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Compressed and Privacy-Sensitive Sparse Regression
Shuheng Zhou, John Lafferty, Fellow, IEEE, and Larry Wasserman

Abstract—Recent research has studied the role of sparsity in
high-dimensional regression and signal reconstruction, estab-
lishing theoretical limits for recovering sparse models. This line
of work shows that -regularized least squares regression can
accurately estimate a sparse linear model from noisy examples in
high dimensions. We study a variant of this problem where the
original input variables are compressed by a random linear
transformation to examples in dimensions, and establish
conditions under which a sparse linear model can be successfully
recovered from the compressed data. A primary motivation for
this compression procedure is to anonymize the data and preserve
privacy by revealing little information about the original data.
We characterize the number of projections that are required
for -regularized compressed regression to identify the nonzero
coefficients in the true model with probability approaching one,
a property called “sparsistence.” We also show that -regular-
ized compressed regression asymptotically predicts as well as an
oracle linear model, a property called “persistence.” Finally, we
characterize the privacy properties of the compression procedure,
establishing upper bounds on the mutual information between the
compressed and uncompressed data that decay to zero.

Index Terms—Capacity of multiple-antenna channels, com-
pressed sensing, high-dimensional regression, lasso, regulariza-
tion, privacy, sparsity.

I. INTRODUCTION

T WO issues facing the use of statistical learning methods
in applications are scale and privacy. Scale is an issue in

storing, manipulating, and analyzing extremely large, high-di-
mensional data. Privacy is, increasingly, a concern whenever
large amounts of confidential data are manipulated within an
organization. It is often important to allow researchers to an-
alyze data without compromising the privacy of individuals or
leaking confidential information outside the organization. In this
paper, we show that sparse regression for high-dimensional data
can be carried out directly on a compressed form of the data,
in a manner that can be shown to guard privacy in an informa-
tion-theoretic sense.
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The approach we develop here compresses the data by a
random linear or affine transformation, reducing the number
of data records exponentially, while preserving the number
of original input variables. These compressed data can then
be made available for statistical analyses; we focus on the
problem of sparse linear regression for high-dimensional data.
Informally, our theory ensures that the relevant predictors can
be learned from the compressed data as well as they could
be from the original uncompressed data. Moreover, the actual
predictions based on new examples are as accurate as they
would be had the original data been made available. However,
the original data are not recoverable from the compressed data,
and the compressed data effectively reveal no more information
than would be revealed by a completely new sample. At the
same time, the inference algorithms run faster and require
fewer resources than the much larger uncompressed data would
require. In fact, the original data need never be stored; they can
be transformed “on the fly” as they come in.

In more detail, the data are represented as a matrix .
Each of the columns is an attribute, and each of the rows
is the vector of attributes for an individual record. The data are
compressed by a random linear transformation

(1)

where is a random matrix with . It is also natural
to consider a random affine transformation

(2)

where is a random matrix. Such transformations have
been called “matrix masking” in the privacy literature [1]. The
entries of and are taken to be independent Gaussian random
variables, but other distributions are possible. We think of
as “public,” while and are private and only needed at the
time of compression. However, even with and known,
recovering from requires solving a highly underdeter-
mined linear system and comes with information-theoretic pri-
vacy guarantees, as we demonstrate.

In standard regression, a response is
associated with the input variables, where are independent,
mean zero, additive noise variables. In compressed regression,
we assume that the response is also compressed, resulting in the
transformed response given by

(3a)

(3b)

(3c)

Note that under compression, the transformed noise is
not independent across examples.
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In the sparse setting, the parameter vector is sparse,
with a relatively small number of nonzero coefficients

. Two key tasks are to identify the rel-
evant variables, and to predict the response for a new input
vector . The method we focus on is -regularized least
squares, also known as the lasso [2]. The main contributions of
this paper are two technical results on the performance of this
estimator, and an information-theoretic analysis of the privacy
properties of the procedure. Our first result shows that the lasso
is sparsistent under compression, meaning that the correct
sparse set of relevant variables is identified asymptotically.
Omitting details and technical assumptions for clarity, our
result is the following.

Sparsistence (Theorem 3.4): If the number of compressed
examples satisfies

(4)

and the regularization parameter satisfies

and (5)

then the compressed lasso solution

(6)

includes the correct variables, asymptotically

(7)

Our second result shows that the lasso is persistent under
compression. Roughly speaking, persistence [3] means that the
procedure predicts well, as measured by the predictive risk

(8)

where now is a new input vector and is the associated
response. Persistence is a weaker condition than sparsistency,
and in particular does not assume that the true model is linear.

Persistence (Theorem 4.1): Given a sequence of sets of esti-
mators , the sequence of compressed lasso estimators

(9)

is persistent with the oracle risk over uncompressed data with
respect to , meaning that

as (10)

in case and the radius of the ball satisfies
.

Our third result analyzes the privacy properties of compressed
regression. We consider the problem of recovering the uncom-
pressed data from the compressed data .
To preserve privacy, the random matrices and should re-
main private. However, even in the case where and is

known, if the linear system is highly
underdetermined. We evaluate privacy in information-theoretic
terms by bounding the average mutual information
per matrix entry in the original data matrix , which can be
viewed as a communication rate. Bounding this mutual infor-
mation is intimately connected with the problem of computing
the channel capacity of certain multiple-antenna wireless com-
munication systems [4], [5].

Information Resistance (Propositions 5.1 and 5.2): The rate
at which information about is revealed by the compressed
data satisfies

(11)

where the supremum is over distributions on the original data .

As summarized by these results, compressed regression is a
practical procedure for sparse learning in high-dimensional data
that has provably good properties. This basic technique has con-
nections in the privacy literature with matrix masking and other
methods, yet most of the existing work in this direction has
been heuristic and without theoretical guarantees; connections
with this literature are briefly reviewed in Section II-C. Com-
pressed regression builds on the ideas underlying compressed
sensing and sparse inference in high-dimensional data, topics
which have attracted a great deal of recent interest in the sta-
tistics and signal processing communities; the connections with
this literature are reviewed in Sections II-B and II-A.

The remainder of the paper is organized as follows. In
Section II, we review relevant work from high-dimensional sta-
tistical inference, compressed sensing, and privacy. Section III
presents our analysis of the sparsistency properties of the com-
pressed lasso. Our approach follows the methods introduced
by [6] in the uncompressed case. Section IV proves that com-
pressed regression is persistent. Section V derives upper bounds
on the mutual information between the compressed data and
the uncompressed data , after identifying a correspondence
with the problem of computing channel capacity for a certain
model of a multiple-antenna mobile communication channel.
Section VI includes the results of experimental simulations,
showing that the empirical performance of the compressed
lasso is consistent with our theoretical analysis. We evaluate
the ability of the procedure to recover the relevant variables
(sparsistency) and to predict well (persistence). The technical
details of the proof of sparsistency are collected at the end of the
paper, in Section VII-B. The paper concludes with a discussion
of the results and directions for future work in Section VIII.

II. BACKGROUND AND RELATED WORK

In this section, we briefly review relevant related work in
high-dimensional statistical inference, compressed sensing, and
privacy, to place our work in context.

A. Sparse Regression

We adopt standard notation where a data matrix has
variables and records; in a linear model, the response
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is thus an -vector, and the noise is indepen-
dent and mean zero, . The usual estimator of is the
least squares estimator

(12)

However, this estimator has very large variance when is large,
and is not even defined when . An estimator that has
received much attention in the recent literature is the lasso
[2], defined as

(13a)

(13b)

where is a regularization parameter. The practical success
and importance of the lasso can be attributed to the fact that in
many cases is sparse, that is, it has few large components.
For example, data are often collected with many variables in
the hope that at least a few will be useful for prediction. The
result is that many covariates contribute little to the prediction
of , although it is not known in advance which variables are
important. Recent work has greatly clarified the properties of
the lasso estimator in the high-dimensional setting.

One of the most basic desirable properties of an estimator is
consistency; an estimator is consistent in case

(14)

The authors of [7] have recently shown that the lasso is consis-
tent in the high-dimensional setting. If the underlying model is
sparse, a natural yet more demanding criterion is to ask that the
estimator correctly identify the relevant variables. This may be
useful for interpretation, dimension reduction, and prediction.
For example, if an effective procedure for high-dimensional data
can be used to identify the relevant variables in the model, then
these variables can be isolated and their coefficients estimated
by a separate procedure that works well for low-dimensional
data. An estimator is sparsistent1 if

(15)

where . Asymptotically, a sparsis-
tent estimator has nonzero coefficients only for the true rele-
vant variables. Sparsistency proofs for high-dimensional prob-
lems have appeared recently in a number of settings. In [8], the
authors consider the problem of estimating the graph underlying
a sparse Gaussian graphical model by showing sparsistency of
the lasso with exponential rates of convergence on the proba-
bility of error. Zhou and Yu [9] show sparsistency of the lasso
under more general noise distributions. Wainwright [6] char-
acterizes the sparsistency properties of the lasso by showing
that there is a threshold sample size above which the
relevant variables are identified, and below which the relevant
variables fail to be identified, where is the number
of relevant variables. More precisely, [6] shows that when
comes from a Gaussian ensemble, there exist fixed constants

1This terminology is due to Pradeep Ravikumar.

and , where when each
row of is chosen as an independent Gaussian random vector

, then for any , if

(16)

then the lasso identifies the true variables with probability ap-
proaching one. Conversely, if

(17)

then the probability of recovering the true variables using the
lasso approaches zero. These results require certain incoher-
ence assumptions on the data ; intuitively, it is required that
an irrelevant variable cannot be too strongly correlated with the
set of relevant variables. Wainwright’s method [6] of analysis
is particularly relevant to the current paper; the details will be
described in the following section. In particular, we refer to this
result as the Gaussian Ensemble result. However, it is impor-
tant to point out that under compression, the noise is
not independent. This prevents one from simply applying the
Gaussian Ensemble results to the compressed case.

An alternative goal is accurate prediction. In high dimensions,
it is essential to regularize the model in some fashion in order to
control the variance of the estimator and attain good predictive
risk. Persistence for the lasso was first defined and studied in
[3]. Given a sequence of sets of estimators , the sequence of
estimators is called persistent in case

(18)

where is the prediction risk of a new
pair . Thus, a sequence of estimators is persistent if it
asymptotically predicts as well as the oracle within the class,
which minimizes the population risk; it can be achieved under
weaker assumptions than are required for sparsistence. In par-
ticular, persistence does not assume the true model is linear, and
it does not require strong incoherence assumptions on the data.
The results of the current paper show that sparsistence and per-
sistence are preserved under compression.

B. Compressed Sensing

Our work has connections to compressed sensing [10]–[13].
However, in a sense, our motivation here is the opposite to that
of compressed sensing. While compressed sensing of allows
a sparse to be reconstructed from a small number of random
measurements, our goal is to reconstruct a sparse function of

. Indeed, from the point of view of privacy, approximately
reconstructing , which compressed sensing shows is possible
if is sparse, should be viewed as undesirable; we return to
this point in Section V.

Several authors have considered variations on compressed
sensing for statistical signal processing tasks [14]–[17]. The
focus of this work is to consider certain hypothesis testing prob-
lems under sparse random measurements, and a generalization
to classification of a signal into two or more classes. Here one
observes , where , , and is a known
random measurement matrix. The problem is to select between
the hypotheses

(19)
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where is additive Gaussian noise. Importantly, the setup
exploits the “universality” of the matrix , which is not selected
with knowledge of . The proof techniques use concentration
properties of random projection, which underlie the celebrated
Johnson–Lindenstrauss Lemma [18]. The compressed regres-
sion problem we introduce can be considered as a more chal-
lenging statistical inference task, where the problem is to select
from an exponentially large set of linear models, each with a
certain set of relevant variables with unknown parameters, or to
predict as well as the best linear model in some class. Moreover,
a key motivation for compressed regression is privacy; if privacy
is not a concern, simple subsampling of the data matrix could
be an effective compression procedure.

C. Privacy

A typical type of scenario we envision our framework being
applied to is where one wishes to perform a regression analysis
of medical data without revealing detailed information about
individual members of the population. For example, it may be
of interest to analyze which genes are relevant to a particular
disease, using a database of gene expression profiles collected
from microarrays, but it is desirable not to make public the full
gene profiles of individuals in the database. Under compression,
only a small number of random averages of the individual gene
profiles is revealed.

Research on privacy in statistical data analysis has a long his-
tory, going back at least to [19]; we refer to [1] for discussion and
further pointers into this literature. The compression method we
employ has been called matrix masking in the privacy literature.
In the general method, the data matrix is transformed
by premultiplication, postmultiplication, and addition into a new

matrix
(20)

The transformation operates on data records for fixed co-
variates, and the transformation operates on covariates for
a fixed record. The method encapsulated in this transformation
is quite general, and allows the possibility of deleting records,
suppressing subsets of variables, data swapping, and including
simulated data. In our use of matrix masking, we transform the
data by replacing each variable with a relatively small number
of random averages of the instances of that variable in the data.
In other work, the authors in [20] consider the problem of pri-
vacy-preserving regression analysis in distributed data, where
different variables appear in different databases but it is of in-
terest to integrate data across databases. The recent work of [21]
considers random orthogonal mappings where

is a random rotation (rank ), designed to preserve the suf-
ficient statistics of a multivariate Gaussian and therefore allow
regression estimation, for instance. This use of matrix masking
does not share the information-theoretic guarantees we present
in Section V. We are not aware of previous work that analyzes
the asymptotic properties of a statistical estimator under matrix
masking in the high-dimensional setting.

Our setting differs from the classical information-theoretic
scenarios for private communication. Shannon [22] formalized
the notion of communication with perfect security in informa-
tion-theoretic terms. If Alice sends a -bit message to Bob

across a channel via an encoded -bit message , then the trans-
mission is secure if the mutual information satisfies

. Thus, Alice and Bob need to share a -bit key. Wyner [23]
introduced the wiretap channel, where Bob receives a noisy
version of the message , but an eavesdropper Eve also
receives a noisy version of message through a different
channel. The communication is considered to be secure as long
as , and reliable as long as
for some decoder . The capacity of such a channel is the
largest value of the rate for which these competing goals
are possible. In our setting the goal is to estimate the vector
where , from noisy observations and , in such
a way that the mutual information , is asymp-
totically vanishing if .

The work in [24] is closely related to the current paper at
a high level, in that it considers low-rank random linear trans-
formations of either the row space or column space of the data

. The authors in [24] note the Johnson–Lindenstrauss lemma,
which implies that norms are approximately preserved under
random projection, and argue heuristically that data mining pro-
cedures that exploit correlations or pairwise distances in the
data, such as principal components analysis and clustering, are
just as effective under random projection. The privacy analysis
is restricted to observing that recovering from requires
solving an underdetermined linear system, and arguing that this
prevents the exact values from being recovered. In our work,
we identify privacy with the rate of information communicated
about through under matrix masking, maximizing over
all distributions on . We furthermore identify this with the
problem of computing, or bounding, the Shannon capacity of a
multiple-antenna wireless communication channel, as modeled
by [5] and [4]. A related information-theoretic quantification of
privacy was formulated by [25].

Finally, we mention the currently active line of work on cryp-
tographic approaches to privacy, which have come mainly from
the theoretical computer science community. Dwork [26] re-
visits the notion of privacy formulated by Dalenius [27], which
intuitively demands that nothing can be learned about an in-
dividual record in a database that cannot be learned without
access to the database. An impossibility result is given which
shows that, appropriately formalized, this strong notion of pri-
vacy cannot be achieved. An alternative notion of differential
privacy is proposed, which allows the probability of a disclosure
of private information to change by only a small multiplicative
factor, depending on whether or not an individual participates
in the database. This line of work has recently been built upon
in [28], with connections to compressed sensing, showing that
any method that gives accurate answers to a large fraction of
randomly generated subset sum queries must violate privacy.

III. COMPRESSED REGRESSION IS SPARSISTENT

In the standard setting, is an matrix,
is a vector of noisy observations under a linear model, and
is considered to be a constant. In the high-dimensional setting
we allow to grow with . The lasso refers to the following
quadratic program:

minimize such that (21)



850 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 2, FEBRUARY 2009

In Lagrangian form, this becomes the optimization problem

(22)

where the scaling factor is chosen by convention and con-
venience. For an appropriate choice of the regularization param-
eter , the solutions of these two problems coincide.

In compressed regression we project each column
of to a subspace of dimensions, using an random
projection matrix . We shall assume that the entries of are
independent Gaussian random variables

(23)

Let be the compressed matrix of covariates, and let
be the compressed response. Our objective is to es-

timate in order to determine the relevant variables, or to pre-
dict well. The compressed lasso is the optimization problem, for

minimize (24)

with being the set of optimal solutions

(25)

Thus, the transformed noise is no longer independent and iden-
tically distributed (i.i.d.), a fact that complicates the analysis. It
is convenient to formalize the model selection problem using
the following definitions.

Definition 3.1 (Sign Consistency): A set of estimators is
sign consistent with the true if

as (26)

where is given by
if
if
if .

(27)

As a shorthand, we use

s.t.

to denote the event that a sign consistent solution exists.

The lasso objective function is convex in , and strictly
convex for . Therefore, the set of solutions to the lasso
and compressed lasso (24) is convex: if and are two
solutions, then by convexity is also a solution
for any .

Definition 3.2 (Sparsistency): A set of estimators is spar-
sistent with the true if

s.t. as
(28)

Clearly, if a set of estimators is sign consistent then it is spar-
sistent. Although sparsistency is the primary goal in selecting
the correct variables, our analysis establishes conditions for the
slightly stronger property of sign consistency.

All recent work establishing results on sparsity recovery as-
sumes some form of incoherence condition on the data matrix

. Such a condition ensures that the irrelevant variables are not
too strongly correlated with the relevant variables. Intuitively,
without such a condition the lasso may be subject to false pos-
itives and negatives, where a relevant variable is replaced by a
highly correlated relevant variable. To formulate such a condi-
tion, it is convenient to introduce an additional piece of notation.
Let be the set of relevant variables and let

be the set of irrelevant variables. Then
and denote the corresponding sets of columns of the matrix

. We will impose the following incoherence condition; related
conditions are used by [29] and [30] in a deterministic setting.

Definition 3.3 ( -Incoherence): Let be an matrix and
let be nonempty. We say that is -incoherent
if for some

(29)

where denotes the matrix -norm.

Although it is not explicitly required, we only apply
this definition to such that columns of satisfy

. We can now state the
main result of this section.

Theorem 3.4: Suppose that, before compression, we have
, where each column of is normalized to have

-norm , and . Assume that is -inco-
herent, where , and define and

. We observe, after compression, that

(30)

where , , and , where
. Suppose

(31)

with and , and
satisfies

and

(32)

Then the compressed lasso is sparsistent

s.t. as
(33)

where is an optimal solution to (24).

Note that an appropriate choice of the regularization param-
eter is

(34)
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We remark that the upper bound on is required to bound the
norm of the deviation . The lower bound on the com-
pressed sample size depends on , the square of the number
of relevant variables, rather than on , as in the uncompressed
case; however, our assumptions are significantly different. A de-
tailed discussion of the relationship with the Gaussian ensemble
results of [6] is given in Section VII-A.

A. Outline of Proof for Theorem 3.4

Our overall approach is to follow a deterministic analysis, in
the sense that we analyze as a realization from the distribu-
tion of from a Gaussian ensemble. Assuming that satisfies
the -incoherence condition, we show that with high probability

also satisfies the -incoherence condition, and hence the
incoherence conditions (106a) and (106b) used in [6]. In addi-
tion, we make use of a large-deviation result that shows is
concentrated around its mean , which is crucial for the re-
covery of the true sparsity pattern. It is important to note that the
compressed noise is not i.i.d., even when conditioned on .

In more detail, we first show that with high probability
for some , the projected data satisfies the following
properties.

1) Each column of has -norm at most
.

2) is -incoherent, and also satisfies the incoherence con-
ditions (106a) and (106b).

In addition, the projections satisfy the following properties.
1) Each entry of is at most for some

constant , with high probability.
2) for

any with .
These facts allow us to condition on a “good” and incoherent

, and to proceed as in the deterministic setting with Gaussian
noise. Our analysis then follows that of [6]. Recall that is the
set of relevant variables in and is the
set of irrelevant variables. To explain the basic approach, first
observe that the Karush–Kuhn–Tucker (KKT) conditions imply
that is an optimal solution to (24) , i.e., , if and
only if there exists a subgradient

for and otherwise

such that

(35)

Hence, the can be shown to be equiv-

alent to requiring the existence of a solution such that
, and a subgradient , such that

the following equations hold:

(36a)

(36b)

where and by definition of . The
existence of solutions to (36a) and (36b) can be characterized
in terms of two events and . The proof proceeds by
showing that and as .

In the remainder of this section, we present the main steps of
the proof, relegating the technical details to Section VII-B. To
avoid unnecessary clutter in notation, we will use to denote
the compressed data and to denote the compressed
response , and to denote the compressed noise.

B. Incoherence and Concentration Under Random Projection

In order for the estimated to be close to the solution of the
uncompressed lasso, we require the stability of inner products
of columns of under multiplication with the random matrix

, in the sense that

(37)

Toward this end, we have the following, adapted from [13],
where for each entry in , the variance is instead of .

Lemma 3.5 (Adapted From [13]): Let with
. Assume that is an random matrix

with independent entries (independent of ).
Then for all

(38)

with and .

The proof follows the same reasoning as in [13], and is
omitted. We next summarize the properties of that we re-
quire. The following result implies that, with high probability,
incoherence is preserved under random projection.

Proposition 3.6: Let be a (deterministic) design matrix
that is -incoherent with -norm , and let be an
random matrix with independent entries. Suppose
that

(39)

for some , where are defined in Lemma 3.5. Then
with probability at least , the following properties hold
for :

1) is -incoherent; in particular

(40a)

(40b)

2) is incoherent in the sense of (106a) and (106b)

(41a)

(41b)

3) The norm of each column is approximately preserved,
for all

(42)

Finally, we have the following large deviation result for the
projection matrix , which guarantees that is
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small entry-wise. The proof of this result uses inequalities from
[31] and [32] on random variables and the sum of products
of normals.

Theorem 3.7: If is an random matrix with indepen-
dent entries , then satisfies

C. Proof of Theorem 3.4

We first state necessary and sufficient conditions on the event
. Note that this is essentially equivalent

to Lemma 1 in [6]; a proof of this lemma is included in Sec-
tion VII-D for completeness.

Lemma 3.8: Assume that the matrix is invertible.
Then for any given and noise vector ,

holds if and only if the following two
conditions hold:

(43)

(44)

Let and be the vector with in the th
position, and zeros elsewhere; hence , . Our proof of
Theorem 3.4 follows that of [6]. We first define a set of random
variables that are relevant to (43) and (44)

Condition (43) holds if and if only the event

(45)

holds. Condition (44) holds if the event

(46)

holds, where is sufficient to guarantee that
condition (44) holds.

Now, in the proof of Theorem 3.4, we assume that has been
fixed, and and behave nicely, in accordance with
the results of Section III-B. Let as defined
in Theorem 3.7. From here on, we use to denote a fixed
symmetric matrix with diagonal entries that are

and off-diagonal entries that are . We now prove
that and both converge to one. We begin
by stating two technical lemmas that will be required.

Lemma 3.9: Suppose that is bounded
away from and

Then

implies that

Lemma 3.10 (Gaussian Comparison): For any Gaussian
random vector

(47)

Analysis of . Note that for each , for ,
By Proposition 3.6, we have

that

Let us define

from which we obtain

Hence, we need to show that

It is sufficient to show

By Markov’s inequality and the Gaussian Comparison
Lemma 3.10, we obtain that

Finally, let us use
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to represent the projection matrix; see (48a)–(48d) at the bottom
of the page, where by Proposition 3.6,
and for

given that and and the fact that
is a symmetric matrix

Consequently, condition (32a) is sufficient to ensure that
. Thus, as

so long as .
Analysis of . We now show that . Using

the triangle inequality, we obtain the upper bound

The second -norm is a fixed value given a deterministic .
Hence, we focus on the first norm. We now define, for all ,
the Gaussian random variable

Given that , we have for all that
and (49) also at the bottom of the page, where
. We first bound the first term of (49). By (41b),

we have that for all

(50)

We next bound the second term of (49). Let ,
where and . By definition,

where
Thus,

(48a)

(48b)

(48c)

(48d)

(49)
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(51)

We next require the following fact.

Claim 3.11: If satisfies (31), then for all , we have
.

The proof appears in Section VII-F. Using Claim 3.11, we
have by (50), (51) that

By the Gaussian Comparison Lemma 3.10, we have

We now apply Markov’s inequality to show that
due to condition (32b) in the Theorem statement and
Lemma 3.9, according to the expression at the bottom of
the page, which completes the proof.

IV. COMPRESSED REGRESSION IS PERSISTENT

Persistence [3] is a weaker condition than sparsistency. In
particular, we drop the assumption that the model is linear

. Moreover, we do not require any incoher-
ence assumptions on . Roughly speaking, persistence implies
that a procedure predicts well. More precisely, consider a new
pair and suppose we want to predict from . The
predictive risk using predictor is

(52)

Note that this is a well-defined quantity even though we do not
assume that . The result of [3] shows that

(53)

as long as . This follows from a uniform
law of large numbers on the risk over the ball

, of the form

(54)

We show a similar result in the compressed setting. We use the
estimator based on the lasso run on the compressed data of
dimension ; we omit the subscript from wherever we
put together. Define and denote

as

(55)

Then we can rewrite the risk as , where
. The training error in the uncompressed case is then

where

(56)

and where

which are i.i.d. random vectors having the same distribution as
. Now define

(57)

In the compressed case, we replace the empirical risk with

(58)

Given compressed dimension , the original design matrix
dimension and , let

(59)
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Let minimize subject to

(60)

Consider the compressed lasso estimator which minimizes
subject to

(61)

Assumption 1: There exist constants and such that for
every

(62)

This assumption allows the use of Bernstein’s inequality, and
is sufficient to show persistence in the uncompressed case.

Assumption 2: Let denote the columns of .
Let be a constant such that

(63)

Theorem 4.1: Under Assumptions 1 and 2, given a sequence
of sets of estimators for

, where consists of all coefficient vectors such that
, the sequence of com-

pressed lasso procedures as in (103) is persistent

(64)

when for some .
Proof: First note that

We have that

(65)

We claim that, given with chosen so that
holds, then

(66)

where is the same as (56), but (57) de-
fines the matrix . Hence, given for
some , combining (65) and (66), we have for

and

(67)

By the definition of as in (60) and ,
we immediately have

(68)

given that

(69a)

(69b)

(69c)

(69d)

Thus, for every , event is con-
tained in

It follows that , given for some ,
, and

as

Therefore, . The theorem follows from
the definition of persistence.

It remains to show (66). We first show the following claim;
note that with clearly satisfies the con-
dition.

Claim 4.2: Let . Then

so long as for some chosen constant and
satisfying (63),

Proof: let denote a generic column
vector of . Let . Under our assumptions, there
exists such that

(70)

where . We have
so long as . Then

We have, with probability , that
. The claim follows by the union bound for

.

Thus, we assume that for all , and use
the triangle inequality to bound the first expression at the
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bottom of the page. We first compare each entry of with
that of .

Claim 4.3: Assume that . By
taking

(71)

where as in Lemma 3.5 and is
defined in Claim 4.2.

Proof: Following arguments that appear before (117a), and
by Lemma 3.5, it is straightforward to verify:

where as in Lemma 3.5. There are at
most unique events given that both matrices are
symmetric; the claim follows by the union bound.

Using Bernstein’s inequality, under Assumption 1, we have
that

(72)

We have by the union bound and (72), (71), Claim 4.2, and
Claim 4.3, the second expression at the bottom of the page.
Hence, given with , by taking

we have

(73)

which completes the proof of the theorem.

Remark 4.4: We can interpret the above result as quantifying
the “cost of compression” in terms of the rate at which the excess
risk converges to zero. For simplicity, suppose here that

, , and . The result of [3] implies
that the excess risk converges to zero at the rate

(74)

Our result above shows that, with compression in the regime
where , the excess risk converges to zero at the
much slower rate

(75)

The ratio of the uncompressed to compressed excess risk con-
vergence rates is .

Remark 4.5: The main difference between the sequence of
compressed lasso estimators and the original uncompressed se-
quence is that and together define the sequence of estima-
tors for the compressed data. Here is allowed to grow from

to ; hence for each fixed

such that (76)

defines a subsequence of estimators. In Section VI, we run simu-
lations that compare the empirical risk to the oracle risk on such
a subsequence for a fixed , to illustrate the compressed lasso
persistency property.

V. INFORMATION-THEORETIC ANALYSIS OF PRIVACY

In this section, we derive bounds on the rate at which the
compressed data reveal information about the uncompressed
data . Our general approach is to consider the mapping

as a noisy communication channel, where the channel
is characterized by multiplicative noise and additive noise .

where
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Since the number of symbols in is , we normalize by this
effective block length to define the information rate per
symbol as

(77)

Thus, we seek bounds on the capacity of this channel, where sev-
eral independent blocks are coded. A privacy guarantee is given
in terms of bounds on the rate decaying to zero. Intu-
itively, if , then the com-
pressed data reveal, on average, no more information about
the original data than could be obtained from an independent
sample.

Our analysis yields the rate bound . Under
the lower bounds on in our sparsistency and persistence
analyses, this leads to the information rates

(sparsistency)

(persistence.)

It is important to note, however, that these bounds may not be
the best possible since they are obtained assuming knowledge
of the compression matrix , when in fact the privacy protocol
requires that and are not public. Thus, it may be possible
to show a faster rate of convergence to zero. We make this sim-
plification since the capacity of the underlying communication
channel does not have a closed form, and appears difficult to an-
alyze in general. Conditioning on yields the familiar Gaussian
channel in the case of nonzero additive noise .

In the following subsection, we first consider the case where
additive noise is allowed; this is equivalent to a multiple-an-
tenna model in a Rayleigh flat-fading environment. While our
sparsistency and persistence analysis has only considered

, additive noise is expected to give greater privacy guarantees.
Thus, extending our regression analysis to this case is an impor-
tant direction for future work. In Section V-B, we consider the
case where with a direct analysis. This special case does
not follow from analysis of the multiple antenna model.

A. Privacy Under the Multiple Antenna Channel Model

In the multiple-antenna model for wireless communication
[4], [5], there are transmitter and receiver antennas in a
Raleigh flat-fading environment. The propagation coefficients
between pairs of transmitter and receiver antennas are modeled
by the matrix entries ; they remain constant for a coherence
interval of time periods. Computing the channel capacity over
multiple intervals requires optimization of the joint density of

transmitted signals. The authors of [4] prove that the capacity
for is equal to the capacity for , and is achieved
when factors as a product of a isotropically distributed
unitary matrix and a random matrix that is diagonal, with
nonnegative entries. They also show that as gets large, the ca-
pacity approaches the capacity obtained as if the matrix of prop-
agation coefficients were known. Intuitively, this is because
the transmitter could send several “training” messages used to

estimate , and then send the remaining information based on
this estimate.

More formally, the channel is modeled as

(78)

where , , , and
, where the latter is a power constraint.

The compressed data are then conditionally Gaussian, with

(79a)

(79b)

Thus, the conditional density is given by

(80)

which completely determines the channel. Note that this distri-
bution does not depend on , and the transmitted signal affects
only the variance of the received signal.

The channel capacity is difficult to compute or accu-
rately bound in full generality. However, an upper bound
is obtained by assuming that the multiplicative coefficients

are known to the receiver. In this case, we have that
, and the mutual information

is given by

(81a)

(81b)

(81c)

Now, conditioned on , the compressed data can
be viewed as the output of a standard additive noise Gaussian
channel. We thus obtain the upper bound

(82a)

(82b)

(82c)

(82d)

where inequality (82c) comes from assuming the columns
of are independent, and inequality (82d) uses Jensen’s in-
equality and concavity of . Summarizing, we’ve shown
the following result.

Proposition 5.1: Suppose that and the com-
pressed data are formed by

(83)
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where is with independent entries and
is with independent entries . Then the

information rate satisfies

(84)

B. Privacy Under Multiplicative Noise

When , or equivalently , the above analysis
yields the trivial bound . Here we derive a separate
bound for this case; the resulting asymptotic order of the infor-
mation rate is the same, however.

Consider first the case where , so that there is a single
column in the data matrix. The entries are independently sam-
pled as where has mean zero and bounded variance

. Let . An upper bound on the mu-
tual information again comes from assuming the com-
pression matrix is known. In this case

(85a)

(85b)

where the second conditional entropy in (85a) is zero since
. Now, the conditional variance of sat-

isfies

(86)

Therefore

(87a)

(87b)

(87c)

(87d)

(87e)

where inequality (87b) follows from the chain rule and the fact
that conditioning reduces entropy, inequality (87c) is achieved
by taking , a Gaussian, and inequality (87d) uses
concavity of . In the case where there are columns
of , taking each column to be independently sampled from a
Gaussian with variance gives the upper bound

(88)

Summarizing, we have the following result.

Proposition 5.2: Suppose that and the com-
pressed data are formed by , where is with
independent entries . Then the information rate

satisfies

(89)

Note that our results from Section IV imply that the ratio of the
uncompressed excess risk to the compressed excess risk decays
at the rate . Here we see that the information rate,
assuming is known, decays at the faster rate

.

VI. EXPERIMENTS

In this section, we report the results of simulations designed
to validate the theoretical analysis presented in the previous sec-
tions. We first present results that indicate the compressed lasso
is comparable to the uncompressed lasso in recovering the spar-
sity pattern of the true linear model, in accordance with the anal-
ysis in Section III. We then present experimental results on per-
sistence that are in close agreement with the theoretical results
of Section IV.

A. Sparsistency

Here we run simulations to compare the compressed lasso
with the uncompressed lasso in terms of the probability of suc-
cess in recovering the sparsity pattern of . We use random ma-
trices for both and , and reproduce the experimental condi-
tions shown in [6]. A design parameter is the compression factor

(90)

which indicates how much the original data are compressed.
The results show that when the compression factor is large
enough, the thresholding behaviors as specified in (16) and (17)
for the uncompressed lasso carry over to the compressed lasso,
when is drawn from a Gaussian ensemble. In general, the
compression factor is well below the requirement that we have
in Theorem 3.4 in case is deterministic.

In more detail, we consider the Gaussian ensemble for the
projection matrix , where are independent.
The noise vector is always composed of i.i.d. Gaussian random
variables , where . We consider Gaussian
ensembles for the design matrix with both diagonal and
Toeplitz covariance. In the Toeplitz case, the covariance is
given by

(91)

We use . Both and satisfy conditions (107a)
and (107b) and (109) [9]. For , , while for

, and [6], for the uncom-
pressed lasso in (16) and in (17).

In the following simulations, we carry out the lasso using
procedure that implements the LARS algorithm of
[33] to calculate the full regularization path; the parameter is
then selected along this path to match the appropriate condition
specified by the analysis. For the uncompressed case, we run

such that

(92)
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and for the compressed case we run such that

(93)

In each individual plot shown below, the covariance
and model are fixed across all curves

in the plot. For each curve, a compression factor
is chosen for the compressed lasso,

and we show the probability of success for recovering the signs
of as the number of compressed observations increases,
where for , for

. Thus, the number of compressed observations is , and
the number of uncompressed observations is . Each
point on a curve, for a particular or , is an average over
200 trials; for each trial, we randomly draw , , and

. However, remains the same for all 200 trials, and is
fixed across different sets of experiments for the same sparsity
level.

We consider two sparsity regimes

for

(94a)

for and

(94b)

The coefficient vector is selected to be a prefix of a fixed
vector

That is, if is the number of nonzero coefficients, then

if
otherwise.

(95)

As an exception, for the case , we set
.

After each trial, outputs a “regularization path,”
which is a set of estimated models such that each

is associated with a corresponding regularization parameter
, which is computed as

(96)

The coefficient vector for which is closest to the
value is then evaluated for sign consistency, where

(97)

If , the trial is considered a success,
otherwise, it is a failure. We allow the constant that scales

to change with the experimental configuration (covariance

, compression factor , dimension , and sparsity ), but
is a fixed constant across all along the same curve. The

plots in Fig. 1 show the empirical probability of the event
, which is a lower bound for that of

the event , for the sublinear sparsity
regime with . The results for other sparsity regimes are
qualitatively the same. The plots clearly demonstrate that the
compressed lasso recovers the true sparsity pattern as well as
the uncompressed lasso.

B. Persistence

We now study the behavior of predictive and empirical risks
under compression. In this section, we refer to

as the code that solves the following -constrained op-
timization problem directly, based on algorithms described by
[34]:

(98a)

such that (98b)

Let us first define the following -balls and for a fixed
uncompressed sample size and dimension , and a varying
compressed sample size . By [3], given a sequence of sets of
estimators

where (99)

the uncompressed Lasso estimator is persistent over .
Given , Theorem 4.1 shows that, given a sequence of sets
of estimators

where

(100)

for , the compressed Lasso estimator
as in (61) is persistent over .

We use simulations to illustrate how close the compressed
empirical risk computed through (105) is to that of the best com-
pressed predictor as in (60) for a given set , the size of
which depends on the data dimension of an uncompressed
design matrix , and the compressed dimension ; we also
illustrate how close these two type of risks are to that of the
best uncompressed predictor defined over a given set for all

.
We let the row vectors of the design matrix be independent

identical copies of a random vector . For sim-
plicity, we generate , where and ,

, and ; note that , al-
though the persistence model need not assume this. Note that
for all

(101)

Hence, the risk of the model constructed on the compressed data
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Fig. 1. Plots of the number of samples versus the probability of success. The three sets of curves on the left panel map to and , with vertical
dashed lines marking for , and and , respectively.

over is necessarily no smaller than the risk of the model
constructed on the uncompressed data over , for all .

For and , we set , following
the sublinear sparsity (94a) with ; the following set of
coefficients is chosen for so that and :

To find that minimizes the predictive risk
, we first derive the following expression

for the risk. With , a simple calculation shows that

hence

For the first set of simulations, we fix and .
To generate the uncompressed predictive (oracle) risk curve, we
let

(102)

Hence we obtain by running .
To generate the compressed predictive (oracle) curve, for each

, we let

(103)
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Fig. 2. Top plot: Risk versus compressed dimension for ; the uncompressed oracle risk is . . Each vertical bar shows one
standard deviation over 100 trials. Bottom plot: The ratio between the uncompressed mean excess risk and the compressed mean excess risks for each function of

in scale as sample size grows. The uncompressed and compressed oracle risks are for and . Each mean
excess risk is computed over 100 trials. The starting point for all three curves are .

Hence we obtain for each by running
. We then compute or-

acle risks for both cases with or , and
(104)

For each chosen value of , we compute the corresponding
empirical risk, its sample mean, and sample standard devia-
tion by averaging over 100 trials (see Fig. 2). For each trial,
we randomly draw with independent row vectors

, and . If is the coefficient vector
returned by , then the empirical risk
is computed as

(105)
where , for and

.
The second set of simulations aims to verify the excess risk

ratios as defined in Remark 4.4. We fix and that
correspond to the sublinear sparsity model with . Let

We show the excess risk ratios for each function of . The mean
excess risks are computed by averaging over 100 trials. For each
trial, we randomly draw with independent row vectors

, for the compressed cases, and

. We let and hence . The
ratios for each function of are obtained through the following:

excess risk ratio
mean of excess risks with uncompressed sample size
mean of excess risks with compressed sample size

VII. PROOFS OF TECHNICAL RESULTS

A. Connection to the Gaussian Ensemble Result

First, let us state the following slightly relaxed conditions that
are imposed on the design matrix by [6], and also by [9], when

is deterministic:

for some (106a)

(106b)

where is the smallest eigenvalue of . In Sec-
tion VII-B, Proposition 7.4 shows that -incoherence implies
the conditions in (106a) and (106b).

We first observe that with fixed, each row of is chosen
as an i.i.d. Gaussian random vector with covariance
matrix . Hence, the design matrix is ex-
actly a Gaussian ensemble that [6] analyzes, except that in our
case, is a singular matrix while his current analysis assumes
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that is nonsingular. In the following, let be the
minimum eigenvalue of and be the maximum
eigenvalue of . By imposing the -incoherence condition on

, we obtain the following two conditions on the covari-
ance matrix , which are also required by [6] for deriving the
threshold conditions (16) and (17), when the design matrix is a
Gaussian ensemble:

for and (107a)

(107b)

When we apply this to , where is an Gaussian en-
semble, is deterministic, and .
This condition requires that

for and

(108a)

(108b)

In addition, it is assumed in [6] that there exists a constant
such that

and (109)

is a constant, where is defined in (16). This condition need
not hold for ; in more detail, given

, we first obtain a loose upper and
lower bound for through the Frobenius norm of

. Given that , we have

Thus, by , we obtain for

which implies that

Since we allow to grow with , (109) need not hold. In partic-
ular, . In summary, by imposing the -inco-
herence condition on a deterministic with all columns of

having -norm , when satisfies the lower bound in (31),
we have shown that the probability of sparsity recovery through
lasso approaches one, given satisfies (32a)), when the de-
sign matrix is a Gaussian ensemble with a singular covariance
matrix generated through . Directly applying Wainwright’s
result as in (16) to our scenario will be impossible. We do not
have a comparable result for the failure of recovery given (17).

B. -incoherence

We first state some generally useful results about matrix
norms.

Theorem 7.1: [35, p. 301] If is a matrix norm and
, then is invertible and

Proposition 7.2: If the matrix norm has the property that
, and if is such that , we have

(110)

Proof: The upper bound follows from Theorem 7.1 and
triangle inequality

The lower bound follows that general inequality
, given that and the triangle in-

equality: , that is,
.

Let us define the following symmetric matrices, that we use
throughout the rest of this section:

(111a)

(111b)

We next show the following consequence of the -Incoherence
condition.

Proposition 7.3: Let be an that satisfies the -inco-
herence condition. Then for the symmetric matrix in (111a) ,
we have , for some , and

(112)

and, hence, , i.e., the -incoherence con-
dition implies condition (106b).

Proof: Given that , , and by Proposi-
tion 7.2

Proposition 7.4: The -incoherence condition on an
matrix implies conditions (106a) and (106b).

Proof: It remains to show (106a) given Proposition 7.3.
Now suppose that the incoherence condition holds for some

, i.e., , we must have

(113)

given that
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and . Next observe that, given ,
by Proposition 7.2

Finally, we have

C. Proof of Proposition 3.6

We use Lemma 3.5, except that we now have to consider the
change in absolute row sums of and after
multiplication by . We first prove the following claim.

Claim 7.5: Let be a deterministic matrix that satisfies
, the incoherence condition. If for any two columns

of that are involved in (40b)

then

(114)

(115)

Proof: It is straightforward to show the first inequality in
(114). Since each row in and has entries,
where each entry changes by at most compared to those in

, the absolute sum of any row can change by at most

Hence

We now prove the second inequality. Defining , we
have , given that each entry
of deviates from that of by at most . Thus, we have that

(116a)

(116b)

(116c)

(116d)

where is due to Proposition 7.3. Given that
and , by Proposition 7.2

We let represents union of the following events, where
:

1) , such that

2) , such that

3) , such that

Consider first the implication of , i.e., when none of the
events in happens. We immediately have that (40b), (115),
and (41b) all simultaneously hold by Claim 7.5; and (40b) im-
plies that the incoherence condition is satisfied for by
Proposition 7.4. We first bound the probability of a single event
counted in . Consider two column vectors

in matrix , we have , and for

(117a)

(117b)

(117c)

(117d)

We can now bound the probability that any such large-deviation
event happens. Recall that is the number of columns of and

; the total number of events in is less than .
Thus

given that .
Note that this is where the dependence on arises in the lower
bound on the compressed sample size .

D. Proof of Lemma 3.8

Recall that , , and ,
and we observe . First observe that the KKT
conditions imply that is optimal, i.e., for
as defined in (25), if and only if there exists a subgradient

for otherwise (118)
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such that which is equivalent
to the following linear system by substituting
and rearranging:

(119)

Hence, given and the event
holds if and only if

1) there exist a point and a subgradient
such that (119) holds, and

2) and , which implies
that and by definition of .

Plugging and in (119) shows
that the event holds if and only

1) there exists a point and a subgradient
such that

(120a)

(120b)

2) and and .
Using invertability of , we can solve for and using
(120a) and (120b) to obtain

(121a)

(121b)

Thus, given invertability of , the event
holds if and only if

1) there exists simultaneously a point and a subgra-
dient such that (121a) and (121b) hold;

2) and .
The last set of necessary and sufficient conditions for the event

to hold implies that there exists simul-

taneously a point and a subgradient such that
the first two equations at the bottom of the page hold, given that

by definition of . Thus, (43) and (44) hold for the

given and . Thus, we have shown the lemma in
one direction.

For the reverse direction, given , and supposing that
(43) and (44) hold for some , we first construct a point

by letting and

which guarantees that

by (44). We simultaneously construct by letting
and define in (122), also shown at the

bottom of the page, which guarantees that due to
(44); hence, . Thus, we have found a point
and a subgradient such that
and the set of (121a) and (121b) is satisfied. Hence, assuming
the invertability of , the event
holds for the given .

E. Proof of Lemma 3.9

Given that , we bound
through .

First, we have for

(123a)

where , due to (29) and (40a). Hence, given that
and , by Proposition 7.2

(124a)
Similarly, given , we have

(122)



ZHOU et al.: COMPRESSED AND PRIVACY-SENSITIVE SPARSE REGRESSION 865

Given that , we have
, and thus

(125a)

(125b)

by (124a) and the fact that by (29) .

F. Proof of Claim 3.11

We first prove the following.

Claim 7.6: If satisfies (31), then
.
Proof: Let us denote the th column in with . Let

and be vectors. By Proposition 3.6,
. We have by function of

Thus, the claim follows given that and

.

Finally, to finish the proof of Claim 3.11 we have

where as in (124a) for

.

Remark 7.7: In fact, .

VIII. DISCUSSION

The results presented here suggest several directions for fu-
ture work. Most immediately, our current sparsity analysis holds
for compression using random linear transformations. However,
compression with a random affine mapping may
have stronger privacy properties; we expect that our sparsity re-
sults can be extended to this case. While we have studied data
compression by random projection of columns of to low di-
mensions, one also would like to consider projection of the rows,
reducing to a smaller number of effective variables. However,
simulations suggest that the strong sparsity recovery properties
of regularization are not preserved under projection of the
rows.

It would be natural to investigate the effectiveness of other
statistical learning techniques under compression of the data.
For instance, logistic regression with -regularization has re-
cently been shown to be effective in isolating relevant variables
in high-dimensional classification problems [36]; we expect that
compressed logistic regression can be shown to have similar
theoretical guarantees to those shown in the current paper. It
would also be interesting to extend this methodology to non-
parametric methods. As one possibility, the rodeo is an approach
to sparse nonparametric regression that is based on thresholding
derivatives of an estimator [37]. Since the rodeo is based on
kernel evaluations, and Euclidean distances are approximately
preserved under random projection, this nonparametric proce-
dure may still be effective under compression.

The formulation of privacy in Section V is, arguably, weaker
than the cryptographic-style guarantees sought through, for ex-
ample, differential privacy [26]. In particular, our analysis in
terms of average mutual information may not preclude the re-
covery of detailed data about a small number of individuals. For
instance, suppose that a column of is very sparse, with all
but a few entries zero. Then the results of compressed sensing
[11] imply that, given knowledge of the compression matrix ,
this column can be approximately recovered by solving the com-
pressed sensing linear program

(126a)

such that (126b)

However, crucially, this requires knowledge of the compression
matrix ; our privacy protocol requires that this matrix is not
known to the receiver. Moreover, this requires that the column
is sparse; such a column cannot have a large impact on the pre-
dictive accuracy of the regression estimate. If a sparse column
is removed, the resulting predictions should be nearly as accu-
rate as those from an estimator constructed with the full data.
We leave the analysis of this case as an interesting direction for
future work.
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