
 

 

 

Abstract 

 

Domain adaptation aims to remedy the loss in 

classification performance that often occurs due to 

domain shifts between training and testing datasets. This 

problem is known as the dataset bias attributed to 

variations across datasets. Domain adaptation methods on 

Grassmann manifolds are among the most popular, 

including Geodesic Subspace Sampling and Geodesic 

Flow Kernel. Grassmann learning facilitates compact 

characterization by generating linear subspaces and 

representing them as points on the manifold. However, 

Grassmannian construction is based on PCA which is 

sensitive to outliers. This motivates us to find linear 

projections that are robust to noise, outliers, and dataset 

idiosyncrasies. Hence, we combine L1-PCA and 

Grassmann manifolds to perform robust domain 

adaptation. We present empirical results to validate 

improvements and robustness for domain adaptation in 

object class recognition across datasets. 

1. Introduction 

In practical machine learning problems, the data 

presented at test time can be quite different from the data 

used to train the classifier due to variations in pose or 

illumination, sensor variability and changes in the 

environment. For example, in Figure 1 sample images 

from three different domains are shown. The three 

domains have the same object categories, but contain 

visually dissimilar images due to domain shift. The 

process of adaptation comes naturally to humans, but it is 

hard to achieve in computer vision. This may be attributed 

to the fact that the model learned during training is biased 

on the particular training dataset [1]. Torralba and Efros 

[1] pointed out that each dataset has a distinct inherent 

bias or idiosyncrasy that causes the classifier to learn a 

biased model. This often results in poor cross-dataset 

generalization.  The problem we address here is visual 

domain adaptation (DA), which falls under the category of 

transductive transfer learning, where the train and test data 

have the same object categories but the domain-shift is 

unknown [2]. 

 

 
Figure 1. Sample images from different domains such as DSLR, 

Amazon and Webcam dataset showing possible variations in the 

same object category bust across domains. 

 

One of the main problems in visual domain adaptation 

is how to select proper features, given that the nature of 

the domain-shift is unknown. Ben-David et al. [3] 

presented a theoretical analysis indicating the choice of 

features representing the domains is such that the 

divergence between the distributions in the feature space is 

minimized. There is need for a robust system that is able 

to perform reasonably well on any dataset without being 

idiosyncratic towards any particular one. Although this is 

desirable, it is hard to achieve.  

There have been several approaches proposed to tackle 

this problem [4]. Subspace based methods try to find a 

latent space that is domain invariant, and then project the 

data from different domains onto this space where 

classification is performed. This paper introduces 

robustness to domain adaptation by incorporating recent 

work on �"-PCA.  The particular methods explored are 

Geodesic Subspace Sampling (GSS) [5] and Geodesic 

Flow Kernel (GFK) [6].  

The paper is organized as follows. Section 2 reviews the 

related work in visual domain adaptation. Section 3 

reviews Grassmannian geometry and Section 4 overviews 

the PCA based Grassmann approaches used in this paper 

for evaluation. In Section 4 we present a robust approach 

for subspace generation during Grassmann manifold 

construction based on �"-PCA. We outline the experiment 

setup and related results in Section 5 and conclude in 

Section 6. 
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Figure 2. The pipeline for subspace based domain adaptation 

methodologies. 

2. Related Work 

Visual domain adaptation can be broadly categorized 

into semi-supervised and unsupervised. The former 

exploits the presence of target labels at hand. Successful 

approaches include transformative learning [19] and 

metric learning [2]. Although having access to a few 

labelled samples from the target domain helps in 

improving performance, these can be difficult to acquire 

and in many applications may not available. Unsupervised 

domain adaptation strategies often make use of linear 

representations such as principal component analysis 

(PCA) for domain representations [5, 6, 20-22] in a lower 

dimensional subspace. Although dimensionality reduction 

finds a low dimensional space common to both the 

domains, it does not guarantee the reduction in the 

divergence mismatch between the two domains. 

Dimensionality reduction based DA methods are 

presented in [21, 22]. These approaches try to find a latent 

space by minimizing the mismatch in the distribution 

between the two domains using maximum mean 

discrepancy (MMD), a non-parametric method that 

compares two statistical distributions by mapping the data 

points to reproducible kernel Hilbert space (RKHS). A 

limitation of [22] is the computation of the kernel matrix 

via semi-definite programming which can be 

computationally challenging. 

Manifold alignment based methods find a projection 

that exploits the local geometry by preserving the local 

neighborhood information [23, 24]. In [27], adaptation is 

performed by aligning the basis vectors of the source 

domain to the target domain by learning a transformation 

that minimizes the Bregman divergence. Metric learning 

and canonical correlation analysis (CCA) methods have 

been explored for DA in [2, 25, 26]. In [25], they assume 

the existence of a linear predictor for both the domains. A 

robust approach based on low rank reconstruction that is 

similar to manifold learning was proposed in [26].  

While the above approaches are restricted to the use of 

source and target domain representation alone, 

Grassmannian based approaches exploit the intermediate 

representations [5, 6, 20]. In [5], intermediate subspaces 

are sampled from the geodesic curve on the manifold and 

are combined to create a domain invariant space, while [6] 

and [20] integrate the subspaces on the geodesic between 

the source and target domain to learn a transformation 

matrix. In [21], a lower dimensional representation is 

learnt on the Grassmann manifold that minimizes the 

MMD in RKHS space.  

Subspace based methods in general try to find a latent 

space that is domain invariant, and then project data from 

different domains onto this space, where classification is 

performed. This process is summarized in Figure 2. Under 

the paradigm of domain adaptation, the training data is 

called the source domain �$ and the test data is called the 

target domain �%. Domain adaptation deals with learning 

a classifier that performs well on the target domain, which 

is sampled from a different distribution than the source 

domain and often has few or no labeled samples.  

Let �$ and �% denote the samples present in the source 

and target domain respectively. �$ and �% are the class 

labels corresponding to the conditional probabilities 

ℙ �$ �$  and ℙ �% �% . Under transductive transfer 

learning, ℙ �$ �$ ≈ ℙ �% �%  while ℙ �$ ≠ ℙ �%  [4]. 

This kind of scenario occurs frequently in computer vision 

problems such as face and object recognition in the wild. 

In the subsequent sections we discuss the techniques used 

for analysis. 

 

 
Figure 3. Mapping from Euclidean space to Grassmann space. 

The subspaces Y1 and Y2 are mapped as points on the 

Grassmann manifold. The angle θ is a metric used to define the 

similarity between the two subspaces spanned by Y1 and Y2. 

3. Grassmannian Domain Adaptation 

3.1. Grassmannian Geometry 

Grassmann manifolds are a special class of Riemannian 

manifolds. The Grassmann manifold �(�, �) is defined as 

the set of all �-dimensional linear subspaces in ℝ1 [7]. A 

simple visualization of the Grassmann manifold is shown 

in Figure 3. Let �" and �2 be the representations of linear 

subspaces corresponding to two different image sets. 

These subspaces are mapped as two different points on the 

Grassmann manifold. Various metrics on the Grasmannian 

based on the angle θ between subspaces have been 

considered [8]. 
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Figure 4. Graphical representation of Geodesic Subspace 

Sampling domain adaptation. 

3.2. Geodesic Subspace Sampling (GSS) 

Gopalan et.al [5] proposed a method to perform visual 

domain adaptation on the Grassmann manifold by 

sampling points along the geodesic connecting the two 

domains, namely the source and target domain, on the 

manifold. A graphical illustration of GSS is shown in 

Figure 4. The sampled points along the geodesic are 

essentially intermediate subspaces between the source and 

target domains, and provide intermediate feature 

representations that contain information present in both 

source and target domains. By concatenating the sampled 

subspaces, a domain invariant feature representation is 

obtained, which can be used as a projection matrix. The 

source and domain data can be projected onto this domain 

invariant space, which is followed by learning a classifier 

such as a nearest neighbor. We now briefly describe the 

sampling procedure on the manifold. The geodesic on the 

Grassmann manifold �(�, �) starting from source � to 

target � is given by 

� � = �� ;< � (1)  

and		� =
�1

0AB1,1
 , �1 is the �×� identity matrix. � is a 

skew-symmetric matrix given by 	
0 �%

−�% 0
 and � ∈

ℝ(AB1)×1 is a real matrix. � denotes the direction matrix 

and is typically computed using the inverse exponential 

map [10]. Once the direction matrix � is obtained, we can 

then sample points along the geodesic on the manifold.  

An efficient implementation for the orthogonal 

completion is presented by Gallivan et al [10]. To make 

the paper self-sufficient, we present the algorithms for 

computing the exponential map and sampling along the 

geodesic in Algorithm 1 and 2 respectively. 

The process is summarized as follows: a) Generate 

subspaces for the source and target domains by performing 

PCA. b) Compute the geodesic flow between the source 

and target subspace, by computing the direction matrix. c) 

Sample points along the flow by substituting different 

value for � between 0 and 1, to obtain intermediate 

representations. d) Project the source and target data onto 

these intermediate subspaces and perform one nearest 

neighbor.  

 

Algorithm 1: Computing the direction matrix via 

inverse exponential map [10] 

1. Given the source	�J and target	�% subspaces, 

2. Find the orthogonal completion � of	�J.  

3. Perform economic CS decomposition of �%�%      

given by, �%�% =
�K
�K

=
�" 0

0 �2

Γ(1)

−Σ(1)
�"
% 

4. Compute	�Q , given by ������ and ������� of 

the diagonal elements of Γ and Σ (i.e.)                    

�Q = cos	(�Q) and	�Q = sin	(�Q). Construct a 

diagonal matrix	Θ, using � as its diagonal 

elements. 

5. Compute the direction matrix	� = �2Θ�"
%. 

   

Algorithm 2: Computing the Exponential Map and 

sampling along the geodesic [10] 

1. Given a point on the Grassmann manifold	�J, 

and the tangent vector	� =
0 �%

−�% 0
	. 

2. Find the orthogonal completion � of	�J. 

3. Compute the compact SVD of the direction 

matrix	� = �2Θ�"
%. 

4. Compute the diagonal matrices	Γ(t) and Σ(t) 

such that �Q = cos	(��Q) and	�Q = sin	(��Q), 

where	�’s are the diagonal elements of	Θ. 

5. Compute	� � = �
�"Γ(�)

−�2Σ(�)
, for different 

values of	� ∈ 0,1 . 

 

Despite its promising results and intuitive idea, GSS 

had some limitations. The first one is that there is no 

proper way to sample the intermediate points. Next is how 

to select the number of subspaces to retain for each 

domain. These parameters need to be tuned. Hence, the 

number of samples is determined empirically through 

cross-validation, which is cumbersome and time 

consuming. 

3.3. Geodesic Flow Kernel (GFK) 

Gong et.al [6], proposed a new approach which 

integrates all the intermediate subspaces between the 

source and target subspaces. The geodesic distance is the 

shortest distance connecting between two points on the 

Grassmann manifold. One can think of the geodesic as the 

line connecting the two subspaces in the manifold. The 

intermediate points on the geodesic line represent the 

intermediate subspaces. 
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Figure 5. Graphical representation of the Geodesic Flow Kernel 

domain adaptation. 

 

A pictorial representation of the GFK process is shown 

in Figure 5. We denote the source and target subspace as 

�$ and	�%. Intuitively this works as all the subspaces 

between the source and target domains are utilized, unlike 

the previous approach where one samples intermediate 

points along the geodesic between �$ and	�%. The GFK 

approach consists of two major steps: (a) construct a 

geodesic curve between the two subspaces, (b) find a 

kernel that integrates all the intermediate subspaces; in this 

case it is the Geodesic Flow Kernel.  

The geodesic curve is a generalization of the straight 

line on curved surfaces. We parameterize the curve by	�	 ∈

	[0, 1] and define a subspace as	�(�), where at � = 	0 the 

subspace represents the source domain, �$, and at �	 = 	1 

the subspace is represents the target domain, �%. There are 

infinite number of subspaces between the source and 

target domains. The projection of a feature vector on a 

subspace is given by	�(�)%�. Such a projection enables 

representations that are invariant and unbiased to both 

source and target domains. If �Q and �f represent the 

features from source and target domain respectively, the 

flow kernel can be obtained as follows: 

�Q
h �f

h = Φ � %�Q
%

"

j

Φ � %�f 	�� 

										= �Q
% Φ � Φ � l �f

"

j

	�� 

	= �Q�n�f .																									 

(2)  

where, �n ∈ 	ℝ
1×1 is a positive definite matrix. By doing 

this, the feature vectors are implicitly projected on infinite 

number of subspaces that are lying in between. This �n is 

essentially the kernel matrix and accomplishes the “kernel 

trick”. The elements of �n are the pairwise dot products 

between the subspaces. The closed form solution for �n 	is 

given by 

�n = �$�" �$�2
Λ" Λ2
Λ2 Λr

�"
%�$

%

�2
%�$

% . (3)  

where		�", �r are the diagonal elements and �2 is the off 

diagonal elements and are defined as follows: 

 

�"Q = 1 +
sin 2�Q

2�Q
, 

	�2Q =
cos 2�Q − 1

2�Q
, 	�rQ = 1 −

sin 2�Q

2�Q
 

 

(4)  

Although these methods work well, they are often 

susceptible to noise and are not robust [6, 11]. This is due 

the fact that the subspaces are generated using the �2-norm 

constraint. Hence, we use the �"-norm constraint to 

generate our subspaces. The robustness of �"-based PCA 

has been shown to work well for face recognition [16]. We 

show that by combining the �"-norm for generating 

subspaces in the Grassmann framework, we obtain better 

recognition rates. 

4. Robust Grassmann Learning 

Subspace generation is an important part of constructing 

the Grassmann manifold. Traditional PCA is based on �2-

norm and as such it is susceptible to noisy projections. 

This affects the recognition process and a robust 

alternative is needed. By using �"-norm based PCA, we 

can extract robust projections and thus create a robust 

Grassmann manifold. Below we review the �2-norm and 

�"-norm approaches for PCA subspace generation. 

4.1. �� - Principal Component Analysis 

Principal Component Analysis provides a signal 

decomposition using a linear combination of orthogonal 

basis vectors. The principal components are computed by 

finding the eigenvectors of the covariance matrix. The 

contribution of each component for a particular signal can 

reconstruct the original signal from the principal 

components. This is achieved by reducing the squared loss 

between the original signal and its reconstruction. For 

example if we define the matrix � ∈ ℝ1×y	and � ≫ � 

such that each column represents a signal after vectorising. 

The principal components can be found by solving: 

��% � = �Λ (5)  

where � is the matrix of eigenvectors of ��%  and Λ is a 

diagonal matrix, containing the eigenvalues associated 

with each eigenvector. 

4.2. �� - Principal Component Analysis 

In this section we begin with �2-PCA and move into the 

formulation of �"-PCA. Again, the data matrix is	� =

�", �2, … , �y , � ∈ ℝ1×y; where � is the dimension of 

the data and � is the number of samples. Assuming the 

data is zero mean, in �2-PCA formulation we try to 
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minimize the projection error which is equivalent to 

maximizing the variance in the data. 

�2 = � − �� 2
2 (6)  

where, � is the reconstruction error, �	 ∈ 	ℝ1×A and �	 ∈

	ℝA×y  
given by 

�	 = 	�%� (7)  

��� = arg	max
�

�%� 2, (8)  

where � is the matrix containing columns denoting the 

principal components. The problem with this approach is 

that the error value is sensitive to outliers [12]. Even a 

single outlier can affect the direction of the principal 

components.  In order to make it robust, we may formulate 

the problem under the �" norm. Under the �" formulation, 

Equations (6) and (8) become 

�" = � − �� "  (9)  

				��� = 	arg	max
�

�%� ". (10)  

As a consequence of this reformulation, Equations (9) 

and 10 are no longer equivalent under �" constraints. The 

optimal solution to the above �" problem is NP-hard [13] 

and suboptimal approaches have been developed [14]. To 

find one optimal principal component, Equation (10) can 

be rewritten as, 

				��� = arg	max
�∈ℝ�×�,	����"	

�%� ". (11)  

It has been shown [13] that the optimal solution for a 

single �" principal component is given by, 

��� =
�����

����� �

,  (12)  

where  

���; = arg	max
�∈{±"}�	

�� 2 = arg	max
�∈{±"}�	

{�%�%��}. (13)  

The vector ���; is a binary vector having length N and 

entries either 1 or −1. It has also been shown in [13] that 

‖�%���‖" 	= 	 ‖����;‖2. Thus, after finding ���; it is 

straight forward to obtain ��� , the  �" principal component.  

A fast computation of the principal component was 

proposed in [15] and is discussed next. 

 

4.2.1 Fast Computation of Eigenvectors 

Kundu et.al [15] introduced a new approach for fast 

computation of one principal component. We briefly 

explain the method in this section. A binary vector is 

initialized from the column of covariance matrix of the 

input data. The bits that contribute negatively to the 

projection energy are flipped and the process is repeated 

until the optimal binary vector is found. The quadratic 

form of Equation (12) is given by, 

�%�%�� = ����� �%�

+ 2�Q
Q

�f �
%� Q,f

f�Q

 
(14)  

where       �, � ∈ 1,2, … , �.  

In [15], the variable � is defined, that finds the bits that 

contribute negatively to each location.  

�Q ≜ ±4�Q �f �
%� Q,ff�Q . (15)  

The bits that negatively contribute are found through this 

process and are flipped to obtain ���;. After finding ���;  

we can determine the corresponding eigenvector using 

Equation (12).  

This approach was extended to obtaining multiple 

eigenvectors with a greedy strategy that preserves 

orthogonality [14].  The pseudocode for the greedy 

approach is presented below in Algorithm 3. After we find 

the first principal component, we remove its contribution 

from the data and find the next principal component using 

the bit flipping method. This guarantees orthogonality of 

the principal components [14] and the process is repeated 

until all principal components are found. 

 

Algorithm 3: Greedy search for L1-PCA [14] 

For j = 2:m 

// m is the number of principal components 

�Q
f
= �Q

fB"
− �fB" �fB"

% �Q
fB"

	∀� ∈ 1, … , �  

							�f = �"
f
, �2

f
, … , �y

f
 

 

4.3. ��-Grassmann manifold 

During Grassmann manifold construction, PCA is the 

common method for subspace generation. The apparent 

problem is that the method lacks robustness to outliers and 

noise, while blindly trying to find the projection along the 

direction maximum variance. This leads to finding 

projections that may point towards noise, which is not 

desirable [11, 14].  

In order to obtain a robust subspace that is not 

susceptible to noise or outliers, we utilize the �"-PCA to 

obtain the subspaces �$ and �% from source and target 

domain data �$ and �% respectively. The �"-PCA has 

shown promising results in face recognition with noise 

[16]. We maintain that by integrating �"-PCA approach 

for Grassmann framework, we might get a more robust 

subspace. The �"-Grassmannian [11] approach for 

subspace mapping is more robust to noise that may occur 

while mapping the subspace on the Grassmann manifold. 
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5. Experimental Results 

In this section we start by discussing the datasets used 

and report empirical results on two subspace based visual 

domain adaptation methods, namely Geodesic Subspace 

Sampling [5] and Geodesic Flow Kernel [6]. We perform 

object recognition experiments and show the validity of 

the proposed robust Grassmann manifold approach. 

5.1. Object Class Recognition 

For this experiment, we use the Office and Caltech-256 

datasets. The office dataset contains images taken from 

Webcam, DSLR camera and Amazon. In each domain 

there are a total of 31 categories, such as headphones, 

monitor, laptop, cycle, etc. In addition, images from 

Caltech–256 database were used. The categories which 

overlapped with the other three domains were selected 

from the Caltech database.  

We used the precomputed features provided in [2]. In 

short, SURF (Speeded-Up Robust Features) features, were 

extracted from images in the Amazon dataset and a 

codebook was learnt with 800 codewords by selecting a 

subset of features and by performing K-means clustering. 

Finally, each image was represented by a histogram of 800 

codewords. This representation was used to represent 

images in each domain. The features were normalized to 

have zero mean and unit standard deviation.  

We performed object recognition experiments on the 

Office and Caltech-256 datasets. Sample images are 

shown in Figure 1. We denote the four domains as A, C, 

W and D for Amazon, Caltech-256, Webcam and DSLR 

respectively. There are in total 12 possible combinations 

of datasets for the Domain Adaptation tasks.  

We report the recognition rates for unsupervised object 

recognition in Tables 1 and 2. We compared GSS and 

GFK, the two Grassman manifold based techniques, with 

standard subspace generation using �2-PCA and robust 

subspace generation using �"-PCA. We report the average 

accuracies over the trials based on one nearest neighbor 

and SVM.  For SVM classification, we used the kernelized 

version where we precomputed the kernel and cross-

validated for the parameter C. For SVM computation, we 

used the libsvm package [17].  For GSS, we used Partial 

Least Squares [18] to learn discriminative classifier. 

6. Analysis of Results 

In the unsupervised learning setting, the labels of 

images in the source domain are known but those of the 

images in the target domain are unknown. For each 

domain we generate �"-norm constrained basis vectors 

such that the number of eigenvectors is same as the 

dimension of the data. After this, we performed domain 

adaptation using Geodesic Subspace Sampling (GSS) and 

Geodesic Flow Kernel (GFK). We performed 20 random 

trials, for which we randomly choose a subset of samples 

from the source domain and performed the domain 

adaptation on the target domain. We empirically chose the 

optimal value for subspace dimensions. For the subspace 

generation, we used �"-PCA and �2-PCA for both the 

source and target domains and evaluated the two 

approaches.  

The results in Tables 1 and 2 shown in bold indicate 

improvement when using the �" approaches. In order to 

validate the significance of the proposed approaches we 

conducted two-way ANOVA (analysis of variance) across 

different domain pairs. The results which are underlined in 

Tables 1 and 2 indicate statistically significant with 95% 

confidence. This shows that the results obtained with the 

�" approach are significant and not due to chance.  In 

specific, for the webcam-DSLR pair the accuracy of the 

GFK approach improved from 78.79% to 87.19%. 

6.1. Finding the optimal L1 subspace dimensionality 

In order to estimate the optimal subspace dimension for 

each of the 12 domain pairs, we varied the subspace 

dimensions from 5 to 200. The variation of accuracy 

against the subspace dimension for four domain pairs 

based on 1-NN approach is shown in Figure 6 and 7. 

Similar results were obtained for both GSS and GFK. The 

optimal dimension was found to be around 20-30. 

In Figure 7, it can be observed that as the 

dimensionality increases above a certain point, the 

performance decreases and finally tapers off. This is 

attributed to the fact that higher dimensions begin to 

overfit to the source domain and do not work as well for 

targets domains that appear visually similar such as 

webcam and DSLR benefit the most from the proposed �" 

approach.  

7. Conclusion 

In this paper we explored robust domain adaptation 

methods by learning the �"-Grassmannian. Our method of 

generating robust subspaces is attributed to the �"-norm 

and improves the recognition rate. Two popular 

Grassmann manifold based domain adaptation techniques, 

Geodesic Subspace Sampling and Geodesic Flow Kernel, 

were analyzed and evaluated.   

The �" approaches achieved improvements over the 

standard methods across multiple domain pairs. In 

particular, the �" Grassmannian approaches boosted the 

accuracy significantly when the domain pairs were 

visually similar. 
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Table 1. Recognition accuracy (in %) with unsupervised Domain Adaptation using NN classification.   

    Datasets: A: AMAZON, C: CALTECH, D: DSLR, W: WEBCAM 

Method C→A C→W C→D A→C A→W A→D 

�2-GSS [5] 34.15±1.8  28.47±4.3 32.61±4.5 33.01±2.2 30.10±3.7 29.52±3.8 

�"-GSS (ours) 34.93±2.2  28.71±3.7 34.04±4.3 33.54±1.6 32.41±4.3 32.48±3.9 

�2-GFK [6] 36.75±2.1  34.19±4.7 35.25±3.2 35.66±1.3 36.08±2.9 36.37±4.2 

�"-GFK (ours) 37.88±2.0  34.37±4.3 38.12±3.8 34.62±1.6 37.76±3.5 33.66±2.9 

       

Method W→C W→A W→D D→C D→A D→W 

�2-GSS [5] 25.45±1.6  31.96±2.1 73.47±3.0 28.05±1.7 28.19±3.4 65.10±3.5 

�"-GSS (ours) 26.53±1.7  32.53±1.9 75.54±2.5 30.00±1.8 30.36±2.3 68.20±2.7 

�2-GFK [6] 29.93±1.2  30.27±1.5 78.79±2.2 29.64±1.3 33.06±1.8 74.49±2.3 

�"-GFK (ours) 27.80±0.6  31.64±1.5 87.19±2.1 29.39±1.0 35.25±1.6 78.17±2.4 

 
Table 2. Recognition accuracy (in %) with unsupervised Domain Adaptation using SVM classification.  

    Datasets: A: AMAZON, C: CALTECH, D: DSLR, W: WEBCAM) 

Method C→A C→W C→D A→C A→W A→D 

�2-GFK [6] 46.57±3.8 39.83±4.1 42.39±4.9 40.49±2.3 40.49±3.0 38.41±3.5 

�"-GFK (ours) 46.69±3.2 41.00±3.8 42.32±4.2 41.03±1.6 40.61±2.8 38.98±3.7 

       

Method W→C W→A W→D D→C D→A D→W 

�2-GFK [6] 30.51±1.7 34.87±2.4 74.81±3.3 32.89±2.0 38.55±2.0 72.93±3.3 

�"-GFK (ours) 31.24±1.4 37.71±2.1 79.36±2.8 34.82±2.4 36.47±2.5 75.68±2.5 

 

 

 

 

 
Figure 6. Plot of domain adaptation accuracies versus number of 

subspace dimensions for GSS method. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Plot of domain adaptation accuracies versus number of 

subspace dimensions for GFK method. 
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