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Emotion Recognition During Speech Using Dynamics of Multiple
Regions of the Face

YELIN KIM and EMILY MOWER PROVOST, University of Michigan, Ann Arbor

The need for human-centered, affective multimedia interfaces has motivated research in automatic emotion
recognition. In this article, we focus on facial emotion recognition. Specifically, we target a domain in which
speakers produce emotional facial expressions while speaking. The main challenge of this domain is the
presence of modulations due to both emotion and speech. For example, an individual’s mouth movement
may be similar when he smiles and when he pronounces the phoneme /IY/, as in “cheese”. The result of
this confusion is a decrease in performance of facial emotion recognition systems. In our previous work,
we investigated the joint effects of emotion and speech on facial movement. We found that it is critical to
employ proper temporal segmentation and to leverage knowledge of spoken content to improve classification
performance. In the current work, we investigate the temporal characteristics of specific regions of the face,
such as the forehead, eyebrow, cheek, and mouth. We present methodology that uses the temporal patterns
of specific regions of the face in the context of a facial emotion recognition system. We test our proposed
approaches on two emotion datasets, the IEMOCAP and SAVEE datasets. Our results demonstrate that
the combination of emotion recognition systems based on different facial regions improves overall accuracy
compared to systems that do not leverage different characteristics of individual regions.
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1. INTRODUCTION

Emotion is a central part of human communication. It governs how we interact with
each other, and how we respond to and perceive the outside world. Emotion is ex-
pressed across multiple modalities, such as facial, vocal, and bodily expressions. Fa-
cial cues include important emotion-related expressions, such as smiling or frowning.
However, these movements may occur with and be modulated by speech-related move-
ments [Kim and Mower Provost 2014]. For example, when a person either smiles or
says the word “cheese,” regions of the face (e.g., the mouth) may be modulated similarly.
However, the facial expressions in the latter example may be caused by speech-related
movement corresponding to the /IY/ sound. This renders challenging to differenti-
ate between emotions based solely on facial movement. Therefore, it is essential that
systems tease apart these two sources of facial movement to improve facial emotion
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recognition performance. In this work, we study how to represent and analyze dynamic
facial movement, in the presence of speech, in order to improve the prediction accuracy
and interpretability of facial emotion recognition systems.

The majority of previous work in facial emotion recognition has focused on facial
expressions produced when an individual is not speaking (e.g., a person smiling) [Shan
et al. 2009; Black and Yacoob 1997]. However, an increasing body of literature has
analyzed facial movement that cooccurs with speech [Bevacqua and Pelachaud 2004;
Metallinou et al. 2010; Mariooryad and Busso 2013]. These studies demonstrated the
importance of reducing the effect of speech-related variability on facial movement. The
cited works decreased this effect by implementing phoneme-dependent emotion classi-
fication systems, where a phoneme is defined as the smallest unit in a given language.
Phoneme-dependent modeling often includes two key modules: (i) segmenting visual
cues into phoneme-level units (phoneme segmentation) and (ii) classifying emotion
within groups of similar visemes, visual cues associated with phonemes (viseme-group
classification). The efficacy of this technique is very clear. However, the challenge is
the need for a phonetic transcript to both identify phoneme boundaries and to assign
phoneme content. In this work, we explore the first challenge: the identification of
phoneme boundaries and ask whether we can find other segmentation strategies for
facial movement.

In our previous work, we proposed an unsupervised segmentation strategy to circum-
vent this requirement [Kim and Mower Provost 2014]. We focused on explicit modeling
of facial movements, represented as three-dimensional facial point positions, rather
than facial appearance features (e.g., Local Binary Patterns [Shan et al. 2009]). Al-
though the facial appearance features have also been effectively utilized in facial emo-
tion recognition studies [Zhao and Pietikainen 2007; Shan et al. 2009; Dhall et al. 2011],
it is difficult to reliably extract meaningful features when frontal face videos/images are
not available or occluded. We investigated both the application of sliding windows in ad-
dition to segmentation using the natural temporal dynamics of the underlying signal.
Sliding-window segmentation is a strategy commonly employed in emotion recogni-
tion studies [Mower and Narayanan 2011; Sandbach et al. 2011; Mower Provost 2013;
Nicolle et al. 2012]. In this strategy, the facial data are segmented into smaller units,
all with the same duration. However, this method is not based on the underlying dy-
namics of the signal and may miss important patterns in the signal. Further, previous
work has demonstrated that the use of segmentation based on fixed length windows
performs more poorly than phoneme segmentation [Mariooryad and Busso 2013]. To
overcome this limitation, our previous work proposed an automatic, unsupervised seg-
mentation method based on mouth movement, which utilizes a trajectory segmentation
algorithm proposed by Lee et al. [2007] for trajectory segmentation and clustering. The
algorithm was motivated by Minimum Description Length (MDL) principle, widely
used in information theory Our proposed method does not require a phonetic tran-
script and achieved comparable performance to phoneme segmentation when used as
a component of a facial emotion recognition system [Kim and Mower Provost 2014].
However, the limitations of our previous study were two-fold: (i) the proposed methods
were tested on a single dataset and (ii) the varying temporal characteristics of different
facial regions were not explored.

In the presented work, we assess the utility of unsupervised segmentation ap-
proaches by testing our method using an additional database to understand the im-
pact of variable-length segmentation (i.e., unsupervised MDL-based segmentation and
phoneme segmentation) and viseme-group classification on facial emotion recognition
systems. We discuss the specific effects of the proposed segmentation and classifi-
cation strategies across two different motion-capture datasets recorded in different
settings: read speech (SAVEE) and two-person conversation (IEMOCAP). We found
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that when using viseme-group classification it is advantageous to use variable-length
segmentation compared to fixed-length segmentation. Further, we analyze the impact
of individual facial regions. The results demonstrate that we can increase system-level
performance by changing how we integrate information from the facial regions. The
results strengthen our argument that both variable-length segmentation and viseme-
group classification are critical for facial emotion recognition systems.

2. RELATED WORK

2.1. Audio-Visual Emotion Recognition in Multimedia

Multimedia emotion recognition studies have gained in popularity due to the growing
prevalence of natural human-machine interfaces and the increasing need for automatic
behavior assessment. Audio-visual emotion recognition systems utilize a wide range of
signals from speech, facial, and body expressions to visual descriptors of multimedia
data. Surveys of recent emotion recognition systems can be found in [Narayanan and
Georgiou 2013; Hussain et al. 2014; Schuller et al. 2013; Cambria et al. 2013; Calvo
and D’Mello 2010; El Ayadi et al. 2011; Gunes et al. 2011; Kleinsmith and Bianchi-
Berthouze 2013]. In this article, we highlight the emotion recognition literature focused
on speech and facial features. We review emotion recognition systems that use unimodal
(i.e., only using speech or facial features) and multimodal (i.e., using both speech and
facial features) data.

2.1.1. Unimodal Emotion Recognition. Speech is one of the most important methods of
human communication [El Ayadi et al. 2011]. The progress made in speech recognition
has sparked new research directions into methods to extract and analyze the emotional
content from speech [Schuller et al. 2013; Lee and Narayanan 2005; Mower et al. 2009;
Schuller et al. 2011; Metallinou et al. 2013]. The studies include investigations into
speech features and feature selection methods [Wu et al. 2011; Gharavian et al. 2012],
proper units of analysis [Koolagudi et al. 2011; Gold et al. 2011], and classification
methods [Lee et al. 2011; Garg et al. 2013].

Emotion has also been modeled using visual cues. The goal is to automatically ex-
tract and analyze salient visual information. The earlier work focused on automatic
facial expression recognition, since facial expressions arguably contain the most dis-
criminative visual features for emotion recognition [Wan and Aggarwal 2014; Pantic
and Bartlett 2007]. Recent studies have focused on inferring emotion based on salient
visual cues, not only including facial expression features, but also other types of vi-
sual features, such as aesthetic features (introduced by Bhattacharya et al. [2013]), to
understand perceived emotions [Jou et al. 2014; Chen et al. 2014].

2.1.2. Multimodal Emotion Recognition. Researchers found that the joint use of speech and
facial cues can improve overall accuracy in emotion recognition. Many studies have
investigated how to combine these two modalities and how to build a classification
system that could effectively fuse this information [Kächele et al. 2014; Meng and
Bianchi-Berthouze 2011; Sánchez-Lozano et al. 2013; Savran et al. 2012].

Savran et al. [2012] proposed an affect estimation method that combined audio,
facial, and lexical information using particle filtering. The authors demonstrated that
the predictions from each modality could be effectively combined as measurement vari-
ables in particle filter methods. Unlike other Bayesian filtering methods, (e.g., Kalman
filtering), the advantages of particle filtering comes from its reduction in assumptions
of linearity or Gaussianity. Meng et al. proposed a multistage emotion recognition sys-
tem using Hidden Markov Models (HMMs) [Meng and Bianchi-Berthouze 2011]. The
multistage system showed significant performance gain over a single-stage alterna-
tive. Kächele et al. [2014] presented a hierarchical emotion and depression recognition
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system that trained ensembles of weak learning algorithms and fuses the audio and
facial data using a Kalman filter at the decision level. The International Audio/Visual
Emotion Challenge (AVEC) has encouraged the analysis of natural, continuous, emo-
tion prediction. It has also highlighted medical applications, particularly in depression.
The challenge participants have demonstrated different methods in multimedia pro-
cessing and machine learning techniques [Schuller et al. 2011].

2.2. Temporal Segmentation of Audio-Visual Data

Audio-visual data are often temporally segmented into smaller units to obtain more
meaningful features [Schuller and Rigoll 2006; Koolagudi et al. 2011], to build dynamic
classifiers [Mower and Narayanan 2011; Sandbach et al. 2011], and to find semantically
meaningful regions [Rui et al. 2000; Bigot et al. 2008; Arons 1994; Koolagudi et al.
2011].

Rui et al. studied an automatic method to extract scene highlights for TV baseball
games [Rui et al. 2000]. They used speech features to highlight the videos. They iden-
tified the ‘excited speech’ of game announcers and game-specific sounds (e.g., baseball
hits) and fused the information using probabilistic frameworks to enhance highlight
detection. Bigot et al. proposed a method to find semantically salient regions in audio-
visual data using either audio, video, or semantic content [Bigot et al. 2008]. Lee et al.
[2007] presented a trajectory segmentation and clustering method based on MDL. The
method automatically segments time-series data based on rapid changes, and clusters
the segments using density-based clustering. The trajectory segmentation is based on
two types of line-segment distance measures: perpendicular and angle distance. To
reduce the complexity, they proposed an approximate solution to find rapidly changing
points. This algorithm was used to identify emotionally salient regions of audio-visual
speech [Mower Provost 2013].

Koolagudi et al. [2011] studied methods to segment speech for emotion recognition
based on the prosody of speech segments. They used words and syllables as units
of the segments. They found that the system-level performance using prosody-based
speech segments was not high, but that the performance significantly improved when
combined with spectral features. A Comprehensive survey on phoneme segmentation
was conducted in Toledano et al. [2003]. The studies have mainly focused on speech
data. In speech recognition, sub-word units such as phonemes are often used since
word-level or whole-word models are challenging to build due to large vocabulary sizes
in natural language [Gold et al. 2011]. Several recent works have approached phoneme
segmentation problems as well [Kalinli 2012; Qiao et al. 2008; Keshet et al. 2005].
The work of Keshet et al. [2005] tackles phoneme alignment based on discriminative
learning, similar to SVM. The work of Qiao et al. [2008] presents an unsupervised
method for phoneme segmentation.

2.3. Phoneme or Viseme-Dependent Modeling

Systems that employ phoneme or viseme-dependent modeling seek to disentangle how
speech and emotion modulate speech and facial movement. These studies are pred-
icated on the knowledge that groups of phonemes can be modulated differently by
the same emotion [Lee et al. 2004; Busso and Narayanan 2007]. These systems have
been demonstrated effective for emotion classification [Mariooryad and Busso 2013;
Metallinou et al. 2010]. Phoneme-based modeling has also been demonstrated to be
effective in cross-corpora experiments. For instance, Vlasenko et al. [2014] found that
emotion classification systems that use phonetic transcripts obtained from a phoneme-
level bigram language model can increase the cross-corpora classification accuracy.

In particular, researchers found that facial cues are difficult to model when fa-
cial movement is modulated by both emotion and speech production [Kim and
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Mower Provost 2014; Mariooryad and Busso 2013; Metallinou et al. 2010]. These stud-
ies have approached these challenges by building emotion classification systems that
train classifiers on specific groups of phonemes with similar facial movement. This
construction allows for a focus on modulations due to emotion, rather than due to ar-
ticulation and emotion. Metallinou et al. first conducted phoneme-dependent modeling
on the IEMOCAP database for facial emotion recognition [Metallinou et al. 2010]. They
presented an emotion classification system, based on Hidden Markov Models (HMM),
that separates the classifiers into 14 similar viseme groups, the groups also used in
our study. The highest unweighted accuracy they achieved was 55.74%, when using
viseme-specific HMMs. Mariooryad and Busso [2013] studied two types of methods
to reduce or compensate for speech variability in facial emotion recognition: feature-
level and model-level compensation. The feature-level method normalizes phoneme-
dependent patterns in facial movement using the whitening transformation to compen-
sate for the difference in phoneme-dependent patterns in the features. The model-level
method separates emotion classifiers into viseme-dependent groups. The study found
that both the feature and model-level compensation methods improve overall perfor-
mance. In particular, their results showed a larger performance gain for the model-level
method, compared to the feature-level method. The previous studies demonstrated
the benefits of phoneme segmentation and viseme-group classification. However, an
open question remains in how similar levels of accuracy can be achieved without seg-
menting based on phoneme transcript and whether phonemes are the correct unit for
segmentation.

3. AUDIO-VISUAL DATABASES

In this work we use the IEMOCAP audio-visual emotion database [Busso et al.
2008], also used in [Mariooryad and Busso 2013; Metallinou et al. 2010; Kim and
Mower Provost 2014], and the SAVEE dataset [Haq and Jackson 2010]. Both of
the databases contain audio, visual, and motion capture data. Further, both provide
phoneme-level transcripts, obtained by force aligning the transcript to the acoustic
data.

3.1. IEMOCAP Database

The IEMOCAP database [Busso et al. 2008] contains approximately 12 hours of dyadic
conversations between five pairs of actors (each pair contains one male and one female).
This database has been widely used in the field of automatic audio-visual emotion
recognition [Metallinou et al. 2012; Kipp and Martin 2009; Mower et al. 2011; Lee
et al. 2009]. Each session contains both acted and improvised scenarios. The data
are captured using audio-visual cameras and a nine-camera Vicon recoding system,
providing 3-D marker coordinates at 120 frames per second (fps). The data include 53
motion capture markers on the actor’s face. We use a subset of 46 markers, as shown in
Figure 1. The five nose markers are excluded due to their limited movement, and the
two eyelid markers are also excluded due to their frequent occlusions, as in [Metallinou
et al. 2010; Kim and Mower Provost 2014].

The data were evaluated per utterance (i.e., a turn that an actor is actively speak-
ing) by human evaluators using both categorical and dimensional labeling schemes.
The dimensional attributes include valence (positive vs. negative), activation (calm vs.
excited), and dominance (passive vs. dominant). They were evaluated by at least two
evaluators. The categorical labels include Anger, Happiness, Neutrality, Sadness, Ex-
citement, Surprise, Frustration, Fear, Disgust, Other. They were evaluated by at least
three evaluators. We use utterances with majority voted categorical labels from the
set: Anger, Happiness+Excitement, Neutrality, Sadness, in line with previous studies
[Mariooryad and Busso 2013; Metallinou et al. 2010]. There are 43.0 ± 26.2 angry,
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Fig. 1. Positions of face markers and six face regions: chin (CHI), forehead (FH), cheek (CHK), upper eyebrow
(UEB), eyebrow (EB), and mouth. The images are from the IEMOCAP (left, [Busso et al. 2008]) and SAVEE
datasets (right, [Haq and Jackson 2010]).

91.5 ± 37.5 happy, 44.6 ± 27.4 neutral, and 51.8 ± 28.1 sad utterances per speaker, to-
taling 3,060 utterances over all speakers. The mean length of an utterance is 4.73±3.34
seconds. Utterances have an average of 0.75 seconds of silence at the beginning of an
utterance and 0.86 seconds at the end of an utterance.

3.2. SAVEE Database

The SAVEE dataset contains read speech of four male British English speakers, elicit-
ing six emotions: Anger, Disgust, Fear, Happiness, Sadness, and surprise. Each emotion
was expressed in 15 phonetically balanced sentences, and Neutrality in 30 sentences.
This results in 480 utterances in total. In our work, we use four classes for consistency
with the IEMOCAP database: Anger, Happiness, Neutrality, and Sadness, resulting
in 300 utterances in total. The average length of an utterance within the subset is
3.85 ± 0.33 seconds. The utterances have an average of 0.51 seconds of silence at the
beginning of an utterance and 0.55 seconds at the end of an utterance. The facial data
include 2D coordinates of 60 markers on the forehead, eyebrows, cheeks, lips and jaw
(Figure 1). The sampling rate was 44.1 kHz for audio, and 60 fps for video.

The provided emotion labels of the SAVEE dataset are the labels given to the actors,
rather than the intended target emotion (annotated labels were not available). This
is different from IEMOCAP, in which we use emotion labels derived from perceptual
evaluations. However, the authors presented a high level of agreement between the
intended target emotion and perceived emotion: 441 out of 480 total sentences in the
data were perceived as the intended target emotion by at least 8 out of 10 annotators,
indicating good agreement between the actor’s intended emotion and the annotator’s
perception [Haq and Jackson 2010]. Additional differences between the SAVEE and
IEMOCAP databases include: (i) 2-dimensional vs. 3-dimensional motion capture data,
(ii) motion-capture frame rate of 60 fps vs. 120 fps, (iii) four speakers, each with scripted
utterances, vs. ten speakers, each embedded within a dyadic interaction.

We use a subset of the 60 motion capture markers to have a configuration similar to
the IEMOCAP database. The subset totals 46 markers (Figure 1). Further, we address
the difference in fps between the two databases by interpolating the SAVEE motion
capture data using cubic spline interpolation (described in Section 4.1) to increase the
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Fig. 2. Our system uses facial motion-capture data. It investigates three segmentation methods and explores
the benefit of using knowledge of the spoken content of each segment. The system estimates the emotion
label by estimating the similarity of the movement in each segment to movement observed in specific emotion
classes. Finally, it combines the emotion estimates provided by the individual facial regions to infer a final
estimated emotion label.

Table I. Summary of the Abbreviations Associated with
the Six Approaches Tested in This Work

Segmentation
Phon MDL Win

Classification
General Gen/Phon Gen/MDL Gen/Win

Viseme-group VG/Phon VG/MDL VG/Win

frame rate to 120 fps. We discuss the impact of this interpolation in Section 4.1. Finally,
we scale the SAVEE motion capture data to have the same minimum and maximum
values as in the IEMOCAP database.

4. METHODOLOGY

The overview of our proposed method is shown in Figure 2. We first separate the
tracked marker positions into six facial regions to capture the facial region-specific
characteristics in emotion expression (Section 4.1). We then temporally segment the
data using three segmentation methods (fixed-length, phoneme, and MDL-based;
Section 4.2) and measure the time-series similarity between the identified segments
using Dynamic Time Warping (DTW). We calculate the distribution of emotion classes
over each segment and use this information to estimate the emotion class of the seg-
ment. We aggregate the segment-level emotion estimates over the utterance to estimate
the utterance-level emotion, described in detail in Section 4.4. During classification,
we explore the benefit of using viseme-group classification, given each of the three
segmentation strategies. This allows us to understand the impact of using knowledge
of the viseme group in classification. We refer to classification as general (contrasted
with viseme-group) when we do not take the knowledge of viseme information into
account, described in detail in Section 4.3. Finally, we investigate different methods to
combine the emotion evidence derived from the individual facial regions, described in
Section 4.5.

In our experiments, we test six approaches that use combinations of different
temporal segmentation and classification methods, originally proposed in Kim and
Mower Provost [2014]. The two rows in Table I describe the classification scheme: gen-
eral and viseme-group classification, and the three columns describe the segmentation
scheme: phoneme, MDL, and fixed-length sliding window.

4.1. Motion Capture Preprocessing

Both the IEMOCAP and SAVEE datasets provide facial markers that are (1) trans-
lated so that a nose tip becomes the origin of each frame, and (2) rotated to com-
pensate for head movement. In addition, we perform mean-normalization on the
facial data of individual speakers to mitigate their different facial configurations. The
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mean-normalization method was suggested in Metallinou et al. [2010] and used in our
previous work [Kim and Mower Provost 2014]. We compute the global mean value over
all speakers for each marker coordinate and scale each individual speaker’s data to
make the mean of each speaker to be the same as the global mean.

We divide the facial motion capture data into six facial regions to study region-
specific facial movements, including: chin, forehead, cheek, upper eyebrow, eyebrows,
and mouth, as in Kim and Mower Provost [2014]. As shown in Figure 1, there are
three markers are in the Chin and Forehead regions, 16 markers in the Cheek region,
and eight markers in the Upper Eyebrow, Eyebrow, and Mouth regions. We track the
region-specific marker positions and represent each as a multidimensional trajectory.
For instance, given a data segment with N motion-capture frames and M marker coor-
dinates (3-D for IEMOCAP and 2-D for SAVEE), the final data are an N × M trajectory.

As in our previous work [Kim and Mower Provost 2014], we exclude segments with
fewer than seven frames or approximately 0.058 seconds. Our preliminary work demon-
strated that the exclusion of segments with short durations does not make significant
changes in emotion classification accuracy, which may due to insufficient temporal in-
formation within the segments. The computation time during DTW calculation can be
considerably improved by excluding such segments, since 43.5%, 0.67%, and 0.86% of
all phoneme, MDL, and fixed-length segments in the IEMOCAP dataset has duration
less than seven frames, respectively. The high percentage of excluded phoneme seg-
ments occurs because many of the phonemes in the data have very short durations.
Further, we drop segments with any missing values in the 46 markers we use. This
results in different sets of utterances for each segmentation scheme. We use the set of
3,060 intersecting utterances. This number is slightly higher than in Metallinou et al.
[2010] and similar to Mariooryad and Busso [2013]. In the SAVEE dataset, 34.86% of
the phonemes are rejected, 2.23% of the MDL segments are rejected, and 1.44% of the
window segments are rejected. The number of utterances remains the same after the
exclusion process.

Our preliminary experiments showed that the difference between the SAVEE and
IEMOCAP datasets in terms of frame rate (60 fps and 120 fps, respectively) impacted
the overall accuracy. We mitigate this effect by increasing the SAVEE frame rate to
120 fps using cubic spline interpolation. This interpolation allows us to apply the same
pre-processing steps to SAVEE as applied to the IEMOCAP (e.g., excluding of segments
less than seven frames). In addition, our preliminary investigations showed that the
SAVEE dataset had marker coordinates had a smaller range than IEMOCAP. This
difference in range affected the MDL segmentation process. To mitigate this effect, for
each marker coordinate, we scaled the SAVEE data to have the same minimum and
maximum value as the IEMOCAP data. After MDL segmentation, we used the original
marker values without scaling for the remainder of the classification framework to
retain the original characteristics of the SAVEE dataset.

4.2. Segmentation

4.2.1. Sliding Window Segmentation (“Win”). The Win segmentation method segments
each utterance into fixed-length windows. We use window segments without over-
lapping to enable comparisons with the phoneme and MDL segmentation methods,
which do not have overlapping windows. We retain all windows, including segments at
the end of an utterance that are shorter than the standard window size. For instance,
consider an N × M trajectory of the eyebrow region over an utterance, where N is the
number of frames and M is the number of marker coordinates (N = 128 and M = 24 for
the IEMOCAP data). If we segment this trajectory using 0.1-second window there will
be 12 frames per window. The resulting segments of this utterance are ten trajectories,
each of size 12 × 24 and one trajectory of size 8 × 24.
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Table II. Visually Similar Viseme Groups (VG)

Group Phonemes Group Phonemes

V1 P, B, M V8 AE, AW, EH, EY
V2 F,V V9 AH,AX,AY
V3 T,D,S,Z,TH,DH V10 AA
V4 W,R V11 AXR,ER
V5 CH,SH,ZH V12 AO,OY,OW
V6 K,G,N,L,HH,NG,Y V13 UH,UW
V7 IY,IH, IX V14 SIL

Fig. 3. An example of the MDL segmentation method for visualization. The x-axis is time and y-axis is the
position of the mouth marker at the top of the lip over part of an utterance. The blue dashed lines are the
marker position, the red lines are the approximated movement using the MDL approach. The proposed MDL
segmentation method finds regions where the dynamics of the movement are consistent. In this example,
the mouth opens widely and then starts to close at frame p5. Therefore, MDL uses {c1 = 1, c2 = 5, c3 = 8}
(including the starting and end point of each utterance) as characteristic points. The hypothesis H1 and H2
correspond to the segmentation based on the characteristic points, lines between p1 and p5 and p5 and p8.
The data D1 and D2 are the original mouth movement {p1 p2, p2 p3, p3 p4, p4 p5}, and {p5 p6, p6 p7, p7 p8}.

4.2.2. Phoneme Segmentation (“Phon”). The Phon segmentation method segments the
facial data within an utterance based on the temporal phoneme boundaries. For in-
stance, if a speaker is saying “hello,” we segment the facial trajectories using the
phoneme boundaries between /SIL/, /HH/, /AH/, /L/, /OW/, and /SIL/ phonemes. The set
of phonemes that we use in this study is in Table II. The boundaries for these phonemes
were obtained by force aligning the audio to the known transcript. The average length
of phoneme segments is 0.17 ± 0.01 seconds for the IEMOCAP data, and 0.14 ± 0.01
seconds for the SAVEE data.

4.2.3. MDL Segmentation (MDL). In this work, we describe an unsupervised variable-
length segmentation that does not require a phonetic transcript, proposed in our ear-
lier work [Kim and Mower Provost 2014]. We segment the data using the movement
of the mouth. This allows us to capture the facial cues that are most highly related
to speech production, important due to the focus on viseme-group classification. The
segmentation algorithm was originally proposed in the context of a trajectory segmen-
tation and clustering algorithm, called TRACLUS [Lee et al. 2007]. It automatically
finds points that should be used to segment regions of the data with different temporal
characteristics. The application of this algorithm in the context of facial movement
allows us to segment the facial data based on the natural dynamics of the mouth. A
mouth-based example is presented in Figure 3.
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The segmentation algorithm finds a hypothesis, H, that describes the original data
D trading off between conciseness and preciseness of the description. It aims to min-
imize the sum of L(H) + L(D|H), where L(H), length of the hypothesis, computes the
conciseness of the hypothesis, and L(D|H), the distance between the hypothesis and
the data, measures the preciseness of the hypothesis. By minimizing L(H) + L(D|H),
the algorithm finds regions of consistent dynamics. For instance, Figure 3 shows the
mouth trajectory example where, after frame p5, the trajectory changes. In this case,
MDL would identify {c1 = 1, c2 = 5, c3 = 8} (including the starting and end point of the
trajectory) as characteristic points. Characteristic points mark the beginning and end of
regions with consistent dynamics. In Lee et al. [2007], the authors proposed to measure
L(H) as the length of the proposed segmentation (e.g., in Figure 3, L(H1) is measured
as the log of the length of a line connecting p1 to p5). The quantity L(D|H) captures
the difference between the original line segments, D and the proposed segmentation,
H. For example, in Figure 3, L(D1|H1) is the log of the summation of differences be-
tween each of the blue dashed lines p1 p2, p2 p3, p3 p4, p4 p5, and the red line p1 p5. The
segmentation can be formulated as an optimization problem: Equation (1).

arg min
H

L(H) + L(D|H),

where L(H) =
n−1∑

j=1

log2(len(pcj pc j+1 )),

L(D|H) =
n−1∑

j=1

c j+1−1∑

k=c j

log2(d⊥(pcj pc j+1 , pk pk+1)) + log2(dθ (pcj pc j+1 , pk pk+1)).

(1)

In Equation (1), d⊥ is the perpendicular distance between the line segments and dθ

is the angular distance [Chen et al. 2003].
As an approximate solution, the TRACLUS algorithm [Lee et al. 2007] compares

the cost of partitioning, costpar, and nonpartitioning, costnopar , at each data point, p,
Equation (2).

costpar = L(H) + L(D|H), costnopar = L(D) =
p−1∑

j=1

log2(len(pj pj+1).
(2)

The algorithm advances through the trajectory and estimates whether the data should
be segmented at each point. The algorithm makes a segmentation decision based on the
equation: costpar ≥ costnopar + MDLAdvantage. When this equation is true, the algorithm
identifies the characteristic point as the previous point, marking the end of a segment.
The characteristic point is the point prior to the one where the cost of partitioning is
suddenly higher than the cost of not partitioning. The point at which the inequality
is true then forms the beginning of the next segment. It is important to note that the
parameter MDLAdvantage controls the granularity of the segmentation and hence the
average of segment length. We describe the method that we use to choose MDLAdvantage
in Section 4.4.1. Additional details can be found in Lee et al. [2007].

In our work, the input to MDL segmentation is the mouth trajectory (24-dimensional
for IEMOCAP and 18-dimensional for SAVEE) smoothed using a median filter with a
window size of three (window size chosen empirically), to smooth the 3D-captured
mouth movement trajectory.

4.3. Knowledge of Viseme Information

Studies of visual speech production have indicated that there are groups of visemes
with similar facial movements (Table II) [Lucey et al. 2004]. Recent research has found
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Fig. 4. A comparison between the general and viseme-group classification methods for an example in which
a speaker is saying “hello.” In viseme-group classification, we use knowledge of what was said, assigning
the viseme group that occupies the longest duration within each segment. We separate the segments into
different emotion classifiers based on their assigned viseme group. In general classification, this information
is not used.

Fig. 5. VG/MDL example for describing how to assign phoneme content to MDL segments. The gray dashed
lines show the phoneme boundaries and the black hash marks represent different segment boundaries. Notice
the potential mismatch between the hash marks and dashed lines in MDL segmentation. For example, /SIL/
and /HH/ are both present in the second segment. The /HH/ phoneme occupies a longer duration for this
segment and the viseme group associated with /HH/ is assigned to this segment.

that it is beneficial to separate emotion classifiers into 14 similar viseme groups, so that
each classifier has less speech-related variation [Metallinou et al. 2010; Mariooryad and
Busso 2013]. We add to this knowledge by understanding how segmentation affects the
utility of viseme-group classification.

We use two classification schemes: viseme-group and general classification. In
viseme-group classification (VG), it is assumed that the classifier knows which viseme
group the segment belongs to. We implement this by assigning a viseme group la-
bel to each segment based on the phoneme content. For example, if the speaker says
“hello”, we have /SIL/ (silence), /HH/, /AH/, /L/, /OW/, and /SIL/ phonemes. The two
/SIL/ phonemes will be compared in emotion classifier 14, and /HH/ and /L/ in classifier
6, etc (Figure 6 and Table II). In general classification (Gen), it is assumed that this
knowledge is absent. This results in a single emotion classifier that has data from all
viseme groups (Figure 4).

For MDL and Win segmentation, the segment boundaries may not line up with the
phoneme boundaries. To estimate the corresponding viseme group of MDL and Win
segments, we assign a viseme group label to a segment based on the phoneme that
occupies the longest duration within each segment, for VG/MDL and VG/Win. For
instance, in Figure 5 we consider a VG/MDL example. Note the mismatch between the
phonetic transcript (dashed line in the figure) and the MDL segmentation result (hash
marks). If the first MDL segment is 85% /SIL/ and 15% /HH/, we assign the phoneme
content of the segment to the /SIL/ group, and apply emotion classifier 14.

4.4. Emotion classification

4.4.1. Cross Validation. Our proposed methods have two hyperparameters: MDLAdvantage
(MDL segmentation) and window length (Win segmentation). We choose MDLAdvantage
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Fig. 6. MSP calculation and facial-region combination example for viseme-group classification.

from the set {0, 6, 10, 20}. We choose the window length from the set of {0.1, 0.25, 0.5,
1, 1.5, 2} seconds.

We build speaker-independent emotion recognition systems using leave-one-speaker-
out cross validation, and tune the parameters (MDLadvantage and window length) using
leave-one-training-speaker-out cross validation. For each speaker in the training set,
we hold out a speaker as a validation speaker and train the model using the rest of
the training speakers. We repeat this process over each training speaker and calculate
the average of the validation accuracy. We choose the value of the parameter that
maximizes performance over the set of validation speakers. For the SAVEE dataset,
we also do lexical-independent classification to ensure that the same sentence does
not appear in both the training and testing sets. This is because SAVEE is a read
emotional speech database that has emotion-specific sentences (12 of 15 sentences
were emotion-specific for each emotion class: Angry, Happy, and Sad).

4.4.2. DTW-Motion Similarity Profile Emotion Classification. We use the DTW-Motion Similar-
ity Profile (MSP) method proposed in Kim and Mower Provost [2014] to infer utterance-
level labels based on the temporal similarity between segments, as shown in Figure
6. The DTW method is computationally costly in the inference stages since it com-
pares a test data to all training data. However, the method can provide interpretable
descriptions about how two facial movements are similar. This method has two steps
for emotion classification: (1) segment-level DTW calculation and (2) utterance-level
emotion inference.

First, we calculate the segment-level similarity in facial movement between the
training and test segments. For instance, if we have two K-dimensional facial move-
ment trajectories of length M1 and M2, i.e., T1 ∈ R

M1×K and T2 ∈ R
M2×K, we compute

the similarity between the two trajectories using the multidimensional the algorithm.
It computes the M1-by-M2 local cost matrix Q as follows, where i and j denote the
frame-level temporal point of T1 (1 ≤ i ≤ M1) and T2 (1 ≤ j ≤ M2), respectively,
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Q(i, j) =
K∑

k=1

(T1(i, k) − T2( j, k))2, (3)

Then, for each facial region, we calculate the emotional distribution of the k closest
training segments, called the segment-level MSP, where k is 20, as in our previous
work [Kim and Mower Provost 2014]. For instance, the first segment-level MSP in
Figure 6 represents a four-dimensional vector {0.3, 0.6, 0.1, 0}, calculated using the
labels of the 20 closest training segments: 6 angry, 12 happy, 2 neutral, and 0 sad.

Once we have segment-level MSPs for each segment, we average these to create an
utterance-level MSP, a single four-dimensional emotion estimate for each facial region.
We combine individual face regions with different methods (described in Section 4.5)
to obtain the final utterance-level MSP. We normalize each of the four dimensions
using speaker-specific z-normalization, to mitigate the imbalance in the emotion class
distribution, e.g., there are approximately twice as many happy utterances compared
to the other emotions. We assign the final utterance-level label based on the maximum
component of the aggregated MSP, e.g., happiness in Figure 6.

4.5. Combination methods of Facial Regions

We investigate three types of decision-level combination methods of individual face
regions: (i) simple averaging, (ii) weighted averaging, and (iii) SVM-based aggregation
methods. The last stage of Figure 6 demonstrates that we combine utterance-level
MSPs of individual face regions and explore the three combination methods.

4.5.1. Averaging. For the simple averaging method, we use ten different types of ex-
periments to aggregate the MSPs from the individual facial regions, extended from
our previous work [Kim and Mower Provost 2014]. In our previous work, we combined
the facial region-specific MSPs to obtain the final MSP, representing the emotion esti-
mates over the entire face. We report the ten AV(‘AVeraged faces’) experimental results
of (i) AV6 (averaged over all 6 face regions), (ii) AV4 (averaged over Chin, Cheek,
Upper eyebrow, Mouth), (iii) AV Up (averaged over Forehead, Upper eyebrow, and Eye-
brow) and (iv) AV Low (averaged over Chin, Cheek, and Mouth), and six individual
facial regions of (v) Chin, (vi) Forehead, (vii) Cheek, (viii) Upper eyebrow, (ix) Eye-
brow, and (x) Mouth. Unlike the previous work where we used segments with the same
parameters (e.g., windows of the same fixed length, segments found using the same
MDLAdvantage parameter) over all AV experiments, we use the parameters chosen for in-
dividual AV experiments based on the cross validation accuracy (as described in 4.4.1).
Different {speaker, classification (Gen or VG) methods, segmentation (Win, MDL, or
Phon) methods} sets have different parameters chosen for each of the AV experiments.
For each AV experiment, the individual face regions use the same parameter and are
combined to calculate the final MSP.

4.5.2. Weighting Based on Validation Accuracy. In the second experiment, we aggregate the
emotional evidence using a weighted average. This allows us to more strongly weight
information from emotionally expressive areas of the face, compared to less emotionally
expressive areas. We first identify the parameters that are associated with the highest
performance for each facial region using cross validation (described in Section 4.4.1).
We calculate the accuracy over the validation speakers and use these accuracies as the
initial weights: Vali. We sum the weights over the six facial regions and normalize each
of the weights to ensure that they sum to 1. Then, rather than aggregating MSPs by
averaging, we compute a weighted average using the learned weights.

4.5.3. Linear-Support Vector Machine. We investigate a third aggregation method, which
allows for adaptation based on estimated emotional expressivity of the individual facial
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regions. We use linear-kernel Support Vector Machine (SVM), in order to find the
weighted linear combination of the MSPs that are associated with the individual facial
regions. The input to the SVM is the six four-dimensional MSP estimates (associated
with each of the six regions of the face). The goal of the SVM is to estimate the emotion
class label. We select the parameter C (10k) through cross validation, selecting over the
set: k = {−6,−5,−4,−3,−2,−1, 0, 1}.

5. EXPERIMENTAL RESULTS

We present results for each database (IEMOCAP and SAVEE). We describe the results
in terms of the three combination methods: (i) detailed experiments for each of the 10
averaging methods, where each of the ten methods use the best parameters chosen by
cross validation, (ii) weighting of individual facial regions based on cross validation
accuracy, and (iii) linear-SVM based weighting. In addition to the three segmentation
methods of Win, MDL, and Phon segmentation, we present the utterance-level (‘Utt’)
performance for general classification, where utterances are used without any segmen-
tation. To be consistent with previous multiclass emotion recognition research [Mower
et al. 2011; Lee et al. 2009], we use unweighted accuracy, or averaged recall, to calculate
the average accuracy.

5.1. SAVEE Experiments

Significance Tests. To the best of our knowledge, previous work on the SAVEE dataset
did not employ significance tests [Haq and Jackson 2010]. Since the SAVEE dataset has
four speakers, each speaking the same set of utterances, we develop Generalized Linear
Mixed Models (GLMM) with binomial link function that predicts the correctness of each
utterance and speaker, similar to Boston et al. [2008]. The GLMM use mixed-effects
models that incorporate both random and fixed-effects parameters. We develop the
models that treat both test speakers and utterance IDs as the random effects. We then
compare MDL and window segmentation, as well as Phon and window segmentation,
each separately within VG and Gen classification. Hence, fixed effects of the GLM
models are classification (Gen or VG), segmentation (Win, MDL, or Phon), and the
interaction between classification and segmentation. For the random effects, we use
both test speakers and utterance IDs. The response of our models is correctness of
the emotion inference given each segmentation and classification methods, where the
conditional distribution of the response given the random effects is assumed as the
binomial distribution. We fit the models using glmer function, implemented in R [Bates
et al. 2007]. In each experimental result, we claim significance in the accuracy between
the MDL and window, as well as Phon and window segments when p < 0.05.

5.1.1. Averaging. Table III shows the results of the SAVEE dataset when the MSPs of
individual face regions are averaged. We tested the system using the parameter sets
chosen over the set of {0.1, 0.25, 0.5, 1, 1.5, 2} seconds for window lengths and over the
set of {0, 6, 10, 20} for MDLadvantage of MDL segments. We present the parameter sets
averaged over the all four test speakers in Table VII and will discuss the interpretation
of these results in Section 6. We also tested the system using phoneme segments
(average segment length of 0.14 seconds), and utterance-length segments (average
utterance length of 3.84 seconds).

In the SAVEE dataset, AV 6 outperforms the other methods of averaging different
facial regions. For the AV 6 experiment results, we found that VG classification is more
accurate than Gen classification for variable-length segmentation. The performance
increases, comparing Gen and VG classification, for both MDL segmentation (75.62%
to 80.00%, p < 0.05) and Phoneme segmentation (75.42% to 79.59%, p < 0.05). The
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Table III.
SAVEE average classification accuracy (%) using six schemes of: (1) VG/Win, (2) VG/MDL, (3) VG/Phon,
(4) Gen/Win, (5) Gen/MDL, (6) Gen/Phon, and (7) Gen/Utt (utterance-length) segments, using the averaging
method. The results are presented as mean over the 10 speakers. ‘*’ indicates a significant increase compared
to the baseline window segmentation method.

Cla Seg AV4 AV6 AV up AV low Chin FH CHK U.EYE EB MOU

VG
Win 71.67 77.29 72.92 63.96 39.79 59.79 64.38 55.21 72.92 65.42
MDL 69.79 80.00* 75.00* 63.13 37.50 58.13 63.33 56.46 77.08 65.63
Phon 69.59 79.59 74.79 64.59 32.08 62.08 61.67 57.50 73.13 62.71

Gen

Win 71.04 77.29 68.54 66.25 38.33 55.00 65.83 54.79 64.79 63.96
MDL 71.46 75.62 62.29 65.21 43.75* 54.58 61.67 56.04 63.96 62.08
Phon 72.71 75.42 61.88 68.34 44.80 56.67 63.55 55.42 63.54 66.88
Utt 69.17 79.38 76.46 61.04 35.21 56.04 65.63 56.46 79.58* 58.33

window segmentation does not demonstrate any improvement (both methods demon-
strate an accuracy of 77.29%).

The results demonstrate that the accuracy increases when variable-length segmen-
tation is used in place of fixed-length segmentation in viseme-group classification, also
shown in our previous work [Kim and Mower Provost 2014]. In particular, for the AV 6
experiment, the MDL (80.00%) and phoneme (79.59%) segments outperform the win-
dow segments (77.29%). The performance improvement of MDL over window segments
is statistically significant (p < 0.02), whereas phoneme over window segments is not
(p = 0.29). Moreover, we achieve comparable accuracy (p = 0.190) between our pro-
posed MDL segmentation and phoneme segmentation. MDL significantly outperforms
window segments in the AV up experiment, achieving 75.00% compared to 72.92% for
window segmentation (p < 0.05). The VG/MDL method also achieves improvement
compared to VG/Win for the eyebrow (EB), achieving 4.16% improvement (p = 0.07).
The results provide evidence that MDL segmentation can be effectively used in emotion
classification.

In Gen classification, the best results of MDL segments (75.62%, p = 0.071) and
phoneme segments (75.42%, p = 0.071) are lower than that of window segments
(77.29%), although the results are not significantly different. The highest accuracy
is achieved with utterance-length segments (79.38%) for the AV 6 experiment. How-
ever, this phenomenon is not consistent over the different facial regions. For instance,
in the mouth region, phoneme segments (66.88%) outperform window (63.96%) and
utterance-length segments (58.33%), whereas MDL segments (62.08%) work slightly
worse than window segments. For the chin, both variable-length segmentation strate-
gies, MDL (43.75%) and phoneme (44.80%), outperform fixed-length segments, both
window (38.33%) and utterance-length (35.21%) segments. The difference between the
MDL and window segments was significant (p < 0.05). For the eyebrow, the utterance-
length segments achieve significant increase compared to the other segmentation meth-
ods, achieving 79.58% accuracy. Overall, phoneme segments perform well for the lower
facial regions, mouth and chin, whereas utterance-length segments perform well for
regions less modulated by speech, such as the eyebrow.

5.1.2. Weighting Based on Cross-Validation Accuracy. Table IV demonstrates the SAVEE
results when we weight the face region-specific MSPs based on validation accuracy. We
found that weighting face region-specific MSPs lowered the accuracy of SAVEE (the
opposite trend can be observed for IEMOCAP), although the decrease is not significant.
VG/Win remains the same 77.29% accuracy, whereas VG/MDL accuracy decreases
from 80.00% to 76.46%. For Gen classification, Gen/Win decreases from 77.29% to
75.00% and Gen/MDL decreases from 75.62% to 75.00%. We hypothesize that this
is due to the high variability between speakers (e.g., one speaker has a significantly
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Table IV.
SAVEE dataset results found by weighting the individual facial region based on validation accuracy (left) and
(2) based on a linear SVM (right). We report the average recall for each of the four emotion classes and the
overall average recall (“average”’).

Weighting Based on Validation Accuracy SVM Weighting

Cla Seg Average Ang Hap Neu Sad Average Ang Hap Neu Sad

VG
Win 77.29 81.67 76.67 76.67 88.33 88.75 80.00 95.00 88.34 91.67
MDL 76.46 83.33 71.67 71.67 85.00 92.08* 93.33 90.00 90.00 95.00
Phon 77.71 83.33 76.67 62.50 88.33 93.12* 95.00 93.33 89.17 95.00

Gen
Win 75.00 86.67 73.33 73.33 88.34 88.75 88.34 90.00 80.00 96.67
MDL 75.00 93.34 66.67 66.67 90.00 88.13 95.00 81.67 79.17 96.67
Phon 77.08 91.67 70.00 55.00 91.67 88.96 91.67 88.33 79.17 96.67

lower recognition rate, with a relative difference of about 20% from the other three
speakers), and the lack of training speakers when calculating validation accuracy (i.e.,
only two speakers for training in cross validation). The per-emotion class accuracies
demonstrate that Anger (p < 0.05, significant) and Sadness (not significant, p = 0.052)
are well recognized compared to Happiness and Neutrality. The phoneme segments
perform well in both VG (77.71%) and Gen (77.08%) classification, showing the highest
performance among the three segmentation methods.

5.1.3. SVM-Based Weighting Method. Table IV demonstrates the results of linear-SVM
based MSP combination. The hyper-parameter C of the SVM is chosen as 10−4 using
cross validation. It is shown that the results are improved using linear-SVM, achieving
up to 92.08% accuracy for VG/MDL, improving from 80.00% of the simple averaging
method. This is a significant improvement in accuracy over VG/Win (p < 0.03). VG/Win,
Gen/Win, and Gen/MDL also improve from 77.29% to 88.75%, 77.29% to 88.75%, and
75.62% to 88.13%, respectively. The phoneme segments perform the best for both VG
(93.12%) and Gen (88.96%) classification. VG/Phon outperforms VG/Win significantly
(p < 0.007). The per-emotion class accuracies show improved performance for Happi-
ness and Neutrality. We present the learned SVM weights in Figure 7 and will discuss
the corresponding findings in the previous psychology studies on emotion perception
in Section 6.

We hypothesize that the SVM-based weighting method more reliably captures the
region-specific temporal characteristics compared to the weighting based on validation
accuracy, since the SVM learns more general patterns across training speakers that
are associated with emotion prediction compared to the direct validation accuracy. We
discuss the learned SVM weights for each emotion prediction task in more detail in
Section 6.

5.2. IEMOCAP

Significance Tests. For the IEMOCAP dataset, we use paired t-tests to be con-
sistent with previous work on this dataset [Mariooryad and Busso 2013; Kim and
Mower Provost 2014]. The paired t-test for leave-one-speaker-out cross validation has
shown to be useful to test the significance of the difference [Dietterich 1998; Kim and
Mower Provost 2014]. We claim significance when the p-value is less than 0.05.

5.2.1. Averaging Method. Table V summarizes the average accuracy for each of the
10 different experiments. As in the SAVEE dataset, the two parameters, window
length and MDLAdvantage, are chosen over the set of {0.1, 0.25, 0.5, 1, 1.5, 2} seconds
and {0, 6, 10, 20}. In VG classification, variable-length segments outperform window
segments in the AV 4 experiment and AV low experiments. MDL segments outper-
form window segments in most of the experiments except for the upper face regions
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Table V.
IEMOCAP average classification accuracy (%) using six schemes of: (1) VG/Win, (2) VG/MDL, (3) VG/Phon,
(4) Gen/Win, (5) Gen/MDL, (6) Gen/Phon, and (7) Gen/Utt (utterance-length) segments, using the averaging
method. The results are presented as mean over the 10 speakers. ‘*’ indicates a significant increase compared to
the baseline window segmentation method.

Cla Seg AV4 AV6 AV up AV low Chin FH CHK U.EYE EB MOU

VG
Win 54.30 54.93 47.14 52.44 50.36 42.92 43.24 45.21 42.93 53.86
MDL 55.31 55.07 45.65 55.08* 53.28* 42.43 44.53* 46.04 42.16 55.46
Phon 56.14 55.60 45.85 54.05 49.96 40.43 44.92* 45.07 40.14 56.07

Gen
Win 54.20 54.24 47.01 52.54 49.70 39.43 42.49 44.15 41.95 53.04
MDL 53.51 51.92 42.39 51.56 46.94 38.97 42.56 42.33 38.33 52.04
Phon 54.04 52.05 42.30 51.77 46.94 39.00 42.71 43.28 38.58 51.13
Utt 40.02 40.83 39.70 40.02 35.51 39.70 25.00 25.00 25.00 37.10

Table VI.
IEMOCAP dataset results found by weighting the individual facial region based on validation accuracy (left) and
(2) based on a linear SVM (right). We report the average recall for each of the four emotion classes and the
overall average recall (“average”).

Weighting Based on Validation Accuracy SVM Weighting

Cla Seg Average Ang Hap Neu Sad Average Ang Hap Neu Sad

VG
Win 56.66 57.59 69.83 33.19 66.04 56.06 66.16 77.28 16.58 64.23
MDL 57.57 63.03 69.71 34.41 63.13 56.63 68.30 76.18 15.35 66.68
Phon 57.18 61.76 68.69 40.39 57.90 55.06 67.66 74.94 17.48 60.16

Gen
Win 56.02 55.70 70.23 33.51 64.62 53.98 63.47 77.74 13.75 60.97
MDL 55.00 59.93 69.48 34.08 56.48 53.96 62.12 76.52 15.85 61.35
Phon 53.76 58.14 69.96 37.71 49.25 52.22 62.49 76.97 16.12 53.28

(the exceptions in upper face regions are not significant). In particular, variable-length
segments outperform window segments significantly particularly in the lower face re-
gions. In the AV low experiment, the performance gain when using VG/MDL compared
to VG/Win is significant, achieving 2.64% (p < 0.05). The chin and cheek regions also
showed significant increase compared to the window segments. For the chin, VG/MDL
significantly outperforms VG/Win by 2.92% (p < 0.05). For the cheek, both VG/MDL
and VG/Phon significantly outperform VG/Win by 1.29% and 1.68%, respectively (both
p < 0.05). The significant improvement in the lower regions of the face when using
the MDL segmentation may indicate that the mouth-based segmentation strategy of
MDL performs well for the regions that are modulated by speech [Chandrasekaran
et al. 2009]. VG/Phon outperforms VG/Win by 1.84% in the AV4 experiment. VG/MDL
also outperforms VG/Win by 0.74%. However, these differences are not statistically
significant. Moreover, the mouth region achieves higher accuracy (55.46%) than the
AV6 method for window segments (54.93%), although not significant.

In Gen classification, the accuracy between different segmentation methods was
similar. Also, the utterance-length segmentation performed poorly (40.83%), unlike in
the SAVEE dataset.

5.2.2. Weighting Using Validation Accuracy . The weighting method that combines the in-
dividual facial regions based on cross validation accuracy improves the performance,
up to 57.57% when using the VG/MDL method. This is the highest accuracy in the
IEMOCAP dataset and it outperforms the simple averaging method in the AV6 experi-
ment by 1.74% (not significant). This is higher than VG/Win method (56.66%), however
the difference is not significant. The VG/MDL result is higher than both of the previ-
ous work [Mariooryad and Busso 2013; Metallinou et al. 2010]. VG/MDL and VG/Win
perform significantly better using the validation accuracy-based weighting method

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 1s, Article 25, Publication date: October 2015.



TOMM1201s-25 ACM-TRANSACTION September 25, 2015 21:46

25:18 Y. Kim and E. Mower Provost

Table VII.
A description of the selected parameters for the SAVEE dataset based on leave-one-training-speaker-out cross
validation and averaged over all folds. For the Win segmentation method, the parameter is segment length of
each window and the for MDL segmentation method, the parameter is MDLadvantage, described in Section 4.2. A
larger MDLadvantage corresponds to longer average segment length. Note that phoneme segmentation methods
do not have any parameters that control granularity.

Cla Seg AV4 AV6 AV up AV low Chin FH CHK U.EYE EB MOU
VG Win 0.18 0.21 0.14 0.34 0.18 0.33 0.14 0.10 0.53 0.18

MDL 6 5 6.5 6.5 11.5 2.5 10 6 5 10
Gen Win 0.28 0.81 1.28 0.61 0.43 0.59 0.10 0.68 1.15 0.14

MDL 4.5 14 15 11.5 5 6.5 11.5 9 10.5 12.5

Fig. 7. The averaged learned SVM weights for the SAVEE dataset describing how to combine the MSPs
of the individual facial regions (top: weights for Gen/Win and bottom: weights for VG/Win). Darker boxes
correspond to smaller weights and brighter boxes correspond to larger weights. The boxes that are highlighted
in red are the four highest weights.

compared to the simple averaging method (55.07% to 57.57%, p < 0.05; and 54.93% to
56.66%, p < 0.05). The Gen classification is also improved compared to the simple aver-
aging method, particularly for Gen/MDL. Gen/MDL improves from 51.92% to 55.00% in
the AV6 experiment. The average accuracies (Gen/Win 56.02% and Gen/MDL 55.00%)
are smaller than seen in the VG classification results. The phoneme segments perform
better for VG classification (57.18%) compared to Gen classification (53.76%), as in the
other experiments. Gen/Win performs significantly better than Gen/Phon (p < 0.05).

5.2.3. SVM-Based Weighting Method. The hyper-parameter of SVM chosen based on cross
validation was 10−5. Linear-SVM slightly improves the accuracy for VG/MDL compared
to AV6 in the simple averaging method (55.07%). It also slightly improves the VG/Win
accuracy in the AV6 experiment (54.93%). For Gen classification, the accuracy was
slightly lower than the averaging method. The differences are not significant.

For the VG classification, MDL segmentation achieves significantly higher accuracy
compared to the simple averaging method (55.07% to 56.63%, p < 0.05). VG/Win also
performs significantly better using the SVM weighting method compared to the simple
averaging method (54.93% to 56.05%, p < 0.05).

6. DISCUSSION

Table VII shows the parameters selected for the SAVEE dataset, averaged over all
four test speakers {1, 2, 3, 4}. Note that larger values of the MDLadvantage parameter
corresponds to longer average segment lengths. The parameters chosen for each facial
region demonstrate that in general classification, the upper facial regions such as the
eyebrow and forehead perform well with longer segments. This trend may indicate that
the upper facial regions may be characterized by longer-term dynamic patterns.

Figure 7 shows the trained SVM weights based on the 24-dimensional features for
each face/emotion set for the SAVEE dataset. In the figure, there are six different
facial regions and four different emotion classes. We investigate the contribution of
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Table VIII.
Accuracy result comparisons of Gen/Win (top) and VG/Win (bottom) with different window
sizes from the set {0.1, 0.25, 0.5, 1, 1.5, 2} seconds (IEMOCAP).

Gen/Win PS/Win
Window Size (sec) AV Mou AV4 AV6 AV Mou AV4 AV6

0.1 52.41 55.51 52.93 54.24 55.06 55.03
0.25 52.04 55.04 52.49 52.63 54.83 54.92
0.5 52.09 55.24 53.78 52.41 55.04 55.19
1 50.79 53.54 54.29 52.12 53.41 53.98

1.5 50.96 54.36 54.13 51.45 53.95 53.8
2 50.12 53.11 52.11 50.49 51.72 51.75

each facial region to the final emotion inference. We estimate the contribution based on
the SVM weights, e.g., w1face1 + w2face2 + w3face3 + w4face4 + w5face5 + w6face6. The
weights wi of each face region i = {1, 2, . . . , 6} are averaged over the four test speakers.
We find that in both Gen and VG classification, the mouth regions have higher weights
on the happiness component of the four-dimensional MSPs, whereas eyebrow regions
have higher weights on the anger and sadness components. This finding corresponds to
the previous emotion perception studies that certain facial regions contribute more to
specific emotion perception [Shah et al. 2013]. The studies on facial Action Units (AUs,
[Ekman and Friesen 1977]) have shown that certain anatomical regions of the face,
or action units, are strongly related to specific emotions. These studies have shown
that happiness is strongly related to action units on the mouth (including action unit
6: cheek raiser and action unit 12: lip corner puller), and anger is strongly related to
action units on the eyebrow (including action unit 4: brow lowered and action unit 7:
lid tightener).

For the IEMOCAP dataset, we observe similar performance between Gen/Win,
Gen/MDL, and Gen/Phon. This may imply that without any additional phoneme in-
formation it is important to capture longer-term dynamics to understand emotion
expression. In addition, we compare the Gen and VG classification accuracies of the
fixed-length segments with different window sizes, {0.1, 0.25, 0.5, 1, 1.5, 2} seconds. Ta-
ble VIII summarizes Gen/Win (top) and VG/Win (bottom) accuracy for different window
sizes. The Gen/Win accuracy shows statistically insignificant changes across different
window sizes. However, the VG/Win accuracy shows significant increase in AV 6 accu-
racy between 1 and 2 seconds (2.18%, p < 0.02) and between 1.5 and 2 seconds (2.02%,
p < 0.03). Both VG/Win and Gen/Win perform poorly with 2-second windows. This
decrease in performance of the 2-second windows compared to smaller window sizes is
higher for VG/Win compared to Gen/Win, which may suggest that in VG classification
it is critical to use segments that have similar lengths to phoneme segments.

We also compare how many phonemes in each window segment with different sizes.
For each window size of {0.1, 0.25, 0.5, 1, 1.5, 2} seconds, the average number of
phonemes are 1.71±0.80, 2.67±1.49, 3.87±2.23, 5.47±2.93, 6.54±3.24, and 7.19±3.47.

The consistent increase in accuracy of VG/Win associated with an increase in window
length may imply that the window segments that contain phoneme at the closest (i.e.
most overlap with phoneme segment) will perform better than the others.

7. CONCLUSIONS

In this study, we investigate an unsupervised, variable-length segmentation method for
compensating for facial movement due to speech, to improve the performance of facial
emotion recognition systems. We present detailed results on two different datasets and
propose a combination strategy that can account for different temporal characteristics
of different facial regions. Our segmentation method is based on the MDL principle. We

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 1s, Article 25, Publication date: October 2015.



TOMM1201s-25 ACM-TRANSACTION September 25, 2015 21:46

25:20 Y. Kim and E. Mower Provost

demonstrated that a hyper-parameter MDLAdvantage can change the average segment
lengths and how this impacts the system-level performance. Based on this finding, we
show how we can combine different hyper-parameters chosen per face regions using
cross validation for final emotion inference. We use linear-kernel SVMs to combine
facial region-specific emotion evidence and investigate the weights between facial re-
gions and emotions to explore the different contributions of individual facial regions
for inference of specific emotion.

Our experimental results on the two IEMOCAP and SAVEE datasets demonstrate
that the two variable-length segmentation methods, MDL and phoneme, achieve higher
emotion classification rates compared to fixed-length window segmentation in VG clas-
sification. We also find that methods to combine estimated emotion from individual
face regions, can increase the accuracy significantly.

In our future work, we will investigate the efficacy of MDL segmentation based
on different facial regions. In our preliminary study [Kim and Mower Provost 2014],
we found that it is more beneficial to use the mouth region for MDL segmentation,
compared to other facial regions. However, it is not yet clear whether this is true
for other datasets such as SAVEE. For instance, we found that the SAVEE dataset
shows high accuracy using utterance-level eyebrow segments, unlike the chance-level
accuracy for the IEMOCAP dataset. This may indicate that the difference between the
read speech (SAVEE) and more natural dynamic conversation (IEMOCAP) may have
different facial movement characteristics. We will investigate the use of other facial
regions for the other datasets in MDL segmentation.

Further, our results indicate that different segmentation strategies per different
face regions, for instance, MDL segmentation for mouth region and emphasis-based
segmentation for eyebrow region, may benefit the overall facial emotion recognition
systems. In addition, we plan to combine the facial emotion recognition system that we
developed with audio emotion recognition systems.

The presented work utilizes three-dimensional facial point positions to explicitly
model physical facial movement. Previous studies have shown that facial appearance
features are useful in emotion classification tasks. However, the IEMOCAP dataset
does not provide frontal face videos and the faces in the SAVEE dataset are marked
with blue measurement points. Action Units (AU) are also commonly used in facial
emotion modeling research. AUs capture the presence of specific types of movement
associated with groups of muscles, rather than movement of facial points in a three-
dimensional space. Future work will explore modeling the temporal patterns associated
with emotionally-relevant AUs and the use of appearance features.
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