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Ergodic Exploration of Distributed Information
Lauren M. Miller, Yonatan Silverman, Malcolm A. MacIver, and Todd D. Murphey

Abstract—This paper presents an active search trajectory syn-
thesis technique for autonomous mobile robots with nonlinear
measurements and dynamics. The presented approach uses the
ergodicity of a planned trajectory with respect to an expected in-
formation density map to close the loop during search. The ergodic
control algorithm does not rely on discretization of the search or
action spaces and is well posed for coverage with respect to the
expected information density whether the information is diffuse or
localized, thus trading off between exploration and exploitation in
a single-objective function. As a demonstration, we use a robotic
electrolocation platform to estimate location and size parameters
describing static targets in an underwater environment. Our results
demonstrate that the ergodic exploration of distributed informa-
tion algorithm outperforms commonly used information-oriented
controllers, particularly when distractions are present.

Index Terms—Biologically inspired robots, information-driven
sensor planning, motion control, search problems.

I. INTRODUCTION

IN the context of exploration, ergodic trajectory optimization
computes control laws that drive a dynamic system along

trajectories such that the amount of time spent in regions of the
state space is proportional to the expected information gain in
those regions. Using ergodicity as a metric encodes both explo-
ration and exploitation—both the need for nonmyopic search
when variance is high and convexity is lost, as well as myopic
search when variance is low and the problem is convex. By
encoding these needs into a metric [1], generalization to nonlin-
ear dynamics is possible using tools from optimal control. We
show here that different dynamical systems can achieve nearly
identical estimation performance using ergodic exploration of
distributed information (EEDI).

The SensorPod robot [see Fig. 1(a)], which we use as a moti-
vating example and an experimental platform in Section V, mea-
sures disturbances in a self-generated weak electric field. This
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Fig. 1. SensorPod (a) uses a sensing modality inspired by weakly electric fish
such as the black ghost knifefish (b). The SensorPod is mounted on a 4-DOF
gantry and submerged within a 1.8 m × 2.4 m × 0.9 m (l, w, h) tank (see
multimedia attachment).

sensing modality, referred to as electrolocation, is inspired by a
type of freshwater tropical fish (see Fig. 1(b) and [2]–[4]) and
relies on the coupled emission and detection of a weak electric
field. Electrolocation is ideally suited for low-velocity mobile
vehicles operating in dark or cluttered environments [4]–[6]. The
sensing range for electrolocation is small, however, so the fish or
robot must be relatively close to an object to localize it. In addi-
tion, as the sensors are rigid with respect to the body, the move-
ment of those sensors involves the dynamics of the entire robot.
As we will see in Section IV, the measurement model for elec-
trolocation is also highly nonlinear, and the dynamics of both
biological fish and underwater robots are generally nonlinear.
Consideration of sensor physics and robot dynamics when plan-
ning exploration strategies is, therefore, particularly important.
The same applies to many near-field sensors such as tactile sen-
sors, ultra-shortwave sonar, and most underwater image sensors
(e.g., [7]). Experiments carried out using the SensorPod robot
demonstrate that the EEDI algorithm is successful in several
challenging search scenarios where other algorithms fail.
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The contributions of this paper can be summarized as follows:
1) application of ergodic exploration for general, nonlinear,

deterministic control systems to provide closed-loop cov-
erage with respect to the evolving expected information
density (EID);

2) validation of ergodic search in an experimental and sim-
ulated underwater sensing setting. We demonstrate both
that ergodic search performs as well as alternative al-
gorithms in nominal scenarios, and that ergodic search
outperforms alternatives when distractors are present.

Section II begins with a discussion of related work. Ergod-
icity as an objective for active sensing is presented in Section
III, including the benefits and distinguishing features of ergodic
trajectory optimization. Section III-B includes an overview of
ergodic trajectory optimization. In Section IV, we describe the
SensorPod experimental platform and nonlinear measurement
model and introduce the stationary target localization task used
to demonstrate EEDI. We also discuss the components of closed-
loop EEDI for target localization using the SensorPod in Sec-
tion IV. In Section V, we present data from multiple estimation
scenarios, including comparison with several alternative algo-
rithms, and closed-loop EEDI implementation using different
dynamic models for the SensorPod. We also include a mul-
timedia video attachment with an extended description of the
SensorPod platform and measurement model used in Sections
IV and V and an animated overview of the steps of the EEDI
algorithm for this system.

II. MOTIVATION AND RELATED WORK

The ability to actively explore and respond to uncertain sce-
narios is critical in enabling robots to function autonomously.
In this paper, we examine the problem of control design for
mobile sensors carrying out active sensing tasks. Active sensing
[8], [9] or sensor path planning [10] refers to control of sensor
parameters, such as position, to acquire information or reduce
uncertainty. Applications include prioritized decision making
during search and rescue [11], [12], inspection for flaws [13],
mine detection [10], object recognition/classification [14]–[16],
next-best-view problems for vision systems [17]–[19], and en-
vironmental modeling/field estimation [20]–[22]. Planning for
search/exploration is challenging as the planning step necessar-
ily depends not only on the sensor being used but on the quantity
being estimated, such as target location versus target size. Meth-
ods for representing and updating the estimate and associated
uncertainty—the belief state—and a way of using the belief state
to determine expected information are, therefore, required.

Fig. 2 illustrates the high-level components for a general
estimation or mapping algorithm that iteratively collects sen-
sor measurements, updates an expected information map, and
decides how to acquire further measurements based on the in-
formation map. In this section, we touch on related work for
components A–C, although the differentiating feature of the
EEDI algorithm is the way in which control decisions are made
based on the expected information (step C in Fig. 2). The ad-
vantages of EEDI are discussed in Section III.

Fig. 2. Illustration of the necessary components for a general closed-loop
information-based sensing algorithm. Our primary contribution in this paper is
using ergodic trajectory optimization for estimation (step C). We demonstrate
implementation of closed-loop estimation for a particular sensing task using
the SensorPod robot [see Fig. 1(a)], where the sensing task motivates choice of
steps A, B, D. Section II discusses alternative choices for steps A through C.

A. Representing the Belief State

The best choice for representing and updating the belief state
for a given application will depend on robot dynamics, sensor
physics, and the estimation task (modeling a field versus target
localization). Designing appropriate representations for active
sensing is a well-studied area of research. For many applica-
tions, such as active sensing for localization, parametric filters
(e.g., the extended Kalman filter) [23]–[26] may be used. When
the posterior is not expected to be approximately Gaussian,
nonparametric filters, e.g., Bayesian filters [27], [28], histogram
filters [29], or particle filters [30]–[32] are often used. Mapping
applications often use occupancy grids [33], [34] or coverage
maps [29], and much of the most recent work utilizes Gaussian
processes to represent spatially varying phenomena or higher
dimensional belief spaces, and the associated uncertainty [20],
[21], [35]–[38]. For the experimental work presented in this pa-
per using the SensorPod robot, we use a Bayesian filter as it
is appropriate for general (non-Gaussian) PDFs, sufficient for
representing stationary estimation objectives, and allows us to
take into account sensor physics and uncertainty in the estimate
(see Section IV). The differentiating feature of the EEDI algo-
rithm however—the ergodic trajectory optimization—does not
depend on the choice of belief representation, so long as the
choice enables calculation of an EID map.

B. Calculating Expected Measurement Utility

For a given sensing task and belief state, not all measure-
ments are equally informative. The quality of a measurement
depends on the sensor and may be distance, orientation, or mo-
tion dependent. To ensure useful measurements are obtained
given realistic time or energy restrictions, sensing strategies for
mobile sensors should seek to optimize measurement quality
[39], [40]. In some cases, it is sufficient to consider only sen-
sor field of view (i.e., useful measurements can be obtained
anywhere within a given distance from a target), often called
“geometric sensing” [32], [41]–[43]. In many scenarios—if the
search domain is significantly larger than the sensor range—a
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geometric sensing approach is sufficient. Many sensors, how-
ever, have sensitivity characteristics within the range threshold
that affect sensing efficacy. Infrared range sensors, for example,
have a maximum sensitivity region [44], and cameras have an
optimal orientation and focal length [45].

There are several different entropy-based measures from in-
formation theory and optimal experiment design that can be
used to predict expected information gain prior to collecting
measurements. Shannon entropy has been used to measure un-
certainty in estimation problems [9], [15], [17], [19], as well as
entropy-related metrics including Renyi Divergence [8], [24],
mutual information, [11], [14], [31], [35], [42], [46]–[48], en-
tropy reduction or information gain maximization [13], [49]. In
our problem formulation, we use Fisher information [50]–[53]
to predict measurement utility. Often used in maximum likeli-
hood estimation, Fisher information quantifies the ability of a
random variable, in our case a measurement, to estimate an un-
known parameter [50], [51], [54]. Fisher information predicts
that the locations where the ratio of the derivative of the ex-
pected signal to the variance of the noise is high will give more
salient data (see Appendix B and the multimedia attachment)
and thus will be more useful for estimation.

In this paper, the Bayesian update mentioned in Section II-A
and the use of Fisher information to formulate an information
map are tools that allow us to close the loop on ergodic control
(update the map, step A in Fig. 2), in a way that is appropriate for
the experimental platform and search objective (see Appendix
A). The Bayesian update and the Fisher information matter only
in that they allow us to create a map of expected information
for the type of parameter estimation problems presented in the
examples in Section V. Ergodic exploration could, however,
be performed over the expected information calculated using
different methods of representing the belief and expected infor-
mation, and for different applications such as those mentioned
in II-A.

C. Control for Information Acquisition

In general, the problem of exhaustively searching for an op-
timally informative solution over sensor state space and belief
state is a computationally intensive process, as it is necessary to
calculate an expectation over both the belief and the set of can-
didate control actions [24], [35], [46], [55]. Many algorithms,
therefore, rely on decomposing/discretizing the search space,
the action space, or both, and locally selecting the optimal sens-
ing action myopically (selecting only the optimal next configu-
ration or control input) [8], [25]. The expected information gain
can, for example, be locally optimized by selecting a control
action based on the gradient of the expected information [30],
[32], [33], [47]. As opposed to local information maximization, a
sensor can be controlled to move to that state which maximizes
the expected information globally over a bounded workspace
[17], [26], [28], [50], [56]. Such global information maximizing
strategies are generally less sensitive to local minima than local
or gradient based strategies, but can result in longer, less effi-
cient trajectories when performed sequentially [29], [31]. While
myopic information maximizing strategies have an advantage in

terms of computational tractability, they are typically applied to
situations where the sensor dynamics are not considered [17],
[26], [28], [50], [56] and even the global strategies are likely
to suffer when uncertainty is high and information diffuse (as
argued in [29], [37], and [57], when discussing replanning peri-
ods), as we will see in Section V.

To avoid sensitivity of single-step optimization methods to lo-
cal optima, methods of planning control actions over longer time
horizons—nonmyopic approaches—are often used. A great deal
of research in search strategies points out that the most gen-
eral approach to solving for nonmyopic control signals would
involve solving a dynamic programming problem [20], [35],
[37], which is generally computationally intensive. Instead, var-
ious heuristics are used to approximate the dynamic program-
ming solution [20], [29], [36], [37]. Variants of commonly used
sampling-based motion planners for maximizing the expected
information over a path for a mobile sensor have also been ap-
plied to sensor path-planning problems [10], [23], [24], [49],
[58], [59].

Search-based approaches are often not suitable for systems
with dynamic constraints; although they can be coupled with
low-level (e.g., feedback control) planners [48], [60], or dy-
namics can be encoded into the cost of connecting nodes in a
search graph (“steering” functions) [58], solutions are not guar-
anteed to be optimal even in a local sense—both in terms of the
dynamics and the information—without introducing appropri-
ate heuristics [20], [29], [36], [37]. As we will see in Section
V-G, one of the advantages of EEDI is that it naturally applies
to general nonlinear systems. We take advantage of trajectory
optimization techniques, locally solving for a solution to the dy-
namic programming problem—assuming that the current state
of the system is approximately known.

Use of an ergodic metric for determining optimal control
strategies was originally presented in [1] for a nonuniform
coverage problem. The strategy in [1] involves discretizing the
exploration time and solving for the optimal control input at
each time step that maximizes the rate of decrease of the er-
godic metric. A similar method is employed in [61], using a
Mix Norm for coverage on Riemannian manifolds. While our
objective function includes the same metric as [1], the optimal
control problem and applications are different, notably in that
we compute the ergodic trajectory for the entire planning pe-
riod T , and apply it to a changing belief state. Additionally, the
feedback controllers derived in [1] are specific to linear first- or
second-order integrator systems, whereas our method applies to
general nonlinear dynamic systems.

III. ERGODIC OPTIMAL CONTROL

Ergodic theory relates the time-averaged behavior of a system
to the space of all possible states of the system and is primarily
used in the study of fluid mixing and communication. We use
ergodicity to compare the statistics of a search trajectory to a
map of EID. The idea is that an efficient exploration strategy—
the path followed by a robot—should spend more time explor-
ing regions of space with higher expected information, where
useful measurements are most likely to be found. The robot
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Fig. 3. Two candidate trajectories x(t) for exploring the EID (depicted as
level sets) are plotted in (a) and (b), both from t = 0 to t = T . Ergodic control
provides a way of designing trajectories that spend time in areas proportional to
how useful potential measurements are likely to be in those areas (a). This is in
contrast with many alternative algorithms, which directly maximize integrated
information gain over the trajectory based on the current best estimate, as in (b).
As illustrated in (a), a trajectory x(t) is ergodic with respect to the PDF (level
sets) if the percentage of time spent in any subset N from t = 0 to t = T is
equal to the measure of N ; this condition must hold for all possible subsets.

should not, however, only visit the highest information region
[see Fig. 3(b)], but distribute the amount of time spent searching
proportional to the overall EID [see Fig. 3(a)]. This is the key
distinction between using ergodicity as an objective and previ-
ous work in active sensing (e.g., information maximization); the
ergodic metric encodes the idea that, unless the EID is a delta
function, measurements should be distributed among regions of
high expected information. Information maximizing strategies
(that are also nonmyopic) otherwise require heuristics in order to
force subsequent measurements away from previously sampled
regions so as not to only sample the information maxima.

As mentioned in Section II, many commonly used algorithms
for active sensing, e.g., [25], [28], [33], [62], involve a version of
the type of behavior illustrated in Fig. 3(b), iteratively updating
the EID and maximizing information gain based on the current
best estimate, whether or not that estimate is correct. While
computationally efficient, globally information maximizing ap-
proaches are likely to fail if the current estimate of the EID is
wrong. In Section V, for example, we show that even when the
information map is updated while calculating the information

maximizing control, the estimate may get trapped in a local
maxima, e.g., when there is a distractor object that is similar but
not exactly the same as the target object.

Many sampling-based algorithms for information gathering,
therefore, rely on heuristics related to assuming submodularity
between measurements, e.g., assuming no additional informa-
tion will be obtained from a point once it has already been
observed [23], [35], [58]. This assumption forces subsequent
measurements away from previously sampled regions so as not
to only sample the information maxima. As another way to dis-
tribute measurements, many nonmyopic strategies select a set
of waypoints based on the expected information and drive the
system through those waypoints using search-based algorithms
[38], [41], [42], [48], [49], [57], [60]. Such approaches result in
a predefined sequence that may or may not be compatible with
the system dynamics. If the ordering of the waypoints is not pre-
defined, target-based search algorithms may require heuristics
to avoid the combinatoric complexity of a traveling salesman
problem [63], [64]. In some cases, search algorithms are not
well-posed unless both an initial and final (goal) position are
specified [20], [42], which is not generally the case when the
objective is exploration.

Ergodic control enables how a robot searches a space to de-
pend directly on the dynamics and is well posed for arbitrary
dynamical systems. In the case of nonlinear dynamics and non-
trivial control synthesis, encoding the search ergodically allows
control synthesis to be solved directly in terms of the met-
ric, instead of in a hierarchy of problems (starting with target
selection and separately solving for the control that acquires
those targets, for example, [38], [41], [42], [49], [57], [60]).
In ergodic trajectory optimization, the distribution of samples
results not from introducing heuristics into the trajectory opti-
mization, but from encoding the statistics of the trajectory and
the information map directly in the objective. Using methods
from optimal control, we directly calculate trajectories that are
ergodic with respect to a given information density [65], [66]. It
is noteworthy, however, that even if one wants to add waypoints
to a search objective, ergodic search is an effective means to
drive the system to each waypoint in a dynamically admissible
manner (by replacing each waypoint with a low-variance den-
sity function, thus avoiding the traveling salesman problem).
Further, ergodic control can be thought of as a way to generate
a continuum of dynamically compatible waypoints; it is similar
to [42], [49], and [57], but allows the number of waypoints to go
to ∞, making the control synthesis more tractable for a broad
array of systems.

Many active sensing algorithms are formulated to either pri-
oritize exploitation (choosing locations based on the current
belief state) or exploration (choosing locations that reduce un-
certainty in the belief state); they are best suited for greedy,
reactive sampling, requiring a prior estimate [23], or for cover-
age [35], [67], [68]. Algorithms that balance both exploration
and exploitation typically involve encoding the two objectives
separately and switching between them based on some con-
dition on the estimate, [37], [69], or defining a (potentially
arbitrary) weighted cost function that balances the trade-
off between the two objectives [22], [36], [38], [60]. Using
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ergodicity as an objective results in an algorithm that is suit-
able for both exploration-prioritizing coverage sampling or
exploitation-prioritizing “hotspot” sampling, without modifica-
tion (policy switching or user-defined weighted objectives [22],
[36], [37], [60], [69]). Moreover, the ergodic metric can be used
in combination with other metrics, like a tracking cost or a
terminal cost, but does not require either to be well posed.

A. Measuring Ergodicity

We use the distance from ergodicity between the time-
averaged trajectory and the EID as a metric to be minimized.
We assume a bounded n-dimensional workspace (the search
domain) X ⊂ Rn defined as [0, L1 ] × [0, L2 ]... × [0, Ln ]. We
define x(t) as the sensor trajectory in workspace coordinates
and the density function representing the EID as EID(x).

The spatial statistics of a trajectory x(t) are quantified by the
percentage of time spent in each region of the workspace

C(x) =
1
T

∫ T

0
δ [x − x(t))] dt (1)

where δ is the Dirac delta [1]. The goal is to drive the spatial
statistics of a trajectory x(t) to match those of the distribution
EID(x); this requires choice of a norm on the difference be-
tween the distributions EID(x) and C(x). We quantify the dif-
ference between the distributions, i.e., the distance from ergod-
icity, using the sum of the weighted squared distance between
the Fourier coefficients φk of the EID, and the coefficients ck

of distribution representing the time-averaged trajectory.1 The
ergodic metric will be defined as E , as follows:

E(x(t)) =
K∈Zn∑

k=0∈Zn

Λk [ck(x(t)) − φk]2 (2)

where K is the number of coefficients calculated along each
of the n dimensions, and k is a multi-index (k1 , k2 , ..., kn ).
Following [1], Λk = 1

(1+ ||k||2 )s is a weight, where s = n+1
2 ,

which places larger weight on lower frequency information.
Note that the notion of ergodicity used here does not strictly

require the use of Fourier coefficients in constructing an objec-
tive function. The primary motivation in using the norm on the
Fourier coefficients to formulate the ergodic objective is that it
provides a metric that is differentiable with respect to the trajec-
tory x(t). This particular formulation is not essential—any dif-
ferentiable method of comparing the statistics of a desired EID
to the spatial distribution generated by a trajectory will suffice,
however finding such a method is nontrivial. The Kullback–
Leibler divergence or Jensen–Shannon (J–S) divergence [21],
for example, commonly used metrics on the distance between
two distributions, are not differentiable with respect to the tra-
jectory x(t).2 On the other hand, by first decomposing both

1The Fourier coefficients φk of the distribution Φ(x) are computed using
an inner product, φk =

∫
X

φ(x)Fk(x)dx, and the Fourier coefficients of the
basis functions along a trajectory x(t), averaged over time, are calculated as

ck(x(t)) = 1
T

∫ T

0
Fk(x(t))dt, where T is the final time and Fk is a Fourier

basis function.
2Due to the Dirac delta in (1), the J–S divergence ends up involving evaluating

the EID along the trajectory x(t). In general we do not expect to have a closed

distributions into their Fourier coefficients, the inner product
between the transform and the expression for the time-averaged
distribution results in an objective that is differentiable with
respect to the trajectory.

B. Trajectory Optimization

For a general, deterministic, dynamic model for a mobile
sensor ẋ(t) = f(x(t),u(t)), where x ∈ Rm is the state and
u ∈ Rm the control, we can solve for a continuous trajectory
that minimizes an objective function based on both the measure
of the ergodicity of the trajectory with respect to the EID and
the control effort, defined as

J(x(t)) = γE [x(t)]︸ ︷︷ ︸
ergodic cost

+
∫ T

0

1
2
u(τ)T Ru(τ)

︸ ︷︷ ︸
control effort

. (3)

In this equation, γ ∈ R and R(τ) ∈ Rm×m are arbitrary design
parameters that affect the relative importance of minimizing the
distance from ergodicity and the integrated control effort. The
choice of ratio of γ to R plays the exact same role in ergodic
control as it does in linear quadratic control and other methods
of optimal control; the ratio determines the balance between the
objective—in this case ergodicity—and the control cost of that
objective. Just as in these other methods, changing the ratio will
lead to trajectories that perform better or worse with either more
or less control cost.

In [65], we show that minimization of (3) can be accom-
plished using an extension of trajectory optimization [70] and
derive the necessary conditions for optimality. The extension
of the projection-based trajectory optimization method from
[70] is not trivial as the ergodic metric is not a Bolza prob-
lem; however, Miller and Murphey [65] prove that the first-
order approximation of minimizing (3) subject to the dynamics
ẋ(t) = f(x(t),u(t)) is a Bolza problem and that trajectory
optimization can be applied to the ergodic objective. The op-
timization does not require discretization of search space or
control actions in space or time. While the long-time horizon
optimization we use is more computationally expensive than the
myopic, gradient-based approach in [1], each iteration of the op-
timization involves a calculation with known complexity. The
EID map and ergodic objective function could, however, also be
utilized within an alternative trajectory optimization framework
(e.g., using sequential quadratic programming). Additionally,
for the special case of ẋ = u, sample-based algorithms [58]
may be able to produce locally optimal ergodic trajectories that
are equivalent (in ergodicity) to the solution obtained using tra-
jectory optimization methods; this would not, however, be the
case for general nonlinear dynamics ẋ(t) = f(x(t),u(t)).

Ergodic optimal control allows for the time of exploration to
be considered as an explicit design variable. It can, of course, be

form expression for the EID, so this metric is not differentiable in a way that
permits trajectory optimization. Alternatively, replacing the Dirac delta in (1)
with a differentiable approximation (e.g., a Gaussian) would expand the range
of metrics on ergodicity, but would introduce additional computational expense
of evaluating an N -dimensional integral when calculating the metric and its
derivative.
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of short duration or long duration, but our motivation is largely
long duration. The idea is that one may want to execute a long
exploration trajectory prior to replanning. The most straightfor-
ward motivation is that integrating measurements and updating
the belief may be the more computationally expensive part of the
search algorithm [23], [29], [31], [37]. Overly reactive/adaptive
strategies—strategies that incorporate measurements as they
are received—are also likely to perform poorly when the es-
timate uncertainty is high [29], [37], [57] or in the presence
of (inevitable) modeling error. If, for example, the measure-
ment uncertainty is not perfectly captured by the measurement
model, the idealized Bayesian update can lead to overly reactive
control responses. Instead, one may wish to take enough data
such that the central limit theorem can be applied to the measure-
ment model so that the measurement model is only anticipated
to be applicable on average over the length of the exploratory
motion [71]. Future work will involve exploring the effects of
reducing the replanning horizon on the success of the estimation
algorithm.

C. Assumptions: Ergodic Trajectory Optimization

Ergodic trajectory optimization requires a controllable mo-
tion model for the robot and an EID function defined over the
sensor state space. The motion model can be nonlinear and/or
dynamic, one of the primary benefits of a trajectory optimiza-
tion approach. For this paper, we consider calculating search
trajectories in one and two dimensions (although the sensor dy-
namics can be higher dimensional). The trajectory optimization
method can be extended to search in higher dimensional search
spaces such as R3 and SE(2), so long as a Fourier transform
[72] exists for the manifold [66]. We consider only uncertainty
of static environmental parameters (e.g., fixed location and ra-
dius of an external target) assuming noisy measurements. We
assume deterministic dynamics.

IV. EXPERIMENTAL METHODS: SEARCH FOR STATIONARY

TARGETS USING THE SENSORPOD ROBOT

Although ergodic trajectory optimization is general to sensing
objectives with spatially distributed information, we describe
an application where the belief representation and EID calcula-
tion (steps A, B, and D in Fig. 2) are chosen for active localiza-
tion of stationary targets using the SensorPod robot. This allows
us to experimentally test and validate a closed-loop version of
the ergodic optimal control algorithm, described in Section III,
against several established alternatives for planning control al-
gorithms based on an information map.

Inspired by the electric fish, the SensorPod [see Fig. 1(a)]
has two excitation electrodes that create an oscillating electric
field. We use a single pair of voltage sensors—hence, a 1-D sig-
nal —on the body of the SensorPod to detect perturbations in
the field due to the presence of underwater, stationary, noncon-
ducting spherical targets. The expected measurement depends
on the location, size, shape, and conductivity of an object, as
well as the strength of the electric field generated by the robot;
for details, see [73]. The perturbed electric fields and resulting
differential measurements for targets in two locations relative to

Fig. 4. The SensorPod (gray) measures the difference between the field volt-
age at two sensors (labeled A and B above). The field (simulated isopotential
lines are plotted in black above) is generated by two excitation electrodes on
the SensorPod body. The field changes in the presence of a target with different
conductivity than the surrounding water. The 0 V line is bolded. The perturba-
tion caused by an object results in a different differential measurement between
sensors A and B based on the position of the object relative to the SensorPod.
Note that the SensorPod is not measuring the field itself (which is emitted by,
and moves with, the robot), but the voltage differential between two sensors in-
duced by disturbances in the field. In (a), a +0.2 mV expected voltage difference
between the sensors (A and B) on the SensorPod for a target located as shown;
in (b), a −0.2 mV difference is expected. Please refer to color version online.
For more information and an animation of this plot, please see the multimedia
video attachment.

the SensorPod are shown in Fig. 4, and the differential voltage
measurement is plotted in Fig. 5(a). Fig. 5(b) shows the expected
differential measurement for two candidate sensor trajectories.
The multimedia attachment provides additional intuition regard-
ing the SensorPod and the observation model. The solid line
trajectory is more informative, as measured using Fisher In-
formation, than the dashed line; our goal is to automatically
synthesize trajectories that are similarly more informative.

The objective in the experimental results presented in Section
V is to estimate a set of unknown, static, parameters describing
individual spherical underwater targets. Details and assump-
tions for implementation of both the Bayesian filter and the cal-
culation of the EID for the SensorPod robot, including for the
multiple target case, can be found in Appendix A; an overview
of the algorithm is provided here, corresponding to the diagram
in Fig. 2. For a graphical animated overview of the algorithm,
please also see the attached multimedia video.

The algorithm is initialized with the sensor state at the ini-
tial time x(0) and an initial probability distribution p(θ) for
the parameters θ. We represent and update the parameter esti-
mate using a Bayesian filter, which updates the estimated belief
based on collected measurements (see Fig. 2, step A). The ini-
tial distribution can be chosen based on prior information or,
in the case of no prior knowledge, assumed to be uniform on
bounded domains. At every iteration of the EEDI algorithm, the
EID is calculated by taking the expected value of the Fisher
information with respect to the belief p(θ) (see Fig. 2, step B).
For estimation of multiple parameters, we use the D-optimality
metric on the expected Fisher information matrix (FIM), equiva-
lent to maximizing the determinant of the expected information
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Fig. 5. Measurements collected by the SensorPod have a nonlinear and
nonunique mapping to target location. In (a), the expected differential volt-
age measurement (between A and B from Fig. 4) is plotted as a function of
robot centroid for a target (pink) located at X, Y = (0, 0). Please refer to
color version online. Two possible SensorPod trajectories are plotted in black
(solid and dashed). The target is placed below the robot’s plane of motion to
prevent collisions. In (b), simulated differential voltage measurements for the
trajectories in (a) are plotted as a function of time. The dashed trajectory in (a)
yields uninformative measurements (i.e., that would be possible to observe for
many potential target locations); the solid trajectory in (a) produces a series of
measurements that are unique for that target position and therefore useful for
estimation.

[51].3 In Fig. 6, the corresponding EIDs for two different belief
maps for 2-D target location (see Fig. 6(b) and (e)), as well as
the EID for estimating both 2-D target location and target ra-
dius [see Fig. (6c)], are shown. The EID is always defined over
the sensor configuration space (2-D), although the belief map
may be in a different or higher dimensional space (e.g., over
the 2-D workspace and the space of potential target radii). The
normalized EID is used to calculate an optimally ergodic search
trajectory for a finite time horizon (see Fig. 2, step C). The
trajectory is then executed, collecting a series of measurements
(see Fig. 2, step D, for time T ). Measurements collected in step
D are then used to update the belief p(θ), which is then used
to calculate the EID in the next EEDI iteration. The algorithm
terminates when the norm of the estimate falls below a specified
value.

For localizing and estimating parameters for multiple targets,
we initialize the estimation algorithm by assuming that there is
a single target present, and only when the norm on the variance
of the parameters describing that target falls below the tolerance
ε do we introduce a second target into the estimation. The al-
gorithm stops searching for new targets when one of two things
happen: 1) parameters for the last target added converge to val-

3Note that alternative choices of optimality criteria may result in different
performance for different problems based on, for example, the conditioning of
the information matrix. D-optimality is commonly used for similar applications,
and we found it to work well experimentally; however, the rest of the EEDI
algorithm is not dependent on this choice of optimality criterion.

Fig. 6. The EID is dependent on the measurement model and the current
probabilistic estimate. (b), (c), and (e) show examples of the EID for different
PDFs, shown in (a) and (d), and estimation tasks for the SensorPod measurement
model. The EID is calculated according to (12). In (a), a low-variance PDF of
2-D target location is shown. (b) shows the EID for target location for the PDF
in (a). In (c), the EID for target location and radius is plotted; the projection of
the corresponding PDF (defined in 3-D) onto the 2-D location space would be
similar to (a). In (d), a higher variance PDF of 2-D target location. is shown,
and (e) shows the EID map for the PDF in (d). In all cases, calculation of the
EID produces a map over the search domain, regardless of the estimation task.

ues that match those describing a target previously estimated
(this would only happen if all targets have been found, as the
EID takes into account expected measurements from previous
targets), or 2) parameters converge to an invalid value (e.g., a
location outside of the search domain), indicating failure. The
algorithm terminates when the entropy of the belief map for all
targets falls below a chosen value; for the 0 target case, this
means that the SensorPod has determined that there are no ob-
jects within the search space. Note that the EID for new targets
takes into account the previously located targets.

A. Assumptions: Stationary Target Localization using
the SensorPod (Ergodic Exploration of Distributed
Information Example)

We make a number of assumptions in choosing steps A, B, and
D in Fig. 2, detailed in Appendix A. We assume a measurement
is made according to a known differentiable measurement model
(a function of sensor location and parameters) and assume the
measurements have zero-mean, Gaussian, additive noise.4 We
assume independence between individual measurements, given
that the SensorPod state is known and the measurement model
is not time varying. Measurement independence is commonly
assumed, for example, in occupancy grid problems [29]; how-
ever, more sophisticated likelihood functions that do not rely
on this assumption of independence [74] could be used without
significantly changing the structure of the algorithm.

For the single-target case, we maintain a joint probability dis-
tribution for parameters describing the same target as they are
likely to be highly correlated. In order to make the problem of

4Related work in active electrosense has shown that zero-mean Gaussian is a
reasonable assumption for sensor noise [5].
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finding an arbitrary number of objects tractable, we assume that
the parameters describing different targets are independent and
that a general additive measurement model may be used, sim-
ilar to [24], [28], and [75]. Although the voltage perturbations
from multiple objects in an electric field do not generally add
linearly, we make the assumption that the expected measure-
ment for multiple objects can be approximated by summing the
expected measurement for individual objects, which simplifies
calculations in Appendix A.5 While the computation of Fisher
Information and the likelihood function used for the Bayesian
update depend on the assumptions mentioned above, the er-
godic optimal control calculations do not, and only depend on
the existence of an EID map.

The SensorPod is attached to a 4-degree-of-freedom (DOF)
gantry system, which allows use of a kinematic model of the
SensorPod in (3), i.e., the equations of motion for the experimen-
tal system are ẋ(t) = u(t), where x is the SensorPod position
in 1-D (see Sections V-A and V-E) or 2-D (see Sections V-B–
V-D). The kinematic model and 2-D search space also enable
comparison with other search methods; however, it should be
noted that EEDI is applicable to dynamic nonlinear systems as
well, as will be demonstrated in simulation in Section V-G.

Ergodic trajectory optimization, presented in Section III, cal-
culates a trajectory for a fixed-length time horizon T , assuming
that the belief, and therefore the EID map, remains stationary
over the course of that time horizon. In the following experi-
ments, this means that each iteration of the closed-loop algo-
rithm illustrated in Fig. 2 involves calculating a trajectory for a
fixed time horizon, executing that trajectory in its entirety, and
using the series of collected measurements to update the EID
map before calculating the subsequent trajectory. The complete
search trajectory, from initialization until termination, is there-
fore comprised of a series of individual trajectories of length T ,
where the belief and EID are updated in between (this is also
true for the alternative strategies used for comparison in Section
V). The EID map could alternatively be updated, and the ergodic
trajectory replanned after each measurement or subset of mea-
surements, in a more traditional receding horizon fashion, or the
time horizon (for planning and updating) could be optimized.

B. Performance Assessment

In the experiments in Section V, we assess performance using
time to completion and success rate. Time to completion refers
to the time elapsed before the termination criterion is reached,
and a successful estimate obtained. We present results for time
until completion as the “slowdown factor.” The slowdown factor
is a normalization based on minimum time until completion for
a particular set of experiments or simulation. For a trial to be
considered successful, the mean of the estimate must be within
a specified range of the true target location, and in Section V-
C, the number of targets found must be correct. The tolerance
used on the distance of the estimated parameter mean to the true

5Additional experimental work (not shown), demonstrated that at a minimum
of 6-cm separation between objects, there is no measurable error using this
approximation; in the experimental and simulated trials, we use a minimum
separation of 12 cm.

parameter values was 1 cm for the 1-D estimation experiments
and 2 cm for 2-D experiments. In both cases, this distance was
more than twice the standard deviation used for our termination
criterion.

A maximum runtime was enforced in all cases (100 s for 1-D
and 1000 s for 2-D experiments). For simple experimental sce-
narios, e.g., estimation of the location of a single target in 2-D
(see Section V-B), these time limits were longer than the time
to completion all algorithms in simulation. Additional motiva-
tion for limiting the runtime were constraints on the physical
experiment and the observation that when algorithms failed,
they tended to fail in such a way that the estimate variance
never fell below a certain threshold (excluding the random walk
controller), and the success criteria listed above could not be
applied.

V. TRIAL SCENARIOS AND RESULTS

Experiments were designed to determine whether the EEDI
algorithm performs at least as well as several alternative choices
of controllers in estimating of the location of stationary target(s),
and whether there were scenarios where EEDI outperforms these
alternative controllers, e.g., in the presence of distractor objects
or as the number of targets increases. Experiments in Sections
V-A–V-D are performed using the kinematically controlled Sen-
sorPod robot and simulation, and these results are summarized
in Section V-F. In Section V-G, we transition to simulation-only
trials to demonstrate successful closed-loop estimation of target
location, but compare trajectories and performance using three
models of the robot: the kinematic model of the experimental
system, a kinematic unicycle model, and a dynamic unicycle
model.

In Sections V-A-V-D, we compare the performance of EEDI
to four different algorithms (1–4) based on the following three
implementations of information maximizing controllers and a
random walk controller:

1) Information gradient ascent controller (IGA): The IGA
controller drives the robot in the direction of the gradi-
ent of the EID at a fixed velocity of 4 cm/s, inspired by
controllers used in [30], [32], [33], and [47].

2) Information maximization controller (IM): The Sensor-
Pod is controlled to the location of the EID maximum, at
a constant velocity for time T , similar to [26], [28], [50],
[56].

3) Greedy expected entropy reduction (gEER): At each iter-
ation, 50 locations are randomly selected, within a fixed
distance of the current position. The SensorPod is con-
trolled to the location that maximizes the expected change
in entropy, integrated over the time horizon T.6 This ap-
proach is similar to the method of choosing control actions
in [8], [9], [25], and [38].

6The expected entropy reduction is H (θ) − E [H (θ)|V + (t)], where
H (θ) = −

∫
p(θ) log p(θ)dθ is the entropy of the unknown parameter θ [46],

[75], and V + (t) is the expected measurement, calculated for each candidate
trajectory x+ (t), the current estimate p(θ), and the measurement model.
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Fig. 7. In (a), the tank configuration is illustrated for estimation of target location in 1-D (see Sections V-A and V-E). The target object (green) was placed at
a fixed distance of y = 0:2 m from the SensorPod line of motion, and the distractor (pink) at yd = 0:25 m. In (b), the expected voltage measurement over 1-D
sensor state for the target (pink) and distractor (green) objects alone, as well as when both target and distractor are present (black), are shown. In (c), an example of
the tank configuration for 2-D localization of two targets is shown. For all trials, SensorPod and object locations are measured from the center of the tank. Targets
were placed below the robot’s plane of motion to prevent collisions. The orientation of the robot is held constant. The voltage sensors sample at 100 Hz, with an
assumed standard deviation of 100 μV for the measurement noise, the experimentally observed noise level of the SensorPod sensors.

4) Random walk (RW): The SensorPod executes a randomly
chosen constant velocity trajectory from the current sensor
position for time T , similar to [5].

The planning horizon T was the same for all controllers so
that the same number of measurements is collected.

Alternative algorithms, for example, a greedy gradient-based
controller (IGA) or a random walk (RW), produce control sig-
nals with less computational overhead than the EEDI algorithm
because the EEDI involves solving a continuous trajectory op-
timization problem and evaluating an additional measure on
ergodicity. In the next section, we demonstrate several scenar-
ios in which the tradeoff in computational cost is justified if
the estimation is likely to fail or suffer significantly in terms
of performance using less expensive control algorithms. Ad-
ditionally, the alternative algorithms, while appropriate for the
kinematically-controlled SensorPod robot, do not generalize in
an obvious way to nonlinear dynamic models. This is one of our
reasons for desiring a measure of nonmyopic search that can be
expressed as an objective function (i.e., ergodicity). Given an
objective, optimal control is a convenient means by which one
makes dynamically dissimilar systems behave similarly to each
other according to a metric of behavior. In the case of explo-
ration, the measure is of coverage relative to the EID—however,
it is constructed.

A. Performance Comparison for One-Dimensional Target
Estimation in the Presence of an Unmodeled Distractor

In this section, the robot motion is constrained to a single
dimension, and the estimation objective is the 1-D location θ of
a single stationary target with known radius. A distractor object
is placed in the tank, as an unmodeled disturbance, in addition
to the (modeled) target object. Both the target and the distractor
were identical nonconductive, 2.5-cm-diameter spheres, placed
at different fixed distances from the SensorPod’s line of motion
[see Fig. 7(a)]. The voltage signal from the distractor object

TABLE I
PERFORMANCE MEASURES FOR ESTIMATION OF SINGLE-TARGET

LOCATION IN 1-D

Description EEDI gEER IM IGA RW

Exp. Success % 100 50 60 50 80
Sim. Success % 100 60 71 66 99
Exp. Slowdown Factor 1 1.4 2.1 2.7 2.7
Sim. Slowdown Factor 1 2.1 2.1 2.3 6.3

Results for time until completion (slowdown factor) are only shown
for successful trials. Slowdown factor of 1 corresponds to 15.2 s in
experiment, 7.6 s in simulation. Results are shown for 100 simulated
and 10 experimental trials.

is similar but not identical to that of the target [see Fig. 7(b)].
Placing the distractor object further from the SensorPod line of
motion results in decreased magnitude and rate of change of
the voltage trace. Introducing an unmodeled distractor even in
a 1-D sensing task was enough to illustrate differences in the
performance of the EEDI Algorithm and Algorithms 1–4.

We performed 100 trials in simulation and 10 in experiment,
with the target position held constant and the distractor’s po-
sition along the SensorPod’s line of motion randomized.7 The
results for success rate and average slowdown factor (for suc-
cessful trials), averaged over all trials in simulation and ex-
periment, are summarized in Table I. The slowdown factor is
the average time until completion, normalized by the minimum
average time until completion in experiment or simulation. Re-
sults presented in Table I demonstrate that the EEDI algorithm
localizes the target successfully 100% of the time, and does so
more quickly than Algorithms 1–4.

7The only additional consideration in the experimental scenario was that the
tank walls and the water surface have a nonnegligible effect on measurements.
We compensate for this by collecting measurements on a fine grid in an empty
tank, and subtracting these measurements at each measurement point during
estimation.
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Fig. 8. Examples of closed-loop optimally ergodic search in (a) simulation
and (b) experiment are shown above. The EID is shown as a density plot in
blue, and the search trajectory in red (refer to color version online). The belief
and trajectory are recalculated every second in simulation and every 8 s in
experiment.

Differences in time to completion between experimental and
simulated trials are due to experimental velocity constraints. In
simulation, the time horizon used for trajectory optimization,
and therefore between PDF updates, was one T = 1 s. A longer
(T = 8 s) time horizon was used for experimental trajectory
optimization, avoiding the need to incorporate fluid dynamics
in the measurement model; at higher velocities, the water surface
is sufficiently disturbed to cause variations in the volume of fluid
the field is propagating through, causing unmodeled variability
in sensor measurements.

Fig. 8 shows experimental and simulated examples of closed-
loop 1-D trajectories generated using the EEDI algorithm. Given
no prior information (a uniform belief), the ergodic trajectory
optimization initially produces uniform-sweep-like behavior. In
the experimental trial shown in Fig. 8(b), the termination criteria
on the variation of the PDF are reached in only two iterations
of the EID algorithm, a result of the longer time horizon and re-
sulting higher density measurements. The distributed sampling
nature of the EEDI algorithm can be better observed in the sim-
ulated example shown in Fig. 8(a), where shorter time horizons
and therefore more sparse sampling over the initial sweep re-
quire more iterations of shorter trajectories. As the EID evolves
in Fig. 8(a), the shape of the sensor trajectory changes to reflect
the distribution of information. For example, the sensor visits
the local information maximum resulting from voltage pertur-
bations due to the target and the local information maximum
due to the distractor between 1 and 4 s. Experimental results for
this trial were presented in [76].

B. Performance Comparison for Estimating the
Two-Dimensional Location of a Single Target

In this section, the robot is allowed to move through a 2-D
workspace and the objective was to compare the performance
of EEDI to gEER and RW for 2-D, stationary target local-

ization, i.e., θ = (θx, θy ). No distractor object was present as
the difference in performance between algorithms was notable
even without introducing a distractor object. Fig. 7(c) shows
an example tank configuration for multiple target estimation in
2-D. We omit comparison with IGA and IM for 2-D experi-
ments; RW is the simplest controller to calculate and resulted in
high success percentage for 1-D trials, and gEER, with per-
formance similar to IGA and IM on average in 1-D trials, is
qualitatively similar to our approach and more commonly used.

Ten trials were run for each of the EEDI, gEER, and RW
algorithms, both in experiment and simulation, with the target
location randomly chosen. Fig. 9 shows the convergence of the
belief at 10 s intervals (T = 10), as well as the correspond-
ing EID and ergodic trajectory. The performance measures for
experimental and simulated trials using the EEDI, gEER, and
RW algorithms are shown in Table II. In simulation, all three
algorithms have 100% success rate, while the gEER and RW
controllers have a 10% lower success rate in the experimental
scenario. The gEER controller requires roughly 10–20% more
time to meet the estimation criteria, whereas the RW controller
requires about two to three times more time. As mentioned in the
previous section, although gEER performs well in this scenario,
it did not perform as well with distractors.

C. Performance Comparison for Estimating the
Two-Dimensional Location of Multiple Targets

Having demonstrated that the EEDI algorithm modestly out-
performs gEER and drastically outperforms RW (in terms of
time) for localizing a single stationary target in 2-D, we next
sought to compare EEDI performance localizing multiple targets
[see Fig. 7(c)]. We compare the EEDI algorithm to the gEER
and RW controllers, again leaving out IM and IGA because of
their poor performance in Section V-A. We performed localiza-
tion estimation for scenarios where there were either 0, 1, 2, or 3
targets in the tank, all 2.5-cm diameter. We conducted five trials
in simulation and experiment, for each number of targets (with
all locations selected randomly). Fig. 10 shows the percentage
of successful trials and average slowdown factor as a function
of the number of targets in the tank. The slowdown factor is
calculated by normalizing average time until completion by the
minimum average time until completion for all algorithms and
all target numbers.

In the experimental scenario [see Fig. 10(a)], the EEDI al-
gorithm had a higher success rate than both the gEER and RW
controllers for higher numbers of objects. The slowdown factor
using the EEDI algorithm was very similar to the gEER algo-
rithm for 0–2 objects (the gEER controller never successfully
localized 3 objects), and much shorter than the RW controller.
In simulation [see Fig. 10(b)], the success rate of the EEDI al-
gorithm matched that of the RW; however, the RW slowdown
factor was much greater.

D. Performance Degradation With Signal-to-Noise Ratio

The next trial is used to demonstrate an extension of the
EEDI Algorithm to nonlocation parameters and to examine
performance degradation as a function of the signal-to-noise
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Fig. 9. Progression of the estimate of the 2-D target location using the EEDI algorithm. As the algorithm progresses, collected measurements evolve the estimate
from a uniform distribution over the workspace (top-leftmost figure), to a concentrated distribution at the correct location. At each interval, the EID is calculated
from the updated estimate, which is then used to calculate an ergodic search trajectory.

TABLE II
PERFORMANCE MEASURES FOR ESTIMATION OF SINGLE-TARGET

LOCATION IN 2-D

Description EEDI gEER RW

Exp. Success % 100 90 90
Sim. Success % 100 100 100
Exp. Slowdown Factor 1 1.2 2.9
Sim. Slowdown Factor 1 1.1 2.6

Results for time until completion (slowdown factor)
are only shown for successful trials. Slowdown fac-
tor of 1 corresponds to 64 s in experiment, 65.2 s in
simulation. Results are shown for ten simulated and
ten experimental trials.

ratio. As mentioned, the EEDI algorithm can also be used to de-
termine additional parameters characterizing target shape, ma-
terial properties, etc. The only requirement is that there be a
measurement model dependent on—and differentiable with re-
spect to—that parameter. Parameters are incorporated into the
algorithm in the same way as the parameters for the spatial lo-
cation of a target (see Appendix B). We, therefore, demonstrate
effectiveness of the EEDI algorithm for estimation of target
radius as well as 2-D target location. We estimated target lo-
cation and radius for ten different radii varying between 0.5
and 1.5 cm. Five trials were performed for each target radius,
with randomly chosen target locations. By varying the radius
of the target, which for our sensor results in scaling the signal-
to-noise ratio,8 we are able to observe relative performance of
several comparison algorithms as the signal-to-noise ratio drops
off. Trials were performed in simulation only. Fig. 11 shows the
mean success rate of the five simulated trials as a function of tar-
get radius. For EEDI, gEER, and RW, the success rate decreased
as the radius decreased. This is expected, as the magnitude of
the voltage perturbation, and therefore the signal-to-noise ratio,
scales with r3 . For objects with r < 0.9 cm, the peak of the ex-
pected voltage perturbation is less than the standard deviation of

8The signal drops approximately with the fourth power of the distance from
a spherical target and increases with the third power of target radius [77].

Fig. 10. Performance measures for estimation of multiple target locations in
2-D for (a) five experimental and (b) five simulated trials. Slowdown factor of
1 corresponds to 50 s in simulation, 60 s in experiment.

the sensor noise. Nevertheless, the EEDI algorithm had a higher
success rate than gEER and RW for radii between 0.5 and 1 cm.

E. Comparison of Sensitivity to Initial Conditions

Finally, we use the 1-D estimation scenario (the same as that
in Section V-A) to illustrate the relative sensitivity of the EEDI
algorithm and Algorithms 1–4 to the initial conditions of the
sensor with respect to locations of the target and an unmodeled
disturbance. This captures the likelihood of different controllers
to become stuck in local minima resulting from the presence of
a distractor object which produces a measurement similar but
not identical to the target.

We executed a total of 110 simulated trials for each algorithm.
Ten trials were simulated for 11 equally spaced target locations.
For each target location, the distractor location was randomized,
with a minimum distance of 25-cm distance from the target
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Fig. 11. Success rate for estimation of location and radius, as a function of
target radius, for simulated trials only.

Fig. 12. Performance measures for estimation of single-target location in 1-D
are shown for the EEDI algorithm and Algorithms 1–4. Results of 110 simulated
trials are shown for each algorithm; for each of 11 target locations, ten simulated
trials were performed with the 1-D distractor object location randomized (a
fixed distance from the SensorPod line of motion was maintained). A slowdown
factor of 1 corresponds to 5.61 s; slowdown factor is not shown for target
distances with less than 10% success rate.

(along the SensorPod line of motion, to prevent electrosensory
occlusion). One hundred and ten trials allowed significant sepa-
ration of the results from different controllers. For all trials, the
SensorPod position was initialized to (x, y) = 0.

Fig. 12 shows the performance measures for Algorithms 1–4.
The slowdown factor is calculated by normalizing average time
until completion by the minimum average time over all algo-
rithms and all target locations. When the target was located
near the SensorPod initial position, EEDI, gEER, IGA, and RW
perform comparably in terms of success percentage and time,
with the exception being the RW controller, which is predictably
slower. Success rate drops off using gEER and IGA for target po-
sitions further from the SensorPod initial position. Note that IM

performs poorly if the target is located exactly at the robot start
position, due to the nonlinear characteristics of electrolocation.
A 0-V measurement would be observed for a target located at
the sensor position or anywhere sufficiently far from the sensor;
this means that the initial step of the IM algorithm has a high
probability of driving the sensor to a position far from the tar-
get. EEDI, on the other hand, localized the target in essentially
constant time and with 0% failure rate regardless of location.
The RW algorithm performs as well as the EEDI algorithm in
terms of success rate, but is approximately eight times slower.

F. Summary of Experimental Results

In Sections V-A and V-B, we provide examples of success-
ful estimation trajectories for the EEDI algorithm. In the 2-D
estimation problem in Section V-B, we observe that both suc-
cess rate and time until completion are comparable using both
EEDI and gEER algorithms (with time being much longer for
the random walk controller). While this scenario illustrates that
our algorithm performs at least as well as a greedy algorithm in
a simple setting, and more efficiently than a random controller,
where we really see the benefit in using the EEDI algorithm is
when the robot is faced with more difficult estimation scenar-
ios. Experiments in Section V-E showed that the EEDI algorithm
was robust with respect to initial conditions (i.e., whether or not
the sensor happens to start out closer to the distractor or target
object) where Algorithms 1–4 are sensitive. For Algorithms 1–
4, the further the target was from the initial SensorPod position,
the more likely the estimation was to fail or converge slowly due
to local information maxima caused by the distractor. Similarly,
when the estimation objective was target localization for vary-
ing numbers of targets in Section V-C (a scenario where many
local information maxima are expected), the success rate of the
EEDI algorithm is higher than expected entropy reduction and
completion time is shorter than the random walk as the num-
ber of targets increased. Finally, the success rate of the EEDI
algorithm degraded the least quickly as the signal-to-noise ra-
tio declined. In addition to outperforming alternative algorithms
in the scenarios described, the ergodic trajectory optimization
framework enables calculation of search trajectories for nonlin-
ear dynamically constrained systems.

G. Comparison of Different Dynamic Models

One of the benefits of ergodic optimal control is that the
control design does not change when we switch from a kine-
matic robot model to a dynamic robot model. While the physical
SensorPod robot is controlled kinematically due to the gantry
system, we can simulate nonlinear and dynamic models to see
how dynamics might influence information gathering during un-
tethered movement for future SensorPod iterations. We simulate
automated target localization using the EEDI algorithm for the
SensorPod robot using three different models for the robot dy-
namics. All parameters in the ergodic optimal control algorithm
are exactly the same in all three cases: the weights on minimiz-
ing control effort versus maximizing ergodicity, in (3), were set
to γ = 20, R = 0.01I, (where I is a 2 × 2 identity matrix), and
the planning time horizon was T = 10. In all three cases below,
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Fig. 13. Progression of the estimate of the 2-D target location using the EEDI
algorithm, in simulation, for three different systems performing the same task;
(a) linear, kinematic system, (b) kinematic unicycle model (nonlinear, kinematic
system), and (c) dynamic unicycle model (nonlinear, dynamic system). As the
algorithm progresses, collected measurements evolve the estimate (heatmap)
from a uniform distribution over the workspace [top-leftmost figure in each
(a)-(c)] to a concentrated distribution at the correct location. At each interval,
the EID (grayscale) is calculated from the updated estimate, which is then used
to calculate an ergodic search trajectory (green).

Fig. 14. Trace of the covariance of the 2-D target location estimate is plotted
as a function of time. We observe similar overall convergence behavior for all
three systems for this particular set of initial conditions and weighted objective
function. The covariance is updated after executing each 10-s long trajectory.

the measurement model was identical and defined relative to the
XY position of the robot, although the system state differs. The
only changes in the implementation are the robot’s state and
equations of motion for the three systems, defined below.

1) Linear Kinematic System: The state is x(t) = (x(t),
y(t)), where x(t) and y(t) are Cartesian coordinates, and the
equations of motion are ẋ(t) = u(t). The initial conditions
were x(0) = (0.1, 0.1).

2) Nonlinear Kinematic System: We use the standard kine-
matic unicycle model. The state is x(t) = (x(t), y(t), θ(t)),
where x(t) and y(t) are Cartesian coordinates and θ(t) is a
heading angle, measured from the x-axis in the global frame.
The control u(t) = (v(t), ω(t)) consists of a forward velocity
v(t) and angular velocity ω(t). The equations of motion are

ẋ(t) =

⎡
⎢⎢⎣

ẋ(t)

ẏ(t)

θ̇(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v(t) cos θ(t)

v(t) sin θ(t)

ω(t)

⎤
⎥⎥⎦. (4)

The initial conditions were x(0) = (0.1, 0.1, 0).
3) Nonlinear Dynamic System: We use a dynamic varia-

tion on the unicycle model. In this case, the state is x(t) =
(x(t), y(t), θ(t), v(t), ω(t)), where x, y, θ, v, ω are the same
as in the kinematic unicycle model. The control inputs are
u(t) = (a(t), α(t)), with the equations of motion

ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ(t)

ẏ(t)

θ̇(t)

v̇(t)

ω̇(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(t) cos θ(t)

v(t) sin θ(t)

ω(t)

1
2
a(t)

α(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The initial conditions were x(0) = (0.1, 0.1, 0, 0, 0). Fig. 13 il-
lustrates the progression of the EEDI algorithm for static, single-
target localization for all three systems. In all cases, we use a
finite time horizon of T = 10 s for trajectory optimization, and
the PDF is initialized to a uniform distribution. While the types
of trajectories produced are qualitatively different because of the
different dynamic constraints, we observe similar convergence
behavior for all three systems for this particular set of initial
conditions and weights in the objective function. In Fig. 14, the
trace of the estimate covariance is plotted as a function of EEDI
iterations.

VI. CONCLUSION

We have presented a receding horizon control algorithm for
active estimation using mobile sensors. The measurement model
and belief on the estimates are used to create a spatial map of
expected information gain. We implement our algorithm on a
robot that uses a bioinspired sensing approach called electrolo-
cation [4]. Ergodic trajectory optimization with respect to the
expected information distribution, as opposed to information
maximization, is shown to outperform alternative information
maximization, entropy minimization, and random walk con-
trollers in scenarios when the signal-to-noise ratio is low or in
the presence of disturbances.

One major advantage of ergodic trajectory optimization is
that the formulation is suitable for systems with linear or
nonlinear, kinematic, or dynamic motion constraints, as shown
in Section V-G. Additionally, the method does not formally rely
on discretization of the search space, the action space, or the be-
lief space. Although numerical integration schemes are used in
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solving differential equations or updating the belief, discretiza-
tion is an implementation decision as opposed to a part of the
problem statement or its solution. Another benefit is that nei-
ther assuming information submodularity [23], [35], [58] nor
selecting waypoints [42], [49] is required to distribute measure-
ments among different regions of high expected information
when planning over a long-time horizon. Using ergodicity as an
objective also means that the algorithm is suitable for both cov-
erage [67], [68] or “hotspot” sampling, without modification.
If the information density is very concentrated, the optimally
ergodic trajectory will be similar to an information maximizing
solution.9 On the other hand, if the information density is diffuse
(or the planning time horizon very long), the optimally ergodic
solution will approximate a coverage solution. In Figs. 9 and
13, coverage-like solutions are observed for the initial nearly
uniform belief; although the belief converges, the EID does not
converge to a unimodal distribution due to nonlinearities in the
measurement model.

This paper deals exclusively with finding information about
a finite set of stationary targets. However, ergodic search gen-
eralizes to both time-varying systems as well as estimation of
a continuum of targets (e.g., fields [20], [21]) in a reasonably
straightforward fashion. Field exploration can be achieved by
using an appropriate choice of measurement model and belief
update in the EID calculation [20], [21], [35]–[38]. Time can
be incorporated into the measurement model describing not just
where information about a parameter might be obtained, but
also when—by extending the state in Section III-B to use time
as a state.

The formulation of ergodic exploration provided in this paper
also assumes that the dynamics are deterministic. However, the
determinism restriction primarily makes calculations and expo-
sition simpler. Adding stochastic process noise to the model can
be achieved by replacing the deterministic, finite-dimensional
equations of motion with the Fokker–Planck equations [71] for
the nonlinear stochastic flow, without changing the mathemat-
ical formulation of ergodic control. Moreover, stochastic flows
can be efficiently computed [78], [79] for a wide variety of
robotic problems. Even when they cannot be, a wide class of
stochastic optimal control problems are easily computable [80],
[81], although for different objectives than ergodicity. Although
generalization will be easier in some cases than others, the
generalization of ergodic control to uncertain stochastic pro-
cesses may be initially approached rather procedurally. Gener-
alizing ergodic control to more general uncertain (nonstochastic)
systems, such as robust control strategies [82], would substan-
tially complicate matters and would require a much more chal-
lenging generalization that would be a very promising avenue
of future research.

9Note that this would only happen for measurement models that cause the EID
to converge to a low-variance unimodal distribution that approximates a delta
function (where the equivalence between an information maximizing solution
and an ergodic solution follows directly from their definitions); this does not
happen in the examples shown in Section V. Because of the highly nonlinear
measurement model, the EID converges to a multimodal density function, as
shown in Fig 6(b).

In addition to the various limiting assumptions mentioned in
Sections III-C and IV-A in constructing the EEDI algorithm for
target localization, one of the major limitations of the current
formulation is computational expense. Computational expense
stems both from the need to calculate a map of the EID over
the workspace in order to formulate the ergodic objective func-
tion, and the need to calculate trajectories over a finite-time
horizon. The projection-based trajectory optimization involves
solving a set of differential equations, which scale quadratically
with the state. This is not necessarily a problem for applications
where offline control calculations are acceptable, or in a reced-
ing horizon framework that uses efficient numerical methods.
To that end, preliminary work has explored solving a discrete
version of ergodic trajectory optimization using variational in-
tegrators [83]. Nevertheless, for applications that have a linear
measurement model, trivial dynamics, and a simple environ-
ment, standard strategies like gradient-based approaches that
only locally approximate the expected information [30], [32],
[33], [47] would be effective and much more computationally
efficient. The advantage of using ergodic trajectory optimiza-
tion is that it is possible to formulate and solve exploration tasks
whether or not the environment is simple or the measurement
model linear, and to perform robustly when these “nice” condi-
tions cannot be guaranteed, as in the experimental work featured
in this paper.

APPENDIX

ERGODIC EXPLORATION OF DISTRIBUTED INFORMATION

FOR STATIONARY TARGET LOCALIZATION

USING THE SENSORPOD ROBOT

A. Bayesian Probabilistic Update

The goal is to estimate a set of m unknown, static, parame-
ters θ = [θ1 , θ2 , ..., θm ] describing individual underwater tar-
gets. We assume a measurement V is made according to a
known measurement model V = Υ(θ,x) + δ, where the mea-
surement model Υ(·) is a differentiable function of sensor lo-
cation and target parameters, and δ represents zero-mean Gaus-
sian noise. Specifically, we use a previously derived measure-
ment model for submerged, sufficiently isolated, nonconducting
spheres [73]. The joint distribution p(θ) is updated every iter-
ation k of the EEDI algorithm using a Bayesian filter based on
the measurement Vk (t), the measurement model, and the sensor
trajectory xk (t) over the planning period T ,

pk+1 (θ|Vk (t),xk (t)) = η p (Vk (t)|θ,xk (t)) pk (θ). (6)

p(θ) is the PDF calculated at the previous iteration, pk

(θ, Vk−1(t),xk−1(t))), η is a normalization factor, and
p(Vk (t)|θ,xk (t)) is the likelihood function for θ given Vk (t).

Assuming independence between individual measurements,
given that the SensorPod state is known and the measurement
model is not time varying, the likelihood function for all mea-
surements taken along xk (t) is the product of the likelihood
of taking a single measurement Vk (tj ) at time tj , for all times
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tj ∈ [t0 , T ]. Assuming a Gaussian likelihood function, this is

p(Vk (t)|θ,xk (t) =
T∏

j=t0

1√
2πσ

× exp
[
− (Vk (tj ) − Υ(θ,xk (tj )))2

2σ2

]
.

(7)

1) Probabilistic Update for Multiple Targets: We assume
an additive measurement model h(Θ) to describe the expected
measurement for multiple targets

h(Θ, x(tj )) = Υ(θ1 ,x(tj )) + Υ(θ2 ,x(tj )) + · · · (8)

+ Υ(θm,x(tj )),

where θi is an m × 1 vector made up of m parameters de-
scribing the ith target, and Θ is the M length set of vectors
[θ1 ,θ2 , ...,θM ], where M is the number of targets. Because we
assume the measurements Υ(θi) for different targets are inde-
pendent of each other, we use different Bayesian filter updates
for each target parameter set, evaluating M instances of (6). The
likelihood function for parameter set θi is

p(V (t)|(θi)) =
T∏

j=1

1√
2πσ

exp
[
(H(θi ,x(tj )) − V (tj ))2

σ2

]

where H(θi , x(tj )) is the marginalization [71] of h(Θ, x(tj ))
over the parameters describing all other targets θj �=i .

B. Expected Information Density

Fisher information [54] defines the informative regions of the
search space based on the measurement model, a function of the
parameter θ. Assuming Gaussian noise, the Fisher information
for estimation of θ reduces to

I(θ, x) =
(

∂Υ(θ, x)
∂θ

· 1
σ

)2

. (9)

The Fisher information I(θ, x) is the amount of information a
measurement provides at location x for a given estimate of θ
(based on the measurement model).

For estimation of multiple parameters θ from a random vari-
able v, the Fisher information is represented as an m × m ma-
trix. For a measurement model Υ(θ,x) each element of the FIM
can be simplified to

Ii,j (x,θ) =
1
σ2

∂2Υ(θ,x)
∂θi∂θj

. (10)

Note that while we assume Gaussian noise to simplify the
expression in (10), use of Fisher information in this context
does not strictly require Gaussian noise. The Fisher information
can be calculated offline and stored based on the measurement
model, which reduces the number of integrations necessary at
each iteration.

Since the estimate of θ is represented as a probability dis-
tribution function, we take the expected value of each element
of I(x,θ) with respect to the joint distribution p(θ) to calcu-
late the expected information matrix, Φ(x). This is an m × m

matrix, where the (i, j)th element is

Φi,j (x) =
1
σ2

∫
θi

∫
θj

∂2Υ(θ,x)
∂θi∂θj

p(θi, θj ) dθjdθi. (11)

This expression can be approximated as a discrete sum as re-
quired for computational efficiency.

Using the D-optimality metric [51] on the expected informa-
tion matrix, the EID that is

EID(x) = det Φ(x). (12)

1) Expected Information Density for Multiple Targets: Since
the total information is additive for independent observations,
we can write

I(Θ, x) = I(θ1 , x) + · · · + I(θM , x) (13)

where each term is calculated as in (10).
The EID for all parameters, for all targets, can be calculated

as the sum of the determinants of the expected value of each
term in (13), Φi(x), given the set of independent probabilities
p(θi) for each set of parameters θi describing a single target

EID(x) = η

M∑
i

det Φi(x). (14)

Since the FIM is positive semidefinite, the determinant of the
FIM for each target is nonnegative. Note that this is just one
approach of combining the expected information from several
independent sources into a single map. Another option would
have been to calculate the D-optimality for each target individ-
ually and calculate the subsequent trajectory based only on EID
for the target with the highest integrated information (prior to
normalization).
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