
2074 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 4, APRIL 2014

In- and Out-Degree Distributions of
Nodes and Coverage in Random Sector Graphs
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Abstract—In a random sector graph, the presence of an
edge between two nodes depends on their distance and spatial
orientation. This kind of graph is widely used for modeling
wireless sensor networks where communication among nodes is
directional. In particular, it is applied to describe both the radio
frequency transmission among nodes equipped with directional
antennas and the line-of-sight transmission in optical sensor net-
works. Important properties of a wireless sensor network, such
as connectivity and coverage, can be investigated by studying the
degree of the nodes of the corresponding random sector graph.
In detail, the in-degree value represents the number of incoming
edges, whereas the out-degree considers the outgoing edges.
This paper mathematically characterizes the average degree of
a random sector graph and the probability distributions of the
in-degree and out-degree of the nodes. Furthermore, it derives
the coverage probability of the network. All the formulas are
validated through extensive simulations, showing an excellent
match between theoretical results and experimental data.

Index Terms—Wireless sensor network, directional antenna,
optical sensor network, connectivity, topology.

I. INTRODUCTION

AWIRELESS sensor network (WSN) consists of several
electronic devices, referred to as nodes, that communi-

cate through wireless transmission. Each node is equipped
with a sensor to collect data from the environment, such
as temperature, humidity, pressure, vibration, sound, etc.
WSNs have gained great importance because of sensor nodes
strengths such as low cost, low power, small size and un-
bounded communication. Important applications of WSNs in-
clude manufacturing process management [1], surveillance [2],
precision farming [3] and healthcare [4].

A WSN is characterized by a distributed architecture: the
nodes are autonomous and interact with each other to send
the acquired data to a base station, by means of routing [5] or
flooding [6] algorithms. Generally the wireless communication
among nodes exploits radio waves, although systems that
adopt free space optical transmission, such as laser light, are
gathering an increasing attention.

Radio frequency transmission is a mature technology and
it is currently the most widespread choice of communication
for WSNs. The node is provided with a radio transceiver
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and an antenna. In order to increase the transmission range
and to limit the energy consumption, directional antennas are
usually preferred to omni-directional ones. The reduction of
the interference among the nodes is another advantage of
directional antennas, because the transmission areas of the
nodes are narrower and less likely to overlap. The radiation
model of a directional antenna consists of a high gain main
lobe and some low gain sidelobes and backlobes, and it is
frequently approximated to a circular sector [7], [8]. As an
example, Fig. 1 shows a node i with a directional antenna: its
emission signal covers a circular sector Si, with central angle
α and radius r, which corresponds to the transmission range
of the antenna. The azimuth angle β indicates the antenna
orientation and it is measured anticlockwise with respect to
the x-axis.

WSNs where the nodes communicate through free space op-
tical transmission are called optical sensor networks (OSNs).
The nodes are equipped with a laser transmitter and with an
optical device, such as a photodetector, to reflect and modulate
the received light. The advantages of OSNs with respect to
radio frequency WSNs include the low power consumption
required by the optical transceiver, the absence of interference
among the nodes and their small size due to the lightweight
circuitry [9]. However the communication in an OSN requires
a direct line-of-sight path between the sender and the receiver.
The directed laser beam spans a circular sector of α radians
and it can be randomly oriented with an angle β, as shown in
Fig. 1.

Both directional radio frequency WSNs and OSNs can
be represented by a family of graphs called random sector
graphs [10], [11]. This representation is frequently used in
their study and evaluation [12], [13], [14]. Each node of the
network is represented by a vertex of the graph. It is assumed
that the nodes are independently and uniformly deployed in a
bounded region, therefore the vertices of the random sector
graph are uniformly and randomly distributed. A circular
sector Si is associated to each node i: it corresponds to the
area covered by the node. It is assumed that the amplitude
α of the circular sector is the same for all the nodes in the
graph, whereas the orientation randomly varies according to a
uniform distribution. A directed edge exists from node i to j
if j is located inside the sector Si.

The edge directionality entails that a node has edges only
towards its circular sector, but it can receive edges from
any direction. This situation models two kinds of network.
First, it is a suitable model for OSNs, because the laser
transmitter of the nodes scans only a sector, but, in addition,
the nodes are equipped with optical devices that passively
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Fig. 1: Radiation model of node i.

reflect the beam received from any direction, so their sensing
region is not limited to the communication sector. Secondly, it
models WSNs with radio frequency transmission if the nodes
have a directional transmitter antenna and an omni-directional
receiver antenna.

An important topology attribute of a graph is the degree
of its nodes. In an undirected graph, the degree di of node
i is the number of edges that link i to other nodes. In a
directed graph, a distinction is made between in-degree d−i ,
which is the number of edges incident to i, and out-degree
d+i , which is the number of edges that depart from i.1 The
node degree is a local attribute of a graph, but its importance
relies on the fact that it is directly related to global properties
of the corresponding WSN, such as connectivity [15], fault
tolerance [16], coverage [17] and energy consumption [18].
Therefore, the node degree directly affects the performance
of the WSN and its knowledge facilitates the design and the
analysis of the network.

A complete characterization of the node degree of a graph
requires expressing the average degree and the degree dis-
tribution of the nodes. The average degree E[d] of a graph
is defined as the average number of outgoing edges that
the nodes have. Since each edge links a starting node to
an ending one, the average degree coincides also with the
average number of incoming edges among all the nodes
in the graph. The out-degree distribution Pr(d+i = k) is
the probability distribution of the node out-degrees over the
whole graph. An analogous definition holds for the in-degree
distribution Pr(d−i = k). Since the deployment area of a
random sector graph is bounded, the average degree and the
degree distribution are influenced by the border effects [19]:
the nodes near the boundaries generally have lower degree
than the other nodes, because they can be linked only to nodes
toward the center.

A general description of the node degree of a random
sector graph is still missing. The majority of the studies
provide asymptotic results, as the number of the nodes tends
to infinity [10], [20]. The Poisson distribution is adopted to
approximate the degree distribution, by ignoring the border
effects [21]. This paper fills the gap of the previous studies
about the node degree in random sector graphs. The provided
formulas of the average degree and the degree distribution

1In the paper, the notation di is applied also to the directed sector graph
to indicate both the in-degree and out-degree, when it is assumed that their
distributions coincide.

consider the border effects and they are valid for any number
of nodes in the graph. In addition, the theoretical analysis is
validated through extensive simulations.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the results obtained by previous studies
about the node degree in random sector graphs. Section III
presents the geometrical analysis that is exploited in Sec-
tions IV and V to compute the out-degree and in-degree
distributions. The expression of the average node degree is
formulated in Section VI, whereas the coverage probability
is deduced in Section VII. Theoretical results are validated
through simulations in Section VIII. Finally, Section IX sum-
marizes the conclusions.

II. RELATED WORK

The asymptotic bounds of the maximum in- and out-degree
among the nodes of a random sector graph deployed in the unit
square [0, 1]2 are investigated in a couple of studies [10], [20].
The analysis in [10] exploits a dissection technique by subdi-
viding the deployment area into a grid of s square identical
cells. It is assumed that r and

√
s are inversely proportional

and that the sector graph contains at least n = (1 + ε)s ln s
nodes, where ε is a positive constant. If the above conditions
hold, an asymptotic result follows from the Chernoff and
Union bounds. With probability approaching to 1 as s tends
to infinity, the maximum in-degree is lower than or equal to
the maximum out-degree, and their lower and upper bounds
are proportional to ln s and ε. The same result holds for the
minimum in- and out-degree.

As in [10], so the analysis in [20] imposes a relationship
between transmission range and cardinality of the random
sector graph. If the constraint r � √

lnn/n is satisfied, a
concentration result allows to almost determine the maximum
in- and out-degree. The probability distribution of the maxi-
mum in- and out-degree is concentrated on two consecutive
integers as n tends to infinity.

The out-degree distribution in random sector graphs is in-
vestigated in [21]. Given n nodes randomly and independently
deployed in the unit square [0, 1]2, the number of nodes that
are located in a finite subregion of area |R| asymptotically
converges to a Poisson distribution with mean n|R|, as n
grows to infinity [22]. By definition, the out-degree of a node
corresponds to the number of nodes located in its sensing
area. Therefore, considering the planar square region [0, 1]2,
the out-degree distribution is expressed in [21] as a Poisson
distribution:

Pr(d+i = k)Poisson =
e

−αnr2

2

(
αnr2

2

)k
k!

. (1)

However, (1) does not consider the border effects. The sensing
area is surely 1

2αr
2 only if the distance between the node

and the nearest border is higher than r; otherwise, depending
on the azimuth angle β, a portion of the sensing area may
overstep the deployment region and the number of nodes that
it contains becomes lower. The approximation introduced by
(1) is acceptable only if the border effects are negligible, i.e.,
r � 1 in case that the deployment area is the unit square.
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Another contribution of [21], which is also conjectured
in [23], is the estimation of the probability that the in-degree
of a node is zero:

Pr(d−i = 0) = e
−αnr2

2 . (2)

As (1), so (2) ignores the border effects. For example, an
immediate consequence of the two equations is Pr(d+i = 0) =
Pr(d−i = 0). However, the simulations performed in [21] and
in Section VIII show that, due to the border effects, the number
of nodes without incident edges is always lower than or equal
to the number of nodes without outgoing edges.

(1) is also obtained as a particular case of the more general
analysis conducted in [24]. Here a family of sector graphs
larger than the one defined in [10] is considered: the nodes are
deployed according to a spatial probability distribution func-
tion f(x). If α ≥ π, both the in- and out-degree distributions
are expressed as:

Pr(di = k) = Pr(d+i = k) = Pr(d−i = k) =

=

(
αnr2

2

)2
k!

∫
R2

e
−αnr2

2 f(x)f(x)k+1dx . (3)

If the node positions follow the uniform density function
f(x) = 1[0,1]2(x), the degree distribution obtained after
solving the integral in (3) is a Poisson distribution with mean
1
2αt: this result coincides with (1).

All the previous works studied only the asymptotic behavior
of the node degree in random sector graphs, as the number
of the nodes tends to infinity. Only marginal results about
the degree distribution are provided, such as its maximum
value or the probability of node isolation, otherwise the degree
distribution is approximated with a Poisson distribution, by
ignoring the border effects.

III. AREA COVERED BY A NODE

In a homogeneous WSN, the amplitude α of the emission
beam and the transmission range r are the same for all the
nodes. Ideally, all the circular sectors associated to the nodes
of the corresponding random sector graph have area αr2

2
and they only differ in their azimuth angle. However, this
assumption is true only if the deployment area is infinite or
if a toroidal distance metric is adopted. In the latter case,
each border is considered adjacent to the opposite one: the flat
deployment area becomes a torus. Instead, considering a finite
deployment area with an Euclidean distance metric, some
circular sectors are smaller because their borders overlap.

The evaluation of the intersection between Si and the
deployment area A is generalized by considering a rectangle of
length l and width w instead of the unit square as deployment
area. The deployment area can be divided in four kinds of
region, as shown in Fig. 2:

• an inner rectangular region AA, whose sides have dis-
tance r from the corresponding borders of A.

• four rectangular regions AB : two of them measure (w−
2r)× r, while the other two measure (l − 2r)× r.

• four regions AC , obtained by picking the square with side
r and one vertex in common with a vertex of A and by

Fig. 2: Partition of the deployment area.

removing from it the circular sector of radius r, centered
in the common vertex.

• four circular sectors AD with radius r, whose center
coincides with a vertex of A.

A is assumed large enough such that r ≤ 1
2 min(l, w).

Given a node placed in point P = (x, y) ∈ A, the distances
of the node from the nearest horizontal and vertical borders
are denoted as:

dx = min(x, l − x) , (4)

dy = min(y, w − y) . (5)

Further, let dm be the distance from the nearest border:

dm = min(dx, dy) . (6)

The intersection area between the sector S of the node
and A depends on the region where the sector is centered.
A preliminary result about the intersection area is obtained by
imposing the following two conditions:

1) the center P of S belongs to AA or to one of the 3
regions marked with the prime symbol in Fig. 2.

2) the orientation angle of S is β = 0.
Let f(α, x, y, r, l, w) be the function that computes the inter-
section area in the following regions of A:

f(α, x, y, r, l, w) = (7)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fA(α, r) if (x, y) ∈ AA

fB(α, dx, r) if (x, y) ∈ A′
B

fC(α, dx, dy, r) if (x, y) ∈ A′
C

fD(α, dx, dy, r) if (x, y) ∈ A′
D .

If the node is placed in AA, its sector does not overlap the
borders of A, therefore the intersection area is simply:

fA(α, r) =
r2

2
α . (8)

If the sector S is centered in A′
B , it may overlap with a

border, depending on the value of α. This situation is enlarged
in Fig. 3. For small values of α, the sector is entirely included
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Fig. 3: Intersection between S and A′
B .

Fig. 4: Intersection between S and A′
C .

in A, but, as α increases, at a certain point it comes out from
the leftmost border of A. Hence the intersection area is given
by a piecewise function:

fB(α, dx, r) = (9)⎧⎪⎨
⎪⎩

r2

2 α if 0 ≤ α < π − η
r2

2 (π − η) +
d2
x

2 (tan η + tanα) if π − η ≤ α < π + η

r2
(
α
2 − η

)
+ d2x tan η if π + η ≤ α < 2π ,

where η = arccos
(
dx

r

)
, as shown in Fig. 3. The function is

defined in the domain [0, 2π[, but the domain can be extended
in the following way:

hB(α, dx, r) =

⌊
α

2π

⌋
gB(dx, r)+ fB(α mod 2π, dx, r) (10)

where

gB(dx, r) = r2(π − η) + d2x tan η . (11)

The intersection area between a sector S centered in A′
C and

A is calculated in a similar way. Fig. 4 enlarges the bottom

Fig. 5: Intersection between S and A′
D.

left corner of A; hence, the intersection is:

fC(α, dx, dy, r) = (12)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2

2 α if 0 ≤ α < π − δ
r2

2 (π − δ) +
d2
x

2 (tan δ + tanα) if π − δ ≤ α < π + δ
r2

2 (α− 2δ) + d2x tan δ if π + δ ≤ α < 3π
2 − ε

r2

2

(
3π
2 − 2δ − ε

)
+ d2x tan δ +

+
d2
y

2

(
tan ε+ tan

(
α+ π

2

))
if 3π

2 − ε ≤ α < 3π
2 + ε

r2
(
α
2 − δ − ε

)
+ d2x tan δ +

+ d2y tan ε if 3π
2 + ε ≤ α < 2π ,

where δ = arccos
(
dx

r

)
and ε = arccos

(
dy

r

)
, as shown in

Fig. 4. The following function extends the domain of (12)

hC(α, dx, dy, r) =

=

⌊
α

2π

⌋
gC(dx, dy, r) + fC(α mod 2π, dx, dy, r) , (13)

where

gC(dx, dy, r) = r2(π − δ − ε) + d2x tan δ + d2y tan ε . (14)

Fig. 5 enlarges the bottom left corner of A when the sector
S is centered within A′

D. The intersection area between S and
A is given by the following function:

fD(α, dx, dy, r) = (15)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2

2 α if 0 ≤ α < π − δ
r2

2 (π − δ) +
d2
x

2 (tan δ + tanα) if π − δ ≤ α < π + φ
r2

2 (π − δ) +
d2
x

2 tan δ +

+
d2
y

2 tan
(
α+ π

2

)
+ dxdy if π + φ ≤ α < 3π

2 + ε
r2

2

(
α− π

2 − δ − ε
)
+

+
d2
x

2 tan δ +
d2
y

2 tan ε + dxdy if 3π
2 + ε ≤ α < 2π ,

where φ = arctan
(

dy

dx

)
, as shown in Fig. 5. The domain is

[0, 2π[, but it is extended by the following function:

hD(α, dx, dy, r) = (16)

=

⌊
α

2π

⌋
gD(dx, dy, r) + fD(α mod 2π, dx, dy, r) ,
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where

gD(dx, dy, r) = (17)

=
r2

2

(
3π

2
− δ − ε

)
+

d2x
2

tan δ +
d2y
2

tan ε+ dxdy .

By generalizing to a sector S with center P ∈ A and any
orientation angle β, its intersection area with A is:

fS∩A(α, β, x, y, r, l, w) = (18)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fA(α, r) if (x, y) ∈ AA

hB(α + β, dm, r)− fB(β, dm, r) if (x, y) ∈ AB

hC(α+ β, dx, dy , r)− fC(β, dx, dy, r) if (x, y) ∈ AC

hD(α + β, dx, dy, r)− fD(β, dx, dy, r) if (x, y) ∈ AD .

By defining the following function:

h(α, x, y, r, l, w) = (19)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fA(α, r) if (x, y) ∈ AA

hB(α, dm, r) if (x, y) ∈ AB

hC(α, dx, dy, r) if (x, y) ∈ AC

hD(α, dx, dy, r) if (x, y) ∈ AD ,

the area of the intersection between a circular sector and the
deployment area can be written in short as:

fS∩A(α, β, x, y, r, l, w) =

= h(α+ β, x, y, r, l, w)− f(β, x, y, r, l, w) . (20)

IV. OUT-DEGREE DISTRIBUTION

In a random sector graph, the out-degree of a node is given
by the number of other nodes inside its circular sector. The
probability that a node is within a circular sector is directly
proportional to the area of the sector. The reason lies in the
fact that, since the nodes are randomly deployed according
to a uniform distribution, each point of the deployment area
A has the same probability of containing a node. Thus, the
probability that a node located at P ∈ A is placed in a subarea
R is:

Pr(P ∈ R) =
|R ∩ A|
|A| . (21)

Ignoring the border effects, the out-degree of a node, i.e.,
the probability that k nodes fall in its circular sector and the
others are outside, is a binomial distribution:

Pr(d+ = k)binom =

(
n− 1

k

)(
αr2

2lw

)k (
1− αr2

2lw

)n−k−1

.

(22)
Due to the border effects, the area of the circular sector Si of

a generic node i is obtained by integrating (20) with respect
to l, w, β and then by dividing the result by the ranges of
integration. Then, the probability p that a direct edge exists
from i to another node j is obtained by dividing this resulting
area by |A|. The presence of an edge between nodes i and j
can be regarded as a Bernoulli trial with probability of success
p. The estimation of the number of edges that depart from node
i corresponds to the repetition of n− 1 independent Bernoulli

trials, each one with success probability p. Hence, the out-
degree distribution is given by:

Pr(d+ = k) =

=

(
n− 1

k

)
1

2π|A|
∫ w

0

∫ l

0

∫ 2π

0

(
fS∩A(α, β, x, y, r, l, w)

|A|
)k

·
(
1− fS∩A(α, β, x, y, r, l, w)

|A|
)n−k−1

dβ dy dx . (23)

Due to the additivity of integration on intervals, the integral
in (23) can be partially solved by splitting it in each of the
four subdomains of fS∩A(α, β, x, y, r, l, w). For the region
AA, the integral is directly solved. In the other regions, the
integrals are simplified by means of a change of variables: the
new variables of integration are the distances dx and dy from
the borders. In particular, this substitution simplifies the triple
integral on the region AB to a double one. The formula for
the out-degree distribution becomes:

Pr(d+ = k) =

=

(
n− 1

k

)
1

2π|A|

(
2π|AA|

(
αr2

2|A|
)k (

1− αr2

2|A|
)n−k−1

+

+
|AB |
r

∫ r

0

∫ 2π

0

(
hB(α+ β, dm, r)− fB(β, dm, r)

|A|
)k

·

·
(
1− hB(α+ β, dm, r)− fB(β, dm, r)

|A|
)n−k−1

dβ ddm+

+ 4

∫ r

0

∫ r

√
r2−d2

x

∫ 2π

0(
hC(α + β, dx, dy, r)− fC(β, dx, dy, r)

|A|
)k

·

·
(
1− hC(α+ β, dx, dy, r)− fC(β, dx, dy, r)

|A|
)n−k−1

dβ ddy ddx + 4

∫ r

0

∫ √
r2−d2

x

0

∫ 2π

0(
hD(α+ β, dx, dy, r) − fD(β, dx, dy, r)

|A|
)k

·

·
(
1− hD(α+ β, dx, dy, r) − fD(β, dx, dy, r)

|A|
)n−k−1

dβ ddy ddx

)
. (24)

V. IN-DEGREE DISTRIBUTION

The in-degree of node i counts the number of edges from
other nodes to i. There is a directed edge towards i if the
following two conditions hold. First, all the edges incident to
i depart from nodes whose distance from i is lower than or
equal to r. Let Q be the set of points in A whose distance from
i is lower than or equal to r. According to (21), the probability
that j is placed within a distance r from i is given by the ratio
between the areas of Q and A. The second necessary condition
is the inclusion of i in the circular sector covered by j: the
probability of success of this event is α/2π. By combining
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the two conditions, it follows:

Pr(i ∈ Sj) =
α

2π

|Q|
|A| . (25)

If the border effects are ignored, (25) is easily evaluated: in
this case, Q becomes a circle of area πr2. Therefore, the in-
degree distribution coincides with the out-degree distribution:

Pr(d− = k)binom = Pr(d+ = k)binom = Pr(d = k)binom .
(26)

However, due to the presence of the border effects, Q cor-
responds to a circle only if the distance of i from the borders
of the deployment area A is higher than r, otherwise its area
is lower because it partially overlaps A. The intersection area
between a circle and the deployment area is provided in [25]:

gC∩A(x, y, r, l, w) = (27)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
πr2 if (x, y) ∈ AA

gB(dm, r) if (x, y) ∈ AB

gC(dx, dy, r) if (x, y) ∈ AC

gD(dx, dy, r) if (x, y) ∈ AD .

It follows that the in-degree probability distribution is given
by:

Pr(d− = k) =

=

(
n− 1

k

)
1

|A|
∫ w

0

∫ l

0

(
α

2π

gC∩A(x, y, r, l, w)

|A|
)k

·

·
(
1− α

2π

gC∩A(x, y, r, l, w)

|A|
)n−k−1

dy dx . (28)

An alternative formula of the in-degree probability distribution
is provided by splitting the integral of (28) in the four
subdomains:

Pr(d− = k) =

=

(
n− 1

k

)
1

|A|

(
|AA|

(
αr2

2|A|
)k (

1− αr2

2|A|
)n−k−1

+
|AB |
r

·

·
∫ r

0

(
α

2π

gB(dm, r)

|A|
)k (

1− α

2π

gB(dm, r)

|A|
)n−k−1

ddm+

+ 4

∫ r

0

∫ r

√
r2−d2

x

(
α

2π

gC(dx, dy, r)

|A|
)k

·

·
(
1− α

2π

gC(dx, dy , r)

|A|
)n−k−1

ddy ddx+

+ 4

∫ r

0

∫ √
r2−d2

x

0

(
α

2π

gD(dx, dy, r)

|A|
)k

·

·
(
1− α

2π

gD(dx, dy, r)

|A|
)n−k−1

ddy ddx

)
. (29)

VI. AVERAGE DEGREE

Let X be a discrete random variable that takes values
x0, x1, . . ., with probability p0, p1, . . ., respectively. The ex-
pected value of X is given by:

E[X ] =

∞∑
k=0

xkpk . (30)

Thus the average value of the out-degree distribution is:

E[d+] =

n−1∑
k=0

k · Pr(d+ = k) . (31)

By substituting the formula of the degree distribution provided
in (23), it follows:

E[d+] =

n−1∑
k=0

(
k ·
(
n− 1

k

)
1

2π|A| ·

·
∫ w

0

∫ l

0

∫ 2π

0

(
fS∩A(α, β, x, y, r, l, w)

|A|
)k

·

·
(
1− fS∩A(α, β, x, y, r, l, w)

|A|
)n−k−1

dβ dy dx

)
. (32)

The linearity property of the integral states that the integral of
a linear combination is the linear combination of the integrals,
therefore:

E[d+] =
1

2π|A|
∫ w

0

∫ l

0

∫ 2π

0

n−1∑
k=0

(
k

(
n− 1

k

)
·

·
(
fS∩A(α, β, x, y, r, l, w)

|A|
)k

·

·
(
1− fS∩A(α, β, x, y, r, l, w)

|A|
)n−k−1

dβ dy dx

)
. (33)

The function to be integrated is the summation of k mul-
tiplied by a binomial distribution with success probability
p = fS∩A(α, β, x, y, r, l, w)/|A|. According to (30), the result
of the summation is the expected value of the distribution:
since the average value of the binomial distribution is given
by the number of trials multiplied by the success probability,
it follows:

E[d+] =
1

2π|A| · (34)

·
∫ w

0

∫ l

0

∫ 2π

0

(n− 1)

(
fS∩A(α, β, x, y, r, l, w)

|A|
)
dβ dy dx .

The following lemma is used to reduce the triple integral to a
double one.

Lemma 1. Average coverage area. Given a deployment sur-
face A of length l and width w, let S be a sector centered at
point P = (x, y) ∈ A, with radius r, amplitude α and azimuth
β. The average area covered by S is proportional only to α
and gC∩A(α, x, y, r, l, w).

Proof: in each of the regions identified in Fig. 2, the
average value of the coverage area is provided by integrating
(20) with respect to α from 0 to 2π and then by dividing it
by the range of integration:

m(α, x, y, r,l, w) =
1

2π

∫ 2π

0

fS∩A(α, β, x, y, r, l, w)dβ =

=
1

2π

∫ 2π

0

h(α+ β, x, y, r, l, w)dβ+

− 1

2π

∫ 2π

0

f(β, x, y, r, l, w)dβ . (35)
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With the substitution γ = α+ β, the integral becomes:

m(α, x, y, r, l, w) =
1

2π

∫ 2π+α

α

h(γ, x, y, r, l, w)dγ+

− 1

2π

∫ 2π

0

f(β, x, y, r, l, w)dβ =

=
1

2π

∫ 2π+α

α

⌊
γ

2π

⌋
gC∩A(x, y, r, l, w)dγ+

+
1

2π

∫ 2π+α

α

f(γ mod 2π, x, y, r, l, w)dγ+

− 1

2π

∫ 2π

0

f(β, x, y, r, l, w)dβ . (36)

Since 0 ≤ α < 2π and 0 ≤ β < 2π, then 0 ≤ γ < 4π:

m(α, x, y, r, l, w) =
1

2π

∫ 2π+α

2π

gC∩A(x, y, r, l, w)dγ+

+
1

2π

(∫ 2π

α

f(γ, x, y, r, l, w)dγ+ (37)

+

∫ α

0

f(γ, x, y, r, l, w)dγ −
∫ 2π

0

f(β, x, y, r, l, w)dβ

)
.

The sum inside the brackets is zero, therefore it is proved

m(α, x, y, r, l, w) =
α

2π
gC∩A(x, y, r, l, w) . (38)

because gC∩A(x, y, r, l, w) is not function of γ.
By applying lemma 1, (35) becomes:

E[d+] =
α(n− 1)

2π|A|
∫ w

0

∫ l

0

gC∩A(x, y, r, l, w)

|A| dy dx . (39)

The integral is solved by splitting it in the four subdomains
of gC∩A(x, y, r, l, w):

E[d+] =
α(n− 1)

2π|A|2
(
(w − 2r) (l − 2r) πr2 +

π2 + 1

2
r4+

+ (w + l − 4r)

(
2π − 4

3

)
r3 +

(
4π − 1

2
π2 − 16

3

)
r4
)

=

= (n− 1)
α

2π

( r

wl

)2(1

2
r2 − 4

3
(w + l) r + πwl

)
. (40)

The same result is obtained if the average value of the in-
degree distribution is computed:

E[d−] =
n−1∑
k=0

k · Pr(d− = k) . (41)

Following the same steps, (41) leads to the calculus of the
double integral of gC∩A(x, y, r, l, w), with respect to w and l.
Therefore, it is proved:

E[d] = E[d+] = E[d−] . (42)

VII. COVERAGE

An important global property of a WSN is the coverage,
which evaluates how well the WSN monitors the region A of
interest. More formally, a point P ∈ A is covered if it falls in
the sensing area of at least one node of the WSN. The concept
of coverage can be extended in the following way: given a
positive integer k, P is k-covered if it is located within the
sensing areas of at least k nodes. The k-coverage probability

is the probability that a point inside the deployment area is
covered by at least k nodes.

According to (25), the probability that a fixed point P is
not covered by any sensor is:

Pr(P is not covered) =

(
1− α

2π

|Q|
|A|
)n

, (43)

where Q is the set of points whose distance from P is lower
than or equal to r. If the border effects are ignored, |Q| = πr2

and the probability that P is covered easily follows:

Pr(coverage)no border = Pr(P is covered)no border =

= 1−
(
1− αr

2lw

)n
. (44)

The coverage probability is given by (44) because, without
border effects, every point has the same probability of being
covered by at least one sensor.

Due to the border effects, the probability that P is covered
depends on its coordinate (xp, yp):

Pr(P is covered) = 1−
(
1− α

2π

gC∩A(xp, yp, r, l, w)

lw

)n

.

(45)
The coverage probability is obtained by integrating (45) over
A:

Pr(coverage) = (46)

= 1− 1

|A|
∫ w

0

∫ l

0

(
1− α

2π

gC∩A(xp, yp, r, l, w)

lw

)n

dy dx .

The k-coverage probability is determined similarly. The
probability that less than k sensors cover P is:

Pr(P is not k-covered) =

=
k−1∑
i=0

(
n

i

)(
α

2π

|Q|
|A|
)i(

1− α

2π

|Q|
|A|
)n−i

. (47)

The k-coverage probability in a WSN with n nodes can
be obtained by the in-degree distribution in a random sector
graph with n+ 1 nodes. For example, by ignoring the border
effects, the k-coverage probability is:

Pr(k-coverage with n nodes)binom =

= 1−
k−1∑
i=0

Pr(d = i with n+ 1 nodes)binom . (48)

If the summation of the binomial distributions is approximated
with a summation of Poisson distributions, (48) becomes:

Pr(k-coverage with n nodes)Poisson =

= 1−
k−1∑
i=0

Pr(d = i with n nodes)Poisson . (49)

The formulation of the k-coverage probability that considers
the presence of the border effects is:

Pr(k-coverage with n nodes) =

= 1−
k−1∑
i=0

Pr(d− = i with n+ 1 nodes) . (50)
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Fig. 8: Percentage error of the out-degree distribution with respect to simulations.
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VIII. EVALUATION AND VALIDATION

Different scenarios are considered for evaluating the in- and
out-degree distributions of nodes in a random sector graph.
n = 100 nodes are deployed in a square region of variable
side w, proportional to the transmission radius: w ∈ [5r, 10r].
For each deployment area, different random sector graphs are
built by varying the amplitude of the circular sector associated
to the nodes: α ∈ [π/2, 2π]. If α = 2π, the random sector
graph becomes a random geometric graph [26]: this graph is
undirected and the only condition for the presence of an edge
between two nodes is that their distance should be lower than
r. Analytic results of the in- and out-degree distributions are
obtained by numerically integrating (24) and (29) through the
Mathematica tool2. The scripts used for the computations are
publicly available3.

As depicted in Fig. 6, the provided out-degree distribution
resembles the Poisson distribution. The probability that a node
has out-degree k > 0 tend to decrease as the size of the
deployment area increases. At the same time, the lower α
is, the fewer edges the node has.

The trend of the in-degree distribution is similar to the
one of the out-degree distribution. In order to highlight their
differences, Fig. 7 shows the percentage change of the in-
degree distribution with respect to the out-degree distribution,
calculated as follows:

% change =
Pr(d− = k)− Pr(d+ = k)

Pr(d+ = k)
· 100 . (51)

The probability that no edge enters into a node is always lower
than or equal to the probability that the node has no outgoing
edges, as already noticed in [21]. However, the curve of the
in-degree distribution immediately and dramatically rises. In
particular, the mode, i.e., the most frequent value, is the same
for the in- and out-degree distributions, but it holds:

Pr(d− = mode) ≥ Pr(d+ = mode) . (52)

In the right half, the in-degree distribution reduces more
sharply than the out-degree distribution. Its percentage change
with respect to the out-degree distribution is more accen-
tuated if the deployment area is small: as the side of A
increases, the difference between the two distributions levels
off at some percentage points. Furthermore, the in-degree
distribution approaches the out-degree distribution as the value
of α increases. The reason is that, given a node i, the
probability that the circular sector associated to i contains all
the nodes with edges incident to i is directly proportional to
the amplitude of the circular sector. As a case limit, if α = 2π,
the two distributions match, because the graph becomes an
undirected random geometric graph.

The accuracy of the proposed in- and out-degree distri-
butions was measured through simulations. A simple Java
program was developed to automatically build random sector
graphs. The implemented algorithm randomly deploys 100
nodes according to a uniform distribution and then it collects
statistics about the number of incoming and outgoing edges for
each node. The Java program was executed on an Intel Core

2http://www.wolfram.com/mathematica
3http://ubi.polito.it/research/randomSectorGraph.htm

i7-2600 octa-core processor, with 7.8 GB of RAM and clock
speed of 3.40 GHz. The time required for the generation of one
sector graph and its degree calculation is on the order of 1 ms
and it depends on the size of A and α. In order to reduce the
effect of randomness, statistical results are averaged among
109 repetitions for each configuration previously described.
The difference between the proposed distribution and the data
extrapolated from the simulations is expressed through the
percentage error, calculated as:

% error =
|valuetheoretical − valuesimulation|

valuesimulation
· 100 . (53)

Fig. 8 reports, on a logarithmic scale, the percentage error
of the proposed out-degree distribution. In order to provide
a basis for comparison, the figure displays in light gray
the percentage error of the Poisson distribution, which is
suggested as an approximation of the out-degree distribution
in [21], [24]. With respect to (1), the mean of the Poisson
distribution is αnr2

2|A| , since the deployment area is not unitary.
Furthermore, Fig. 8 also shows the percentage error of the
binomial distribution given by (22): the corresponding markers
are white with a black outline. The percentage error be-
tween the proposed out-degree distribution and the simulation
data is generally comprised between 0.0001% and 0.1%.
The slight difference is due to the approximation of the
numerical integration of (24) and to the randomness in the
simulations. On the contrary, the Poisson and the binomial
distributions noticeably diverge from the simulations because
they do not consider the border effects. The approximation
introduced by the Poisson distribution with respect to the
binomial distribution is marginal compared to the error due
to the border effects, therefore the two distributions show a
similar trend. Independently of the distribution, the percentage
error tends to rise as the node degree increases, because the
values obtained from the simulations are smaller and even a
minimal discrepancy with the theoretical values produces a
high percentage difference.

Similarly to the out-degree distribution, Fig. 9 shows an
excellent match between the proposed in-degree distribution
and the data observed from simulations, with a very low
percentage error. The Poisson and binomial distributions for
the in-degree are the same of the out-degree, as confirmed
by (3) and (26). By comparing Fig. 8 and 9, it can be noted
that the patterns are essentially the same, with an increase of
the percentage error for all the distributions in correspondence
to higher node degree due to the small absolute value of the
reference data.

Given a node, (23) states that each edge towards another
node has the same probability of existing, independently of
other edges. However, this identical edge probability does not
contradict the fact that edge occurrences are correlated. For
example, if an edge from node i to j exists, this implies
a higher probability for an edge from j to i than if there
would be no edge from i to j. In order to show that the edge
dependencies do not impact on the equiprobability of edge
existence, the similarity between the experimental data and the
theoretical out-degree distribution has been computed for each
simulation. If the probabilities of having an edge to any of the
other nodes were independent only in different realizations of
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Fig. 10: Jensen-Shannon divergence of out-degree distribution
in a 5r × 5r deployment area with α = π/2.

Fig. 11: Average node degree.

the network, then each simulation would notably diverge from
the theoretical distribution. Instead, Fig. 10 reveals that the
divergence is lower than 0.03 in almost all the simulations. The
divergence was measured by means of the Jensen-Shannon
divergence [27], whose upper bound is ln(2). Given two
discrete probability distributions P and Q, it is defined as:

DSD(P ‖ Q) =
1

2
DKL(P ‖ M) +

1

2
DKL(Q ‖ M) , (54)

where M = 1
2 (P + Q) and DKL is the Kullback-Leibler

divergence, defined as follows:

DKL(P ‖ Q) =
∑
i

ln

(
P (i)

Q(i)

)
P (i) . (55)

It is worth noting that the Poisson and binomial approxima-
tions of the out-degree distribution distance more from each
simulations: the divergence threshold that includes almost all
the cases is the double than the one required by the proposed
distribution.

Fig. 11 plots the theoretical average degree of a random
sector graph, by varying the deployment area and the ampli-
tude of the circular sector in the evaluation of (40). A linear
relationship holds between the average node degree and α:
for example, the average degree of a random sector graph
with α = π is the half of the one of a random geometric
graph. Further, the average degree decays as the side w of
the deployment area increases, because the nodes become
less densely deployed. The exactness of (40) is confirmed
by its negligible percentage error displayed in Fig. 12. The
agreement of the simulation results with the theoretical curve

Fig. 12: Percentage error of the average node degree with
respect to simulations.

Fig. 13: Coverage probability.

is perfect: the observed gap is only due to the randomness in
the simulations, because (40) is a closed-form expression and
no approximation is made in its computation.

Finally, Fig. 13 depicts the theoretical coverage probability
expressed by (50), for different values of deployment and
sensing areas. The conditions for an almost complete coverage
are a small deployment area, with side up to 5 times the
transmission radius of the nodes, and antennas with amplitude
higher than π/2. If the deployment area enlarges, the lower
is the antenna amplitude, the faster the coverage probability
decreases. Since (50) takes into account the border effects for
evaluating the coverage probability, it is extremely accurate,
as proved in Fig. 14. On the contrary, (48) and (49) reveal an
exceptionally higher percentage error. This trend is expected,
because the network coverage is directly related to the in-
degree distribution, therefore the error introduced by the Pois-
son and binomial approximations of the degree distribution
has significant repercussion on the coverage probability.

IX. CONCLUSION

The present paper has analyzed the node degree in random
sector graphs. Previous results in this field overlooked the
bounded area where the nodes of the graph are deployed and
only asymptotic analyses were performed, as the size of the
deployment area and the number of the nodes tend to infinity.
In particular, the out-degree distribution was fit to a Poisson
distribution, by ignoring the border effects that reduce the
coverage area of the nodes. No formulation was proposed for
the average node degree. This paper has bridged the gap by
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Fig. 14: Percentage error of the coverage probability with
respect to simulations.

providing precise expressions for in- and out-degree distribu-
tions, average degree and coverage probability. The proposed
out-degree distribution has been evaluated through numerical
integration and has been compared with data obtained from
extensive simulations. The percentage error almost entirely
ranges between 0.0001% and 0.1%: a higher percentage error
happens only for the values at the right extremity of the
distribution, which are characterized by very few occurrences.
Instead, it has been shown that the Poisson distribution poorly
matches the out-degree distribution of a random sector graph
because its percentage error with respect to the experimental
data is comprised between 10% and 100%. The accuracy of
the proposed distribution for the node in-degree is almost the
same as the one of the out-degree distribution. The percentage
error made in the evaluation of the average node degree is even
lower, because a closed-form expression is provided and its
difference from experimental data is only due to randomness in
the simulations. The same accuracy characterizes the formula
of the coverage probability.
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[11] C. Àlvarez, J. Dı́az, J. Petit, J. Rolim, and M. Serna, “Efficient and
reliable high level communication in randomly deployed wireless sensor
networks,” in Proc. 2004 International Workshop Mobility Management
Wireless Access Protocols, ser. MobiWac ’04. ACM, pp. 106–110.

[12] J. Dı́az, J. Petit, and M. Serna, “Evaluation of basic protocols for optical
smart dust networks,” in Experimental and Efficient Algorithms, ser.
Lecture Notes in Computer Science. Springer, 2003, vol. 2647, pp. 97–
106.

[13] D. Kundur, U. N. Okorafor, and W. Luh, “HoLiSTiC: heterogeneous
lightweight sensornets for trusted visual computing,” in Proc. 2006
International Conf. Intelligent Inf. Hiding Multimedia Signal Process.,
pp. 267–270.

[14] R. Xie, L.-M. Peng, W. Tang, F. Tong, D.-K. Kang, W.-H. Yang, and
Y.-C. Kim, “A simulation study of neighborhood discovery algorithm in
free space optical sensor networks,” in Proc. 2010 International Conf.
Ubiquitous Future Netw., pp. 87–91.

[15] M. D. Penrose, “On k-connectivity for a geometric random graph,”
Random Structures Algorithms, vol. 15, no. 2, pp. 145–164, 1999.

[16] X.-Y. Li, P.-J. Wan, Y. Wang, and C.-W. Yi, “Fault tolerant deployment
and topology control in wireless networks,” in Proc. 2003 ACM Interna-
tional Symp. Mobile Ad Hoc Netw. Comput., ser. MobiHoc ’03. ACM,
pp. 117–128.

[17] L.-H. Yen and C. W. Yu, “Link probability, network coverage, and
related properties of wireless ad hoc networks,” in Proc. 2004 IEEE
International Conf. Mobile Ad-hoc Sensor Syst., pp. 525–527.

[18] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols
for information dissemination in wireless sensor networks,” in Proc.
1999 ACM/IEEE International Conf. Mobile Comput. Netw., ser. Mobi-
Com ’99. ACM, pp. 174–185.

[19] D. A. Griffith and C. G. Amrhein, “An evaluation of correction tech-
niques for boundary effects in spatial statistical analysis: traditional
methods,” Geographical Analysis, vol. 15, no. 4, pp. 352–360, Oct.
1983.

[20] Y. Shang, “Focusing of maximum vertex degrees in random faulty scaled
sector graphs,” Paramerican Mathematical J., vol. 22, no. 2, pp. 1–17,
2012, arXiv:0909.2933v2.

[21] U. Okorafor and D. Kundur, “On the connectivity of hierarchical direc-
tional optical sensor networks,” in Proc. 2007 IEEE Wireless Commun.
Netw. Conf., pp. 3524–3528.

[22] N. A. Cressie, Statistics for Spatial Data. John Wiley & Sons, 1993.
[23] U. Okorafor and D. Kundur, “On the relevance of node isolation to the

k-connectivity of wireless optical sensor networks,” IEEE Trans. Mobile
Comput., vol. 8, no. 10, pp. 1427–1440, Oct. 2009.

[24] Y. Shang, “On the degree sequence of random geometric digraphs,”
Applied Mathematical Sciences, vol. 4, no. 41, pp. 2001–2012, 2010.

[25] R. Ferrero and F. Gandino, “Degree distribution of unit disk graphs with
uniformly deployed nodes on a rectangular surface,” in Proc. 2011 In-
ternational Conf. Broadband Wireless Comput., Commun. Applications,
pp. 255–262.

[26] J. Dall and M. Christensen, “Random geometric graphs,” Physical Rev.
E, vol. 66, no. 1, p. 016121, July 2002.

[27] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, pp. 145–151, 1991.



FERRERO et al.: IN- AND OUT-DEGREE DISTRIBUTIONS OF NODES AND COVERAGE IN RANDOM SECTOR GRAPHS 2085

Renato Ferrero received the M.S. degree in com-
puter engineering in 2004 and the Ph.D. degree in
Computer Engineering in 2012, both from Politec-
nico di Torino, Italy. He is currently a research
fellow at the Dipartimento di Automatica e Infor-
matica of Politecnico di Torino. His research inter-
ests include ubiquitous computing, wireless sensor
networks and RFID systems.

M. Victoria Bueno-Delgado received her M.Sc. de-
gree and Ph.D in Telecommunications Engineering
in 2004 and 2010 respectively, both from Univer-
sidad Politecnica de Cartagena (UPCT), Spain. In
2004 she joined at UPCT as researcher in Informa-
tion Technologies and Communications Department
and in 2006 she joined as Assistant professor in
the same University. Her research interests include
anti-collision protocols and deployment techniques
in RFID systems, WSN and optical switching.

Filippo Gandino obtained his M.S. in 2005 and
Ph.D. degree in Computer Engineering in 2010,
from the Politecnico di Torino. He is currently
an Assistant Professor with the Dipartimento di
Automatica e Informatica, Politecnico di Torino.
His research interests include ubiquitous computing,
RFID, WSNs, security and privacy, network model-
ing and digital arithmetic.


