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Abstract— One of the requirements of a biometric template
protection system is that the protected template ideally should
not leak any information about the biometric sample or its
derivatives. In the literature, several proposed template protec-
tion techniques are based on binary vectors. Hence, they require
the extraction of a binary representation from the real- valued
biometric sample. In this work we focus on the Detection Rate
Optimized Bit Allocation (DROBA) quantization scheme that
extracts multiple bits per feature component while maximizing
the overall detection rate. The allocation strategy has to be
stored as auxiliary data for reuse in the verification phase
and is considered as public. This implies that the auxiliary
data should not leak any information about the extracted
binary representation. Experiments in our work show that the
original DROBA algorithm, as known in the literature, creates
auxiliary data that leaks a significant amount of information.
We show how an adversary is able to exploit this information
and significantly increase its success rate on obtaining a false
accept. Fortunately, the information leakage can be mitigated by
restricting the allocation freedom of the DROBA algorithm. We
propose a method based on population statistics and empirically
illustrate its effectiveness. All the experiments are based on the
MCYT fingerprint database using two different texture based
feature extraction algorithms.

I. INTRODUCTION

The widespread use of biometric systems introduces new
privacy risks, for example identity theft or cross-matching.
These risks can be mitigated by applying template protection
techniques. An overview of the privacy risks and template
protection techniques are presented in [1]. A subclass of
template protection techniques is based on a transformation
of a biometric measurement to a binary vector as initial step.
Hence, they require the extraction of a binary representation
from the real- valued biometric sample. In the literature,
numerous quantization schemes have been proposed. They
vary from a simple method of extracting a single bit per
feature component [2][3] to a more complex, multiple bits
per feature component, extraction method [4][5][6][7]. If the
quantization scheme is subject-specific the information has to
be stored as auxiliary data for further use in the verification
phase.

One of the requirements of a template protection system
is that the stored auxiliary data ideally should not leak any
information about the binary representation or the biomet-
ric sample itself. Hence, the subject-specific quantization
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scheme stored as the auxiliary data should not reveal any
information that may facilitate an adversary on increasing
its success rate guessing the binary representation of the
biometric sample in order to obtain a false accept.

The work of [8] showed that the quantization schemes
proposed in [9] and [10] do indeed leak information
that could be exploited by an adversary. Their attack
model is to guess the secret key in an off-line mode by
using the auxiliary data and population statistics. They
use the guessing distance, consisting of the number of
attempts required for a correct guess, as the measure of
the degree of difficulty. Their results showed that the
guessing distance is much smaller than what is expected
based on the claimed security in [9] and [10], respectively.
We focus on the Detection Rate Optimized Bit Allocation
(DROBA) quantization scheme proposed in [7] that extracts
multiple bits per feature component. For each enrolled
subject the optimization algorithm allocates the optimal
number of bits per component while maximizing the overall
detection rate. The bit allocation strategy has to be stored
as auxiliary data for further use during the verification phase.

Contribution: Our contribution is threefold. Firstly,
we show that if the DROBA quantization scheme is not
correctly implemented it will leak information about the
binary representation of the biometric sample. Secondly,
we illustrate an attack method an adversary could use
in order to increase its success rate on reproducing a
binary representation that leads to a false accept. Instead
of using the guessing distance, we use the false-acceptance
rate (FAR, α) as the degree of difficulty. We consider
the template protection technique known as the helper-
data system [2][3][11]. However, any template protection
technique incorporating the DROBA quantization scheme
is susceptible to this vulnerability. Thirdly, we outline a
solution and propose an implementation guideline as a
remedy. The remedy significantly mitigates the information
leakage and guarantees a more private template.

The outline of this paper is as follows. In Section II we
briefly discuss the considered template protection system
with the DROBA quantization scheme. In Section III we
describe our experimental setup concerning a fingerprint
database, two feature extraction algorithms, and a testing pro-
tocol followed by the analysis of the information leakage due
to the improper implementation of the DROBA quantization
scheme. With use of the information leakage we demonstrate
an attack method in Section IV that significantly increases
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Fig. 1. Template protection scheme with DROBA implementation.

the false accept probability. As a remedy, we propose an
implementation guideline in Section V and show that it
significantly mitigates the information leakage. We finish
with the conclusions in Section VI.

II. TEMPLATE PROTECTION SCHEME WITH DROBA

The template protection technique under consideration is
known as the helper-data system [2][3] [11] and is portrayed
in Fig. 1. As input we have the real-valued feature vector
of dimension NF, f ∈ R

NF , which is extracted from
the biometric sample by the feature extraction algorithm.
Subsequently, a binary vector fB ∈ {0, 1}NB is extracted
by the DROBA quantization module and outputs the first
auxiliary data AD1 containing the allocation strategy. Many
template protection schemes are based on the capability of
generating a robust binary vector or key out of different
biometric measurements of the same subject. However, the
binary vector fB itself cannot be used as the key because it
is most likely not exactly the same in both the enrollment
and verification phase (f e

B 6= f
v
B), due to measurement noise

and biometric variability that lead to bit errors. The number
of bit errors between two binary vectors is also referred to
as the Hamming distance (HD) dH(f e

B, fv
B). Therefore, ECCs

are used to deal with these bit errors. As shown in Fig. 1, the
ECC and hash function are integrated using the well-known
Fuzzy Commitment scheme [12]. For the sake of coherence
we use the terminology proposed in [13].

Within the fuzzy commitment scheme we use the linear
block type ECC “Bose, Ray-Chaudhuri, Hocquenghem”
(BCH) that corrects random errors. The codeword C

corresponding to a randomly generated secret K is XOR-ed
with the f

e
B in order to obtain the auxiliary data AD2.

Furthermore, the hash of K is taken in order to obtain the
pseudo identity PI. In the verification phase this process
is reversed with help of the auxiliary data resulting into a
candidate pseudo identity PI∗. Only when dH(f e

B, fv
B) ≤ tc

then PI and PI∗ are equal, thus resulting into an accept.
Hence, the Fuzzy Commitment scheme can be considered as
a HD-classifier. More details about the template protection
system can be found in [2][3].

As mentioned previously, the binary vector fB is extracted
from the real-valued input vector f by the DROBA quanti-
zation scheme and algorithm proposed in [7]. The DROBA

algorithm has the flexibility to extract multiple bits from
a single component. The number of bits extracted from
component i is given by bi. The quantization schemes for
the bi ∈ {1, 2, 3} cases are shown in Fig. 2(a), (b), and (c),
respectively. For convenience we refer the bi = 1 case as b∗1,
and b∗2 and b∗3 for the bi = 2 and bi = 3 cases, respectively.
The 2bi quantization intervals are defined as such that the
occurrence of each interval is equiprobable with respect to
the total density, which we assume to be Gaussian distributed
pt ∼ N (µt, σ

2
t ) with mean µt and variance σ2

t . The total
density defines the observed variability of that component
across the whole population. Each quantization interval is
assigned a unique bi bits Gray code [14]. Furthermore, we
model the observed biometric variability and measurement
errors of the feature vector component of a specific subject
with the within-class density, which for simplicity is assumed
to be another Gaussian density pw ∼ N (µw, σ2

w). Note that
µw and σ2

w can be different for each component or subject.
From [7] the detection rate γ is defined as the probability that
the next measurement of the feature component will be in
the same quantization interval. For component i the detection
rate is computed as

γi(bi) =

∫

Qµw
(bi)

pw(v)dv, (1)

where Qµw
(bi) is the quantization interval corresponding

to µw and also depends on the number of bits bi to be
extracted. Thus, the detection rate is the part of the within-
class density within the quantization interval corresponding
to µw, portrayed by the shaded area in Fig. 2. For the case
where no bits are extracted (bi = 0) the detection rate is
defined as γi(0) = 1. Note that the detection rate decreases
when bi increases. Under the assumption that the NF feature
components are independent, the overall detection rate is
defined as

γt =

NF
∏

i=1

γi(bi). (2)

The DROBA algorithm has to create a binary vector of length
NB, hence it has to allocate NB bits across all components.
We also refer to NB as the bit-budget. With use of the
multiple (Ne) enrollment samples, the DROBA algorithm
analyzes the subject-dependent feature statistics (µw and σ2

w)
of each component and allocates the optimal number of
bits bi to component i with the constrains of maximizing
the overall detection rate γt and allocating the bit-budget
∑NF

i=1 bi = NB. The optimal allocation strategy is stored
as auxiliary data AD1 = [b1, b2, . . . , bNF

] for reuse at the
verification phase. The optimization is implemented using
the dynamic programming approach presented in [7].

III. EXPERIMENTS

If the DROBA implementation is correct, auxiliary data
AD1 should not leak any information about the enrolled
binary vector f

e
B. We will empirically analyze whether there

is any information leakage by means of a fingerprint database
and two feature extraction algorithms. We first discuss the
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2
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3
) bits are extracted.

experiment setup including the testing protocol followed by
the information leakage analysis.

A. Experiment Setup

1) Biometric Modality and Database: The database we
use is the MCYT (Ministerio de Ciencia y Tecnologı́a)
containing fingerprint images [15]. It contains 12 images of
all 10 fingers from Ns = 330 subjects. However, we limit
our dataset to the images of the right-index finger only.

2) Feature Extraction Algorithms: Two types of texture
based features are extracted from a fingerprint, namely
directional field and Gabor features. In order to compensate
for possible translations between enrolled and verification
measurements, a translation-only pre-alignment step is
performed during the feature extraction process. Such
pre-alignment requires extraction of the core point which
is performed according to the algorithm described in [16].
Around the core point we define a 17 × 17 grid with
eight pixels between each grid point. The following feature
extraction algorithms extract a feature value on each grid
point.

The first feature extraction algorithm is based on direc-
tional fields. A directional field vector describes the estimated
local ridge-valley edge orientation in a fingerprint structure
and is based on gradient vectors. The orientation of the ridge-
valley edge is orthogonal to the gradient’s angle. Therefore
a directional field vector that signifies the orientation of the
ridge-valley edge is perpendicular positioned to the gradient
vector. In order to extract directional field features from a
fingerprint the algorithm described in [17] is applied on each
grid point. The direction field features have a dimension of
NF = 578 and are referred to as the DF features.

The second type of extracted features are the Gabor
(GF) features, described in [18], where each grid point is

filtered using a set of four 2D Gabor filters at angles of
{

0, π
4 , π

2 , 3π
4

}

. The feature vector is the concatenation of the
modulus of the four complex responses at each grid point,
resulting into a feature vector dimension of NF = 1156.

3) Testing Protocol: The performance testing protocol
consists of randomly selecting 220 out of Ns subjects as the
training set and the remaining 110 subjects as the evaluation
set, which is referred to as the training-evaluation-set split.
To decorrelate the feature components we use the princi-
ple component analysis (PCA) and the linear discriminant
analysis (LDA) techniques, where the LDA transformation is
also used to obtain more discriminating feature components
from which we expect to extract more bits from. The PCA
and LDA transformation matrices are computed using this
training set, where NPCA is the reduced dimension after
applying the PCA transformation and NLDA is the reduced
dimension after applying the LDA transformation. To avoid
singularities we ensure that NLDA ≤ 220. Furthermore, the
template protection system parameters such as the quanti-
zation thresholds, used within the Bit Extraction module,
are also estimated on the training set. From the evaluation
set, 6 samples of each subject are randomly selected as
the enrollment samples while the remaining samples are
considered as the verification samples. This split is referred
to as the enrollment-verification split. The protected template
is generated using all the enrollment samples and compared
with each individual verification sample. When the verifi-
cation sample is from the same subject as of the protected
template, it is referred to as a genuine comparison, otherwise
it is an imposter comparison.

The training-evaluation-set split is performed five times,
while for each of these splits the enrollment-verification split
is performed 3 times. From each enrollment-verification split
we estimate the βtar (the false-rejection rate (FRR, β) at
the targeted FAR of αtar = 0.1%) and the equal-error rate
(EER) where the FAR is equal to the FRR. Note, that the
splits are performed randomly, however the seed at the start
of the protocol is always the same, hence all the splits are
equal for the performance tests at different settings. Hence,
the splitting process does not contribute to any performance
differences.

B. Analysis of the Information Leakage

First of all we empirically derive the {NPCA, NLDA, NB}
setting leading to the optimal performance in terms
of βtar. We evaluate the performance for the set-
tings of NPCA ∈ {50, 100, . . . , 300} and NB ∈
{50, 100, . . . , min(NPCA · bmax, 300)}, while the NLDA pa-
rameter is set to NLDA = min(NPCA, 220) as discussed in
Section III-A.3. The achieved βtar performance for the dif-
ferent {NPCA, NLDA, NB} settings are depicted in Fig 3(a)
and (b) for the DF and GF features, respectively.

For the DF features the optimal setting is achieved at
{150, 150, 100}, while at {200, 200, 100} for the GF fea-
tures. At the optimal performance settings, the error-rate (α
and β) curves with respect to the relative Hamming distance



50
100

150
200

250
300

0

100

200

300
0

0.02

0.04

0.06

0.08

 

 0.02

0.03

0.04

0.05

0.06

0.07

0.08

PSfrag replacements

NPCA [-]
NB [bits]

β
ta

r

50
100

150
200

250
300

0

100

200

300
0

0.02

0.04

0.06

0.08

 

 0.02

0.03

0.04

0.05

0.06

0.07

0.08

PSfrag replacements

NPCA [-]
NB [bits]

β
ta

r

(a) DF: βtar (b) GF: βtar

Fig. 3. The βtar for different {NPCA, NLDA, NB} settings for the DF
and GF features. The optimal performance for each case is indicated by
both the black and white star.
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cases,
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(RHD) between f
e
B and f

v
B is portrayed in Fig. 4(a) and (b)

for the DF and GF features, respectively. The βtar is 3.66%
for the DF features and 2.30% for the GF features, while the
EER is 1.49% and 1.29%, respectively.

If the DROBA implementation is correct, AD1 should
not leak any information about the enrolled binary vector
f
e
B. We know that AD1 is a concatenation of bi of each

feature component, hence knowing bi should not leak any
information about the actual bi allocated bits. The allocated
bits are equal to the Gray code assigned to the quantization
interval in which the sample mean µw of the subject is mea-
sured. This implies that the probability of each quantization
interval across the population should be equal irrespective of
bi. Hence, we analyze the probability of each quantization
interval, referred to as the probability mass function (pmf)
of Q, where we represent the quantization intervals by a
discrete random variable Q. For the b∗1 case the pmf is
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Fig. 5. The δ2 and δ3 for different settings of NPCA and NB for the DF
and GF features. The optimal performance setting is indicated with both the
black and white star.

uniform, however for the b∗2 and b∗3 cases a significantly
non-uniform pmf is observed, see Fig. 4(c-f). For the b∗2
case roughly 66% of the cases µw is found to be in the
outer quantization intervals for the DF features, while 80%
for the GF features. For the b∗3 case it is around 87% for
the DF feature and around 96% for the GF features. Due to
the cyclic nature of Gray codes, the binary codes assigned
to the outer quantization intervals differ in only a single bit.
Hence, if multiple bits are extracted it is an advantage for the
adversary to randomly select the binary code corresponding
to one of the outer quantization intervals when guessing the
binary vector f

e
B.

In order to illustrate at which {NPCA, NLDA, NB} settings
the most non-uniform pmf of Q is obtained, we define δ

as the difference between the average probability of the
two outer quantization intervals and the average probability
of the remaining inner intervals. Hence, the closer δ is to
zero the more the pmf is uniform and its maximum value
is 1

2 . Furthermore, δ2 is defined for the b∗2 case and δ3 is
for the b∗3 case. The δ values for the different settings are
depicted in Fig. 5. From the figures we can observe that
the non-uniformity is stronger when NB decreases or NPCA

increases, which corresponds to the cases where the DROBA
algorithm has more freedom to allocate the NB bits. The
maximum observed values are δ2 = 0.256 and δ3 = 0.458
of the DF features and δ2 = 0.360 and δ3 = 0.485 for
the GF features. The pmf is close to uniform when NB ≈
bmaxNPCA, which is the case where the maximum number
of bits is mostly extracted from each component. Note that
at the optimal setting (indicated by the black and white star)
the non-uniformity is close to its strongest.

Furthermore, we define p(b∗x) to be the average probability
that a bit is derived from a b∗x case. The p(b∗x) probabilities
are different for each {NPCA, NLDA, NB} setting as shown
in Fig 6 for the p(b∗2) and p(b∗3) cases for the DF and GF
features. Because the sum of the probabilities is one, the
probability p(b∗1) can be derived from p(b∗2) and p(b∗3). The
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figures show that if NB increases, more bits are extracted
from the b∗3 case and less from the b∗1 case. The number of
bits extracted from the b∗2 case stays relatively stable. For
the optimal setting we have the probabilities p(b∗1) = 0.345,
p(b∗2) = 0.247, and p(b∗3) = 0.408 for the DF features, and
p(b∗1) = 0.304, p(b∗2) = 0.282, and p(b∗3) = 0.414 for the GF
features, respectively. Note that the majority of the bits are
extracted from a multiple-bits extraction case, from which we
know that information is leaked as shown in Fig. 5. More
precisely, the largest portion of bits are extracted from the
b∗3 case, which leaks the most information.

IV. EXPLOITATION OF THE LEAKAGE

In the previous section we have shown that the information
leakage from the auxiliary data AD1 about the enrolled bi-
nary vector f

e
B is significant even at the optimal performance

setting. However, it does not show what the actual practical
advantage is for the adversary. In this section we propose
a simple method the adversary could use in order to take
advantage of the leaked information.

We consider the attack scenario where the adversary has
the protected template, which is the collection of public
auxiliary data AD1, AD2 and PI, of an unknown subject and
tries to obtain a false accept by the biometric system. As
defined in [19] we focus on the attack level of “overriding
the feature extraction process”. A possible attack method
would be a dictionary attack, where a random image sample
from a publicly available fingerprint database is selected, its
feature vector f is extracted and send to the next modules as

TABLE I
THE p(b∗

1
), p(b∗

2
), p(b∗

3
), δ2 , δ3 VALUES FOR THE DF AND GF

FEATURES.

Features EER [%] βtar [%] p(b∗
1
) p(b∗

2
) p(b∗

3
) δ2 δ3

DF 1.49 3.66 0.345 0.247 0.408 0.1706 0.4106
GF 1.29 2.30 0.304 0.282 0.414 0.3136 0.4727
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Fig. 7. The error-rate curves pmfs for the (a) DF and (b) GF features when
using the proposed attack at the imposter comparisons.

if it is authentic. The probability of an accept is equal to the
FAR of the template protection system, because the imposter
comparisons in fact do represent a dictionary attack. In our
work, the targeted FAR is αtar = 0.1%, thus on average

1
αtar

= 1000 attempts are expected in order to obtain a
successful accept.

In our proposed attack method we also consider the
DROBA Quantizer module to be compromised. Hence, the
binary vector f

e
B is generated and send to the next module.

The leaked information can be exploited in the following
way. We change the DROBA Quantizer module as such that
if multiple bits are extracted (the b∗2 and b∗3 cases indicated by
AD1), we randomly select one of the two outer quantization
intervals and return the corresponding Gray code. Hence, if
AD1 indicates that it is a b∗2 case, then either quantization
intervals 1 or 4 are selected with 50% probability and when
it is a b∗3 case the quantization intervals 1 or 8 are selected
at random.

The attack results are given by the error-rate curves in
Fig. 7(a) and (b) for the DF and GF features, respectively.
Note that the attack is only carried out on the imposter
comparisons and hence only the FAR curves are influenced.
The original FAR is indicated with the “Orig” suffix, which is
previously shown in Fig. 4 and represents the case where the
attacker plainly selects a random sample from the database
for the verification comparison without using any available
knowledge and is the common FAR reported in the literature.
For the attacks including the knowledge of the information
leakage, we first study the method where only the informa-
tion leakage from the b∗2 cases are exploited, hereafter we
consider the method where only the b∗3 cases are exploited,
and as the last method both the b∗2 and b∗3 cases are exploited.
These attack methods are indicated with the suffix “b∗2”, “b∗3”,
and “All”, respectively.

The operating point of a biometric system is determined
using the α-Orig curve. The closest operating point top where
the FAR reaches the targeted αtar = 0.1% without exceeding

TABLE II
THE OPERATING POINT top AT αtar OF THE ORIGINAL CASE AND THE

FAR OBTAINED AT THE DIFFERENT ATTACK SCENARIO.

Orig case FAR at top at attack scenario
Features top [RHD] ≈ αtar [%] b∗

2
[%] b∗

3
[%] All [%]

DF 0.22 8.71 · 10−2 8.23 · 10−2 1.89 5.78
GF 0.23 6.56 · 10−2 1.84 · 10−1 1.97 7.75



it, is portrayed with the solid vertical line. The operating
point is at a RHD = 0.22 with α = 8.71 · 10−2% for the
DF features and RHD = 0.23 with α = 6.56 · 10−2% for
the GF features. The FAR obtained at the operating point
for the different attack methods are given in Table II. The
results show that α-b∗3 is larger than α-b∗2, which confirms
the fact that the information leakage of the b∗3 cases is
significantly larger than of the b∗2 cases. Furthermore, the
advantage of the adversary is further increased by using the
information leakage of both cases, because α-All is even
larger. Hence, the largest achieved α is 5.78% for the DF
features and 7.75% for the GF features. For the DF features
the FAR has increased with a gain factor Gα = 66, while
for the GF features Gα = 118. Thus, for both features
the adversary gain is around two orders of magnitude. The
necessary effort for the adversary to obtain an accept has
significantly decreased from on average 1148 attempts to 17
attempts for the DF features and from 1524 to 13 for the GF
features. Hence, the gain factor Gα can be seen as the gain
of the adversary by exploiting the information leakage.

V. AN IMPLEMENTATION GUIDELINE AS REMEDY

In the previous section we have shown that if no precaution
is taken, an adversary with knowledge of the DROBA im-
plementation could significantly increase its false-acceptance
rate with two orders of magnitude by exploiting the infor-
mation leakage embedded in the auxiliary data AD1 of the
protected template. In this section we will address the cause
of the information leakage and propose an implementation
guideline for mitigating the leakage.

A. The Cause
Recall the fact that the DROBA algorithm is allowed

to extract multiple bits from all feature components of f ,
irrespective of its discriminating power or quality. Using the
Gaussian model for describing the feature distribution of f

(see Section II), we can analyze the detection rate at different
subject’s mean µw for the b∗1, b∗2, and b∗3 cases and at different
qualities of the feature components. As a measurement of
the feature quality we use the Gaussian channel capacity or
entropy HG as defined in [20]

HG = 1
2 log2

(

1 +
σ2

b

σ2
w

)

, (3)

which only depends on the ratio σ2

b

σ2
w

and where σ2
b is the

variance of the between-class Gaussian density pb describing
the variability of the mean µw across the population and σ2

w

is the variance of the within-class Gaussian density pw.
Assuming the total density pt to have a unit variance and

using σ2
t = σ2

w + σ2
b we can rewrite HG as

HG = 1
2 log2

(

1 +
σ2

t
−σ2

w

σ2
w

)

= 1
2 log2

(

1
σ2
w

)

= − log2(σw).

(4)

Hence, feature components with HG = 1 have a within-class
standard deviation of σw = 1

2HG
= 1

2 , similarly for the cases
HG = [2, 3, 4] we have σw =

[

1
4 , 1

8 , 1
16

]

, respectively.
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Fig. 9. The probability of selecting each quantization interval leading to
a detection rate γ larger than a threshold γthr.

Using (1) the detection rate γ for different values of µw

for different b∗x cases and feature qualities HG ∈ {1, 2, 3, 4}
are shown in Fig. 8. Note that the quantization intervals are
fixed because of the unit variance assumption of pt. The
figures show that for the b∗2 and b∗3 cases the maximum
detection rate γ for the inner quantization intervals are much
lower than for the outer intervals, because the width of the
inner quantization intervals are much smaller in order to be
equiprobable with respect to the total density. The detection
rate difference between the inner and outer quantization bins
depend on the feature quality HG and on the b∗x case. A
larger γ difference is observed for smaller HG values and
when more bits are extracted.

As discussed in Section II, the DROBA algorithm maxi-
mizes the overall detection rate γt as given by (2). Due to the
optimization criteria, the DROBA algorithm tends to allocate
multiple bits mostly for the cases where the subject’s mean
µw is in the outer quantization intervals due to the larger γ

values. This behavior is stronger for the lower quality feature
components because γ is significantly larger for the outer
quantization intervals as shown in Fig. 8.

We illustrate the non-uniformity effect introduced by the
DROBA algorithm with the following simplified case. Con-
sider the case where there are three feature components of
equal quality of HG = 2 from which four bits (NB = 4) have
to be extracted and only two bits are allowed to be extracted
from each component (b∗2 case). Assume, the first component
analyzed has a detection rate of γ1 = 0.8. The probability
that the next component has a detection rate γ2 larger than
threshold γthr = γ1 is portrayed by the shaded area of the
pt density shown in Fig. 9 which is Pr(γ2 > γthr) ≈ 0.5.
Note that the probability of each quantization interval is not
equiprobable. For the outer quantization intervals we obtain
p(q1) = p(q4) = 0.38, while for the inner quantization
intervals p(q2) = p(q3) = 0.12. Hence the difference is δ2 =
0.26. If it turns out that γ2 > γ1, then when analyzing the
third component the threshold becomes γthr = γ2. Because
of the larger γthr for the third component, the probability
of obtaining a higher γ2 in one of the quantization intervals
becomes more uniform and δ2 is thus larger. Note that this
effect is stronger for lower quality feature components with
a smaller HG or when more bits are extracted.
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Fig. 8. The detection rate γ for different values of µw for the (a) b∗
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3
case with different feature qualities HG ∈ {1, 2, 3, 4}.

B. The Remedy: Restricting DROBA

As remedy we propose to restrict the DROBA algorithm.
The maximum number of bits bmax that the DROBA algo-
rithm is allowed to extract from a component should depend
on the overall feature quality of the corresponding compo-
nent. For each component, we compute the overall feature
quality using (3) where we take the average of the subject
dependent within-class variance across the population. We
introduce the thresholds δHG,2 and δHG,3, where δHG,2

defines the minimum overall feature quality requirement of
the component for extracting two bits and similarly δHG,3

for the case of extracting three bits. We empirically estimate
the optimal threshold settings that minimize the information
leakage, i.e. induce δ2 and δ3 to be close to zero. The δ2 and
δ3 values for different δHG,2 and δHG,3 settings are shown in
Fig. 10 for both features. For the δ2 case we obtain δ2 ≈ 0 by
setting δHG,2 = 2.35 for the DF features and δHG,2 = 2.95
for the GF features. However, for the δ3 case it does not reach
zero. By increasing δHG,3 even further has the consequence
that there are only a few b∗3 cases, even less than one case per
subject for the GF features as shown by Fig. 10(f). Eventually
we select δHG,3 with the biggest drop in δ3, which is at
δHG,3 = 4.05 for the DF features and δHG,3 = 4.15 for the
GF features.

We implement the proposed remedy to the DROBA algo-
rithm and evaluate the performance and information leakage
on the optimal performance setting obtained in SectionIII-B
of {150, 150, 100} and {200, 200, 100} for the DF and GF
features, respectively. The pmf of Q for the b∗2 and b∗3 cases,
and the error-rate curves are shown in Fig. 11. The pmf of Q

for the b∗2 case for both the DF and GF features are very close
to uniform, while for the b∗3 case they tend to become more
uniform. Because the threshold δHG,3 was limited, otherwise
no bits would have been extracted from a b∗3 case, the pmf
of Q is not uniform.

Comparing the error-rate curves, we observe that the β-
Remedy curve has shifted to the right compared to the
original curve, β-Orig. However, the α-Remedy curve has
also shifted to the right with the consequent that the EER
and βtar values are very similar to the original case, namely
1.76% and 3.87% for the DF features, and 1.27% and 2.17%
for the GF features. The FRR curve shift can be caused
by the fact that the DROBA algorithm is restricted by the
proposed remedy. The allocation strategy may then be sub-
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) for different settings of δHG,2 and δHG,3

for the DF and GF features.

optimal for the performance. The shift of the FAR curve can
be explained in the following way. Note that the variance
of pt is larger during the verification phase, because there
are less verification samples than enrollment samples, while
the quantization intervals are defined equiprobable on the
pt during the enrollment phase. Hence, when randomly se-
lecting fingerprint images at the verification comparisons the
outer quantization intervals are always more probable. When
using the original DROBA algorithm, the outer quantization
intervals during the enrollment phase are also more probable
(the information leakage we have shown). Consequently,
there are less bit errors at the imposter comparisons leading
to a larger FAR at the same operating point. In other
words, it is easier to find a random fingerprint image that
leads to an accept. When applying the DROBA remedy, the
quantization intervals during the enrollment phase become
more equiprobable, consequently eliminating the previously
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mentioned effect, therefore decreasing the FAR at the same
operating point. Furthermore, the α-Attack obtained when
using the proposed attack method did not increase with
respect to α-Remedy, it has actually decreased. Hence, the
adversary does not gain any advantage by using the proposed
attack when the DROBA is correctly implemented. The
decrease of the α-Attack can be explained by the fact that
the attack method does not consider the correlations between
the feature components when randomly guessing one of the
outer quantization intervals for the b∗2 and b∗3 cases.

VI. CONCLUSION

In this work we have shown that great care has to be taken
when designing an DROBA quantization scheme in order to
guarantee that its auxiliary data does not leak any information
about the binary representation of the biometric sample. If
no care is taken, the information leakage can be significant
and an adversary is able to exploit this information. We have
shown that the adversary is able to increase its success rate
of obtaining an false accept by two orders of magnitude.

Fortunately, there is a solution to mitigate the information
leakage. We proposed a remedy which in fact is a guideline
on how to restrict the allocation freedom of the DROBA
algorithm. The maximum allowed bits to be allocated to
each component has to depend on the overall feature quality
across the population of that component. We empirically
estimated the minimum overall feature quality boundaries for
allocating two or three bits, respectively. Given the biometric
database and the feature extraction algorithms, the proposed

remedy significantly reduced the information leakage without
influencing the performance in terms of the EER or the FRR
at the targeted FAR of the biometric system.
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