in Conference IEEE Infocom in Miami. B 4 41 264 22,459 1173

Infocom 2006
(Chaintreau et al.,
2006)

This trace includes sightings by groups of users carrying iMotes in Barcelona, Spain. B 4 98 14,036 191,336 63,244

MIT Reality Mining (Eagle
and Pentland, 2006)

This project equipped students and staff at MIT for the entire 2004–2005 academic year. B 246 89 NA 114,046 NA

Toronto (Su et al., 2006) A trace of Bluetooth activity in different urban environments to determine the feasibility of a worm infection. B 16 23 NA 2802 NA
Intel (Chaintreau et al.,
2006)

This trace includes sightings by groups of users carrying iMotes in Intel Research Cambridge Corporate Laboratory. B 6 8 92 1091 1173

ETH (Tuduce and Gross,
2005)

Using the same methodology as for Dartmouth, a trace collected at the ETH campus. B 75 NA 285 NA NA

Ile Sans Fils (Scellato
et al., 2011)

This dataset was collected from a large number of hotspots which were deployed mostly in cafes, restaurants and bars,
libraries in Canada.

W 1095 140 45000 NA NA

Roller (Tournoux et al.,
2009)

Contains the contacts from a set of people who participated in a rollerblading tour in Paris. B 3 h NA 62 NA NA

SIGCOMM (Pietilanen
and Diot, 2012)

The dataset is collected during SIGCOMM 2009 conference. Each device is initialized with the participants Facebook
profile and the list of friends.

B 150 NA 100 NA NA

Nottingham/mall (Galati
and Greenhalgh, 2010)

The experiment was conducted on a shopping mall from 9 am till 9 pm, which has a surface area of 10,880 square meters. B 6 2 23 28,4492 60,223

MDC (Laurila et al., 2012) In MDC, smart phones that collect behavioral data were allocated from Lake Geneva region. B 365 200 39 NA NA
uiuc/uim (Long et al.,
2011)

This is the dataset collected by the University of Illinois Movement framework using Google Android phones. B/W 150 NA 123 NA NA

Europe (Andrea and Sofia,
2011)

Collected by the University of Illinois Movement (UIM) framework using Google Android phones. B 180 NA 100000 NA NA

upb/mobility (Ciobanu
et al., 2012)

This is the data collected from Android phones in University Politehnica of Bucharest. B 35 22 655 341 1127

UIM Trace (Vu et al., 2011) This dataset was collected by the University of Illinois using Google Android phones. B/W 19 16 50 76,000 NA

P.Pirozm
and

et
al./

Journal
of

N
etw

ork
and

Com
puter

A
pplications

42
(2014)

45
–58

51



Author's personal copy

conclude that venues with more complete profile information are
more likely to be popular. Similarly, Noulas et al. (2011) analysis
the geographical and temporal dynamics of collective user activity
on Foursquare and show how check-ins information can be
utilized to uncover human daily and weekly patterns, urban
neighborhood properties and recurrent transitions between dif-
ferent activities.

4.2. Simulation-based mobility models

Simulation-based mobility models aim to mimic movement of
humans in a real life and simulate their mobility patterns using
parametric methods synthetically. These models give the oppor-
tunity to evaluate networking protocols in different scenarios, and
test their robustness to different mobility behaviors. Different
kinds of rules can be defined in these models to make the mobile
nodes follow a popularity distribution when selecting the next
destination individually, or moving as a group.

Due to several reasons, simulation-based mobility models have
been largely preferred for the evaluation of human-associated
networking protocols. Firstly, majority of real traces are environ-
ment specific, i.e., they are collected in universities or conferences,
and are not scalable. Secondly, they are not controllable and
flexible for changing system parameters such as node density
and node velocity. In addition, the publicly available traces are
limited. These problems forced researchers to use simulation-
based models, where the parameters of the mobility models can
be modified according to problem specifications. However, char-
acteristics of these models should be validated using real world
traces such a method in Nguyen and Szymanski (2012).

Broadly, simulation-based mobility models can be categorized
into four main classes, namely map-based models, location-based
models, community-based models, and social-based models. In
the rest of this subsection, pioneering mobility models in each
category are introduced.

4.2.1. Map-based models
The map-driven mobility models extract movement features of

real world traces in order to reproduce scalable mobility traces using
simulation methods synthetically. Working day movement (WDM)
(Ekman et al., 2008) is a pioneering map-based method that is able
to produce CTs and ICTs distributions that follow closely the ones
found in the traces from the real-world measurement experiments.
This model incorporates some sense of hierarchy and distinguishes
between inter-building and intra-building movements.

Agenda driven mobility model (ADMM) (Zheng et al., 2010) is
another well-known model in this class. ADMM utilizes national
household travel survey (NHTS) information from the U.S. Depart-
ment of Transportation to obtain activity and dwell time distribu-
tions. In this work, a mobile ad hoc network in an urban scenario
is simulated in order to analyze the geographic features of the
network topology. The impact of the model on routing perfor-
mance is also investigated in this work.

SAME (Xuan et al., 2012) is a mobility model of daily activities
which is based on the analysis and conclusion of students' habits
and customs in campus environments. Mobility in SAME is divided
into five sub-models, including dormitory sub-model, learning
sub-model, eating sub-model, out activity sub-model and trans-
port sub-model which describe the moving instruments between
former sub-models. Simulation results turn out that comparing to
the WDM, SAME is much closer to actual trace statistics.

4.2.2. Location-based models
The class of location-based mobility models aims to represent user

mobility patterns using a set of preferred locations. Various attributes

and relationships can be identified between the preferred loca-
tions and users in these models which determine movement
trajectories of the users across these locations. Sociological orbit
aware location approximation and routing (SOLAR) (Ghost et al.,
2005) is one of the first proposals in this category. The SOLAR is a
mobility framework which takes advantage of the macro-mobility
information obtained from the sociological movement pattern of
mobile users. This model is motivated by the observation that the
mobility of a mobile user exhibits a partially repetitive orbital
pattern. Although the SOLAR is not general enough to be realistic
in conventional ad hoc networks, it can be specifically used
without a need for constant location updates and flooding that
makes it suitable to OppNets.

Time-variant community model (TVCM) (Wei-jen et al., 2007)
is a prominent movement model in this class to capture the
important mobility properties observed from daily lives. In this
method, some locations called communities are defined to be
visited by each node in order to capture skewed location visiting
preferences. In addition, time periods with different mobility
parameters are used to create periodical re-appearance of nodes
at the same location. This approach is extended in Kyunghan et al.
(2009) by proposing the self-similar least action walk (SLAW)
which is one of the first mobility models to reproduce the
preferences for shorter trips. A process is called self-similar if
the aggregated processes (i.e., the processes obtained by averaging
the original process over non-overlapping blocks) are highly
correlated. The model matches the ICTs distribution of the real
traces and is also able to model the pause time. The performance
evaluation analysis of SLAW generated traces shows that this
method demonstrates social contexts present among people shar-
ing common interests or those in a single community such as
university campus, companies and theme parks.

Small world in motion (SWIM) (Mei and Stefa, 2009) is another
prominent mobility model for ad-hoc networking approach based
on location preference. SWIM is relatively simple which is easily
tuned by setting a few parameters. In this model, a randomly and
uniformly chosen point over the network area is assigned to each
node. The node then selects the destination points of their move-
ment based on their popularity among all nodes and their distance
from the home point.

In a recent work, Nguyen et al. (2011) propose spatio-temporal
parametric stepping (STEPS), a simple parametric mobility model
which can cover a large spectrum of human mobility patterns.
STEPS makes abstraction of spatio-temporal preferences in human
mobility by using a power law to rule the nodes movement.

4.2.3. Community-based models
A community is often defined as a group of network members

with stronger ties to members within the group than to members
outside the group. The organization of users in community-based
mobility models leads to spatial and social dependencies among the
users. In this paradigm, if two nodes belong to the same community,
they tend to spend more time together and follow their movements
when they transit to a new location. The first example of this class of
models is presented in Herrmann (2003). In this model, users are
organized in several communities, and then each community is
associated to a physical location. The movements of users follow a
predefined schedule across the locations associated with their group.
This work, however, lacks a rigorous mathematical definition of the
relationships among users.

The community-based mobility model (CMM) (Musolesi and
Mascolo, 2007) is a flexible model which is directly driven by a
social network. In CMM, nodes belong to a community are called
friends, while nodes in different communities are called non-
friends. At the beginning, the movement area is divided into some
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Table 2
Comparison of simulation-based human mobility models. (Patterns: “√” – if the model satisfies the property, “� ” if not, and “�” for ambiguous cases.)

Model Characteristic Properties

Spatial Temporal Connectivity

Travel
distances

Radius
of
gyration

Community Attraction Return
time

Pause
time

Contact
times

Inter-
contact
times

Aggregate
ICTs

Contact
graph

Social
graph

Node Location

Map-based
models

WDM (Ekman
et al., 2008)

A combination of different movement models that is able to
produce inter-contact time and contact time distributions.

√ � � � � √ √ √ √ � √ �

ADM (Zheng
et al., 2010)

Contains personal agenda, geographic map, and motion generator
components that model social activities, geographic locations, and
movements of mobile users.

√ � � � � � √ � � � � �

SAME (Xuan
et al., 2012)

A model of students'daily activities based on the analysis and
conclusion of students' habits and customs in campus
environments.

� � √ � � � √ √ √ � √ �

Location-
based
models

SOLAR (Ghosh
et al., 2005)

Each node selects a subset of predefined sets of locations and
moves between them based on a customizable behavior.

� √ √ � � � √ � � � � �

TVCM
(Wei-jen
et al., 2007)

Model the spatio-temporal preferences of human mobility by
creating community zones.

� � √ � √ � √ � � � √ �

SLAW
(Kyunghan
et al., 2009)

One of the first mobility models to model pause time. Based on a
global pause time perception, pause time is then randomly defined
for each individual node.

√ √ √ � � � √ √ √ √ √ �

SWIM (Mei
and Stefa,
2009)

Nodes select the destination points of their movement based on
their popularity among all nodes and their distance from the home
point.

√ √ √ � � � √ √ √ � � √

STEPS
(Nguyen et al.,
2011)

Makes abstraction of spatio-temporal preferences in human
mobility by using a power law to rule the nodes movement.

√ � √ � √ � √ √ √ √ � √

Community-
based
models

CMM
(Musolesi and
Mascolo,
2007)

Nodes are assigned to a number of subareas using preferential
attachment. The attractiveness of one area is determined by the
current number of nodes assigned to that area.

� � √ √ � � � √ √ � � √

HCMM
(Boldrini and
Passarella,
2010)

Combines notions about the sociality of users with spatial
properties observed in real users movement patterns.

√ � √ √ √ � � √ √ � � √

ECMM
(Vastardis and
Yang, 2012)

Follows approaches in (Musolesi and Mascolo, 2007) ; (Boldrini
and Passarella, 2010), but introduces new features, such as pause
periods and group mobility encouragement.

� � √ √ √ � √ √ √ � � √

Geo-CoMM
(Zignani,
2012)

In this model, people move within a set of geo-communities,
following speed, pause time and choice rules whose distribution is
obtained by the statistical analysis.

√ � √ � � √ √ √ √ √ √ �

Sociological
models

SIMPS (Borrel
et al., 2009)

Derives the motion of users in a way that individuals’ movements
are governed by both their social relationships and geographically
surrounding individuals.

� � � √ � √ � √ √ � √ �

GeSoMo
(Fischer et al.,
2010)

Separates the core mobility model from the structural description
of the social network underlying the simulation.

√ � � √ √ √ � � √ √ � √

SPoT
(Karamshuk
et al., 2014)

A mobility framework that takes a social graph as input. Then, the
spatial and temporal dimensions of mobility are added.

� � √ � � � √ √ √ √ � √
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regions as a grid and each community is assigned into a cell of the
grid. A link is established between all the friend and non-friend
nodes in the network which will be used later to drive node
movements. In this model, nodes move between the communities
based on node attraction feature. In other words, nodes of a
community follow the movements of the first node of that
community that has decided to exit the physical location. For
example, when a node with high attraction value decides to travel
to another community, all nodes belong to the same community
follow the movements of the node.

Boldrini and Passarella (2010) highlight the shortcoming of
CMM which is called gregarious behavior of nodes: “all the nodes
of a community follow the first node that has decided to exit the
community”. To tackle this issue, home-cell community-based
mobility model (HCMM) is proposed which considers both node
and location attraction. HCMM maintains the social model of
CMM, but some nodes have also social links with communities
other than the home which is called foreign community. In this
model, each node is initially associated with a specific community,
and has social ties with all the other members of its home
community. Some special nodes also have social links with foreign
communities other than the home community. A node assigned
into its home community moves towards a given community with
a probability proportional to the number of ties with nodes of that
community. Simulation results indicate that CTs and ICTs distribu-
tions for HCMM match that of CMM model, which has the same
pattern of the traces such as the Cambridge, UCSD, and Infocom
2005 real world traces.

Enhance community mobility model (ECMM) (Vastardis and
Yang, 2012) is an extended version of CMM and HCMM models
which follows preceding community-based approaches. The main
contribution in this model is the introduction of new features,
such as pause periods and group mobility encouragement which
have not been considered in the previous community-based
models. Additionally, ECMM enables researchers to arbitrarily
select a social model as the trace generation process input, while
at the same time generates traces with high conformance to that
social network.

Geo-community (Geo-CoMM) (Zignani, 2012) is another
community-based model which reproduces the spatio-temporal,
and social features of real mobility datasets. The model is based on
the quantities that guide human mobility and their probability
distributions by directly extracting their setting from the statistical
analysis of GPS-based traces. In Geo-CoMM, users move within a
set of geo-communities, i.e. locations loosely shared among people
following speed, pause time and choice rules whose distribution is
obtained by statistical analysis methods.

4.2.4. Sociological models
Social characteristics, behaviors and interaction patterns of

users in a real life can be exploited to design the basic mechanisms
of human movement. Sociological mobility models can be con-
sidered as the application of social network theory on the field of
mobility modeling to formalize social interactions as the main
driver of human movements.

Sociological interaction mobility for population simulation
(SIMPS) (Borrel et al., 2009) is a prominent social-based model
in which mobile entity move according to two behavioral rules:
social interaction level, i.e. the personal status; and social interac-
tion needs, i.e. the social needs for individuals to make acquain-
tances. These two behaviors alternate according to a feedback
decision-making process which balance the volume of current
social interactions against the volume of interactions needed by
the node. The main drawback of SIMPS is that temporal and spatial
regularities such as pause time are not considered in this model.

GeSoMo (Fischer et al., 2010) is a social-based mobility model
which separates the core mobility model from the structural
description of the social network underlying the simulation.
GeSoMo receives a social network as input and creates a mobility
trace which is a schedule for the movement of each individual
node in the input social network such that this trace creates
meetings between the nodes according to their social relations. In
this model, the attraction between nodes is defined based on node
attraction, location attraction and node repulsion (i.e. negative
attraction).

Social, sPatial, and Temporal mobility framework (SPoT)
(Karamshuk et al., 2014) considers the three main aspects of
mobility to provide a flexible and controllable mobility framework
rather than a model. SPoT aims to generate different mobility
models by modifying mobility properties (e.g., ICTs) simulta-
neously. To handle such a model, the model takes the social graph
as an input. Then, the spatial dimension is added by generating an
arrival network. Based on the input social graph, communities are
detected and mapped into different locations. In the next step,
users belonging to the same community share a common location
where the members of the community meet. Then, users visit
these locations over time based on a configurable stochastic
process. Furthermore, real traces from some LBSNs such as
Gowalla and Foursquare are utilized in this work to characterize
the temporal patterns of user visits to locations. Based on the
analysis, it is shown that a Bernoulli process approximates user
visits to locations in the majority of cases. Table 2 summarizes the
main characteristics of the simulation-based mobility models.

5. Human mobility prediction

Tracking users' future movement behavior and quantifying
their predictable regularity have been topics of considerable
interest in recent years. Human mobility prediction capabilities
can be used in various exciting mobile applications such as data
sharing, epidemic modeling, traffic planning, and disaster
response. For example, human mobility can be used for predicting
the spread of electronic viruses and malwares (Chao and Jiming,
2011). Contact prediction between mobile carries has also been
widely utilized in some proposals such as Pan and Crowcroft
(2008), Quan et al. (2012) aim to streamline routing and data
forwarding protocols in OppNets. As an example, if a student has a
message to send to her classmate, she knows that she will have a
high probability to meet the receiver during school time and at the
school.

Given the characteristics of users' mobility patterns, predicting
next locations, stay durations and future contacts of individuals or
a population are crucial issues. There are many factors which
influence a user's future mobility patterns ranging from their
personal and social factors to parameters of the environment. On
the other hand, characteristics of the location data set can affect
the forecasting accuracy significantly. Recently, several human
mobility prediction methods have been proposed to demonstrate
that human mobility can be predicted to a greater extent. For
instance, in an experiment on more than 6000 users on the
Dartmouth dataset, it is found that the best location predictor
has an accuracy of about 65–72% (Song et al., 2006). Similarly, two
groups of leading network scientists in Lu et al. (2013), Song et al.
(2010b) find that human behavior is 93% and 95% predictable,
respectively.

In the last few years, extensive researches have been carried
out to forecast different aspects of human mobility in OppNets.
The existing human mobility prediction methods can be discussed
in three groups. The first category of the proposals have strived to
predict the next visiting locations of mobile users based on history
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of their trajectories. In some recent work, it has been aimed to
predict a user's future arrival time to a corresponding location and
his/her stay duration. Finally, some methods have strived to
predict contact probability of mobile users (i.e., who will contact
each other?). We note that the proposals those predict all future
aspects of human mobility, (i.e., location, time, and contact
properties) are discussed in the third group. In the rest of this
section, some new prediction techniques in each category are
presented.

5.1. Location prediction

Predicting users' future visiting locations has many applications
in pervasive computing applications such as location-based
recommendation and advertisement dissemination systems.
Hence, mobility traces of users have been extensively analyzed
in order to gain insight about humans' mobility patterns and
forecast their future locations accurately.

Analyzing trajectories of 6000 WLAN users, Song et al. (2006)
compare four major families of domain-independent location
predictors using the Dartmouth dataset. Based on the comparative
implementation, it is found that the low-order Markov predictors
performed as well or better than the more complex and more
space-consuming compression-based predictors. The authors also
concluded that Markov predictors based on n previous locations
(nZ3) are less precise.

Considering the above-mentioned results, several Markov chain
based methods have been presented in order to predict a user's
future locations. A mixed Markov chain model (MMM) is proposed
(Asahara et al., 2011) to predict a pedestrian's next location in three
steps. In the first step, a statistical model is used to extract
pedestrians' past trajectories. Then, a new user's tracking data is
collected. Finally, the user's next position is predicted by using the
statistical model and the user's tracking data. The experimental
analyze in a shopping mall demonstrates that the highest prediction
accuracy of the MMM is 74.4%. Similarly, Gambs et al. (2012, 2010)
propose a prediction algorithm called n-MMC, based on mobility
Markov chain (MMC), that keeps track of the n previous visited
locations and predict a user's next location. The evaluation of three
mobility datasets demonstrates an accuracy for the prediction of the
next location in the range of 70–95% as soon as n¼2.

Quite recently, Lu et al. (2013) analyze the travel patterns of
500,000 individuals using mobile phone data records and study a
series of Markov chain based models to predict the actual locations
visited by each user. By measuring the uncertainties of movements
using entropy, it is found that the theoretical maximum predict-
ability is as high as 88%. To verify whether such a theoretical limit
can be approached. Implementation results in this paper show
that M chain models can produce a prediction accuracy of 87% for
stationary trajectories and 95% for non-stationary trajectories.

Daqiang et al. (2013) explore real phone traces and find that there
is a strong correlation between the calling patterns and co-cell
patterns of mobile users. Based on this idea, a location perdition
algorithm called NextCell is proposed that aims to enhance the
location prediction by harnessing the social interplay revealed in
cellular call records. The performance of this method is evaluated
using the MIT Reality Mining trace. Experimental results show that
NextCell achieves higher precision and recall than the state-of-the art
schemes at cell tower level in the forthcoming one to six hours.

All the above-mentioned approaches assume sufficient sets of
training data to predict next locations of mobile users. However, in
some cases, this data is not available for new users which leads to
lower prediction accuracy. To tackle this issue, McInerney et al.
(2012) measure similarities between new and existing users. Then,
a hierarchical Bayesian model for matching the locations of a new
user with those of existing users is proposed to enhance the

accuracy of the prediction. Evaluate this framework using real life
location habits of 38 users shows that accuracy on predicting the
next location of new users is improved by 16%, comparing to the
benchmark methods.

Majority of the explored methods in this subsection consider
users' spatial and temporal features separately to predict their
future locations. Integrating both spatial and temporal information
for location prediction is challenging since temporal aspect of
human mobility includes considerable uncertainty compared to
spatial movements. Taking both the features into consideration,
Gao et al. (2012) proposed a location prediction model by applying
smoothing techniques to capture the spatio-temporal context of
user visits. Similarly, Huang et al. (2012) consider movement
behaviors of users in space and time, and proposed a prediction
framework for semantic place prediction. The core idea of this
proposal is to extract 54 features in the MDC data set in order to
represent end users' behaviors in each place related to its
semantic.

5.2. Time prediction

Some human mobility prediction methods have studied tem-
poral forecasting of human mobility. However, uncovering the
temporal aspects of human mobility is challenging because humans'
temporal behavior includes considerable uncertainty compared to
spatial movements. Majority of the methods in this category have
aimed to predict a user's arrival time to a location and his/her
staying duration. In this subsection, some representive proposals
about temporal prediction of human mobility are discussed.

Do and Gatica-Perez (2012) address the prediction of user
mobility when they arrive to or leave a place. In other words, they
strive to predict a user's mobility considering two questions: what is
the next place a user will visit? And how long will he stay in the
current place? To tackle these issues, mobility and contextual
patterns of a user using a probabilistic method are extracted and
combined. The key idea in this method is based on an assumption
that human mobility can be explained by multiple mobility patterns
that depend on a subset of the contextual variables. Using smart-
phone data collected from 153 users, potential of this method in
predicting human mobility is evaluated.

NextPlace (Scellato et al., 2011) is a prediction method which
focuses on the temporal predictability of users when they visit their
most important places. In this method, a time-location prediction
method based on nonlinear time series analysis of the arrival and
staying times of users in relevant places are considered. This method
does not focus on the transitions between different locations:
instead, it focuses on the estimation of the duration of a visit to a
certain location and of the intervals between two subsequent visits.
The simulation results show an overall prediction precision of up to
90% and a performance increment of at least 50% with respect to the
state of the art.

Yohan et al. (2012) quantify the predictable regularity in human
behavior in order to extract meaningful properties in humans'
behavior and predict their duration of stay in next locations. To
address this issue, mobility information of 10 users, with room-level
accuracy in indoor as well as outdoor environments, is recorded
every two minutes for an entire day. Then, location-dependent and
location-independent models with several feature-aided schemes are
evaluated. The experimental results show that a location-dependent
predictor is better than a location-independent predictor for predict-
ing temporal behavior of individual user.

5.3. Contact prediction

Predicting future contacts of mobile users based on their mobility
patterns as well as their social and connectivity properties can be
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utilized to improve the efficient of networking protocols in OppNets.
For example, forecasting a user's future contacts in a routing
algorithm such as a method in Nguyen and Giordano (2012) can
help the algorithm decide if a message stored by a node should be
further carried or forwarded, and to which intermediate node it
should be forwarded in order to obtain the best possible delivery
ratio and latency. In some cases, the location and time of a contact
can also be predicted while forecasting contact properties. In this
subsection, some well-known contact prediction methods are
introduced.

The correlation between mobility features, friend relationships,
and contact probability have been explored in some recent
literature. Eagle et al. (2009) find a close relation between users'
movement patterns and their friendship relationships. Analyzing
relational dynamics of individuals, they show that people are more
likely to meet their friends than strangers. Cho et al. (2011)
investigate the interrelationship between travel distance and
social relationships and show that social relationships can explain
about 10–30% of all human movement, while periodic behavior
explains 50–70%.

Jahanbakhsh et al. (2012) explore the problem of inferring the
missing part of a contact graph from those partial contact graphs
by computing similarities between neighbor sets of external
nodes. The experimental results using real life mobility traces
show that time-spatial based scores provide the most reliable
results for predicting missing contacts among external nodes.
Furthermore, it is concluded that combining social information
with time-spatial information provides better performance results
than using each of them independently.

Jyotish2 (Vu et al., 2011) is a context prediction method which
aims to predict a user's future visiting location, stay duration and
future contact. In order to construct such a predictive model,
Jyotish includes a clustering algorithm to cluster Wi-Fi access
point information into different locations. Then, a Naive Bayesian
classifier is constructed to assign these locations to records in a
Bluetooth trace which results in a fine granularity of people
movement. Then, the fine grain movement trace is used to
construct the predictive model to provide answers for the three
prediction parameters. Evaluation over the Wi-Fi/Bluetooth trace
collected by 50 participants shows that Wi-Fi access point infor-
mation can be used to infer location while Bluetooth traces can
infer contact. The joint Wi-Fi/Bluetooth trace thus can be used to
study people movement with a considerably high accuracy.

6. Open issues

In light of the many work on human mobility models for
OppNets, focusing on its various aspects, there are still many
research questions left without any proper answer. In this section,
we go one step further by presenting some future research
directions, which brings new visions into the horizon of human
mobility research.

Modeling large-scale human mobility: collecting mobility data
sets and modeling human movement in large scale have many
applications such as in communication network validation and
epidemiological studies. For example, it can be used to analyze the
spread of infectious diseases (Meloni et al., 2011). Nevertheless,
there are several challenges and problems for the researchers to
collect large scale mobility traces such as high experimental cost,
lack of motivation applications, business models and organizations
(Hui et al., 2010). Table 2 also verify that the majority of the
available traces are collected in small scales and mobility on a

wider scale is not considered sufficiently. Consequently, we believe
that future work on human mobility modeling should also take
into account the behavior of populations at large scales.

Recent studies in this area mainly have strived to either
generate large scale mobility models or analysis the characteristics
of mobility models using large scale data sets. Mu et al. (2013)
present a mobility map construction scheme for large-scale Wi-Fi
mobility tracking in indoor areas to acquire users' normal daily
activities. Similarly, where Isaacman et al. (2012) takes as input
spatial and temporal probability distributions drawn from empiri-
cal data, such as Call Detail Records (CDRs), and produces synthetic
CDRs for a synthetic population. In another work, Stopczynski
et al. (2013) propose a mobile sensing technique for collecting
spatio-temporal and social data about human mobility using the
capabilities of Bluetooth capable smartphones carried by partici-
pants. This technique is utilized in a large music festival with
130,000 participants where a small subset of participants installed
Bluetooth sensing apps on their personal smartphones. To char-
acterize large scale traces, Hasan et al. (2013) explore human
activity data in urban scale using LBSN data sets such as the
Foursquare. Specifically, aggregate activity patterns of humans by
finding the distributions of different activity categories over a city
geography are characterized. Furthermore, individual activity
patterns by finding the timing distribution of visiting different
places are determined.

Data forwarding based on mobility prediction: Data routing and
dissemination in OppNets is a crucial issue since users contacts
with each other opportunistically and there is not an end-to-end
path between the source and destination of a message. To address
this issue, several forwarding protocols have been proposed which
take advantage of mobility prediction to forecast future movement
of users and improve the routing performance. However, most of
existing protocols such as PROPHET (Lindgren et al., 2003) focus
on the contact prediction of mobility without considering the
spatial and temporal aspects of the contact.

Exploiting users' context information such as their spatial and
temporal information, in addition to contact prediction, can be
used to select the best relay nodes which results in both a better
resource usage and higher delivery ratio. CiPRO (Nguyen and
Giordano, 2012) is a prediction-based routing algorithm which
considers both spatial and temporal dimensions of a contact, so
that the source device knows when and where to start the routing
process to minimize the network delay and overhead. Similarly,
predict and relay (PER) (Quan et al., 2012) considers the time of
the contact and determines the probability distribution of future
contact times and choose a proper next-hop in order to improve
the end-to-end delivery probability. SPRINT Ciobanu et al. (2013)
uses online social information of users to increase the probability
of successful message delivery. As future investigations, other
unexplored features of users such as their mobility patters based
on weekly schedule can be predicted to improve the performance
of the forwarding algorithms.

7. Conclusion

Recent trend for human mobility in opportunistic networks
(OppNets) is looking at individual and collective behaviors of mobile
carriers, inferred from the social nature of human motion. Conse-
quently, various aspects of human mobility behavior have been
explored in the literature. In this paper, we presented a survey on
human mobility from three major aspects: human mobility char-
acteristics, human mobility models, and human mobility prediction
methods. First, we discussed spatio-temporal and connectivity fea-
tures of human mobility. Second, real world movement traces which
are captured using Bluetooth/Wi-Fi enabled devices or on-line2 In Sanskrit, Jyotish (Ji-o-tish) is the person who predicts future events.
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location-based social networks were outlined. Furthermore, a com-
prehensive review on simulation-based mobility models was pre-
sented and their most important characteristics were featured. Third,
recently proposed human mobility prediction methods as a young
and exciting research area which has many applications in designing
protocols in OppNets were discussed. Finally, some major open
research issues were explored and future research directions were
outlined. We hope that this effort instigate future research on this
critical topic encouraging mobile application and system designers to
develop appealing human mobility models.
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