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Abstract

Users have long been recognized as the weakest link in security. Accordingly, researchers have

applied knowledge from the fields of psychology and human–computer interaction to understand the

security behaviors of users. However, many cognitive processes and responses are unconscious or

obligatory and yet still have a profound effect on users’ security behaviors. With this in mind, re-

searchers have begun to apply methods and theories of neuroscience to yield greater insights into the

“black box” of user cognition. The goal of this approach—termed neurosecurity—is to better under-

stand and improve users’ behaviors. This study illustrates the potential for neurosecurity by investigat-

ing how two fundamental biological factors—gender and color perception—affect users’ reception of

security warnings. This is important to determine because research has shown that users frequently

fail to appropriately respond to security warnings. We conducted a laboratory experiment using elec-

troencephalography, a proven method of measuring neurological activity in temporally sensitive

tasks. We found that the amplitude of the P300—an event-related potential component indicative of

decision-making ability—was higher for all participants when viewing malware warning screenshots

relative to legitimate website shots. Additionally, we found that the P300 was greater for women than

for men, indicating that women exhibit higher brain activity than men when viewing malware warn-

ings. However, we found that there was no change in the P300 when viewing red warnings compared

to grayscale warnings. Together, our results demonstrate the value of applying neurosecurity meth-

ods to the domain of cybersecurity and point to several promising avenues for future research.
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Introduction

Users have long been recognized as the weakest link in security. Fred

Cohen noted in his seminal work on computer viruses, “There are

many types of information paths possible in systems, some legitimate

and authorized, and others that may be covert, the most commonly

ignored one being through the user” [1:22]. Today, “client-side” at-

tacks that target end users are now a primary attack vector for hack-

ers, making users’ security behaviors increasingly important [2].

Accordingly, security researchers have applied knowledge from the

fields of psychology, criminology, and human–computer interaction

(HCI) to understand the security behavior of users.

Past investigations of security behavior have mainly used self-

reported measures such as interview and survey data and behavioral

experiments [3]. Although these approaches have substantially

added to our understanding of security behaviors, many cognitive
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processes and responses are unconscious or obligatory and yet still

have a profound effect on users decision-making and behaviors [4].

Further, emotions relevant to security behaviors, such as fear, uncer-

tainty, and distrust, are at least partially experienced unconsciously,

which makes them difficult to capture accurately [5]. With this in

mind, researchers have begun to apply methods and theories of

neuroscience to yield greater insights into users’ security behaviors.

The goal of this approach—termed neurosecurity—is to better

understand and improve users’ behaviors [6].

This study illustrates the potential for neurosecurity by investigat-

ing how two fundamental biological factors—gender and color per-

ception—affect users’ reception of security warnings. These are

important to investigate because research has shown that users fre-

quently fail to appropriately respond to security warnings for a variety

of reasons [7]. Research in HCI and information systems research in-

dicates that gender can result in differences in use and attitudes to-

ward technology [8, 9]. However, this research does not adequately

explain why these gender differences exist. An exception is the work

of Riedl et al. [10], who used neurobiology and neuroimaging to ex-

plain why men and women differ in online trust. Additionally, the

emergence of advanced electrophysiological and brain imaging meth-

ods has provided strong evidence that functional differences in brain

activity may underlie gender differences in decision-making situations

[11, 12]. We therefore investigate in this article how gender influences

perceptions and responses to malware warnings.

In addition to examining the relationship between gender and

malware warnings, we also investigate the impact that color has on

a user’s reception of security warnings. Several studies have shown

that color has the ability to change one’s perceptions regarding emo-

tion, attitude, and even intellectual performance [13–15].

Additionally, color has been shown to influence users’ perceptions

of hazard levels in relation to warnings, with the color red signifying

greatest severity [16]. Further, major web browsers such as Google

Chrome and Firefox use the color red for their security warnings

(Appendix A). Despite this, it is not known whether color is influen-

tial in capturing attention to security warnings.

To address these gaps, this study investigates the following re-

search questions:

1. Do men and women differ in terms of brain activity when view-

ing security warnings?

2. Does the color of a security warning influence how they are per-

ceived, in terms of brain activity?

We examined these research questions by conducting an electro-

encephalography (EEG) laboratory experiment in which partici-

pants viewed and classified screenshots of web browser malware

warning screens and legitimate websites. EEG is used to measure

electrical potentials on the scalp due to neural activity and has been

shown to be a useful predictor of security behavior and attitudes [5,

17]. Our results show that the amplitude of the P300 was signifi-

cantly higher for all participants when viewing malware warning

screenshots relative to legitimate website shots. However, we found

that the P300 was greater for women than for men, indicating that

women exhibit higher brain activity overall when viewing malware

warnings. Finally, we found no difference in the P300 between view-

ing monochrome and red malware warnings screens typically used

in major web browsers, indicating that color did not improve the ef-

ficacy of the malware warning screen for capturing attention.

This article contributes by, first, providing neurological results of

the comparative performance of men and women in performing a se-

curity task: discriminating between malware warnings and legitimate

websites. While our results are preliminary in nature, discovery of

gender behavior in the processing of security information could poten-

tially be useful in designing security interfaces. Second, despite the

wide use of the color red for security warnings in practice, this study

is the first to empirically examine whether color influences the percep-

tion of security messages. Third, this study demonstrates the unique

insights into security behavior that neuroscience can yield—insights

unattainable using conventional methods.

The rest of this article is organized as follows: first, we examine

relevant literature in the areas of neurosecurity; gender, IT usage,

and trust; the effects of colors on perception; and the P300 measure

of brain activity. Next, we present our hypotheses, followed by our

methodology. Finally, we provide our results, followed by a discus-

sion and conclusion.

Literature review

In this section, we lay a foundation for our hypotheses by reviewing

literature relevant to neurosecurity, gender and trust, gender and IT

usage, and the impact of color on users’ perceptions of hazards. We

also review the P300, a brain measure associated with attention that

is captured using EEG.

Neurosecurity
There is growing evidence of the value of cognitive neuroscience for

studying cybersecurity (neurosecurity). We define neuroscience

methodologies to include both “neurological” methods, such as

EEG and functional magnetic resonance imaging (fMRI), as well as

“psychophysiological” methods, including eye tracking and mouse-

cursor tracking, which can serve as objective indices of brain activ-

ity. Such tools have the potential to uncover the “black box” of sub-

tle user reactions and behavior [e.g. 6]. Table 1 lists some of the

burgeoning literature in the area of neurosecurity.

Neurosecurity studies have sought to better understand and im-

prove users’ security behaviors. For example, Anderson et al. [6]

used fMRI to investigate the problem of attenuated attention to se-

curity messages over repeated exposure, a process termed “habitu-

ation”. They developed a polymorphic security message composed

of the visual variations that were most resilient to habituation. In a

follow-up study, they tested the polymorphic warning in a more eco-

logically valid setting. They analyzed mouse-cursor movements indi-

cative of attention as participants interacted with security messages.

Users maintained higher levels of attention to the polymorphic

warning over repeated exposure compared to participants in a

nonpolymorphic control group [6].

In another study, Neupane et al. [18] conducted an fMRI experi-

ment measuring users’ security performance as well as underlying

neural activity with respect to two critical security tasks: (i) distin-

guishing between a legitimate and a phishing website; and (ii) heed-

ing security (malware) warnings. At a high level, they identified

neural markers associated with users’ performance in these tasks.

They also investigated the relationship between users’ personality

traits and security behaviors.

Other neuroscience studies correlate neural activity with self-re-

ported measures. Hu et al. [17] used EEG to examine the scalp for

differences in brain region activations between individuals with high

and low self-reported self-control. They took the EEG measure-

ments as participants considered hypothetical information security

policy violations. In another study, Vance et al. [5] measured risk

perceptions using both EEG and self-reported methods. EEG meas-

urements predicted users’ security message disregard better than did

self-reported measurements during a more ecologically valid
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laboratory task. In the case of this study, objective neuroscience

methods were used to confirm the association between risk percep-

tion and security behavior. Self-reported measures of risk perception

did not indicate as strong of an association, likely due to biases that

commonly plague self-reported methods [4].

Eye tracking technologies have also been used in neuroscience re-

search. In a lab study, Anderson et al. [20] tracked participants’ eye

movements to show the impact of the eye movement-based memory ef-

fect (EMM effect) on susceptibility to falling for phishing messages. The

EMM effect is a phenomenon where individuals visually attend less to

images that appear similar to ones they think they have already seen.

Each of these studies (Table 1) demonstrates how neuroscience

methodologies can contribute to a deeper understanding of users’

unconscious security behaviors. Some (e.g. [5, 17]) also contribute

to a more complete understanding of personality and perceptual

components associated with security behaviors. Furthermore, others

(e.g. [19, 20]) informed the design of security message interfaces and

security training programs. Anderson et al. [6] demonstrated how

neuroscience methodologies can make a practical contribution to se-

curity message design through the development and validation of

their polymorphic security message artifact. Anderson et al. [20]

gave recommendations for how to train users to overcome the

EMM effect so as to be more likely to recognize a phishing message.

Gender and IT usage
Many studies have demonstrated gender differences in the behavior

of IT users. These studies come from various fields, including psych-

ology, marketing, and information systems. Riedl et al. [21] pro-

vided a collection of articles demonstrating gender differences in IT.

We summarize some of the more relevant articles from that collec-

tion below.

Schumacher et al. [22] showed that women reported higher lev-

els of computer and Internet incompetence and discomfort than men

did. Jackson et al. [23] published related findings, showing that men

use the Internet more than women do, and that women report higher

levels of computer anxiety and lower levels of computer self-efficacy

than men do.

Broos [24] showed that females have more negative attitudes to-

ward computers than men do. In this study, users’ general experi-

ences with computers lessened computer anxiety for both men and

women; nevertheless, such experiences were less effective at reliev-

ing the computer anxieties of women than they were for men.

Sanchez-Franco [25] tested a model to examine the effects of

gender differences on the various constructs pertaining to computer

usage. The results showed that attitude toward computers and per-

ceived computer usefulness had a stronger effect for men on com-

puter usage than for women. However, users’ intention to use

computers predicted actual computer usage equally powerfully for

both men and women. Flow, a state of high engagement enjoyment

for users [26], significantly predicted men’s intention to use com-

puters more than it did for women.

More recently, Seybert [27] found that in the European Union

states, men more frequently use computers than women. Van

Welsum and Montagnier [28] made the interesting observation that

while differences in computer usage between gender are declining in

general, men nevertheless remain more frequent users of newer tech-

nology among older users.

Additional studies on gender differences in IT behavior include

Gefen and Straub [8], Gefen and Ridings [29], Venkatesh and

Morris [9], and Riedl et al. [21]. Gefen and Straub [8] examined

gender differences in the perception and use of e-mail. They found

that men and women perceive e-mail technologies differently;

women perceive social presence, usefulness, and ease of use to be

higher. Gefen and Ridings [29] found that men and women use tech-

nologies to communicate for different purposes—women focus

more on the social and emotional support aspects of technologies.

Venkatesh and Morris [9] studied gender differences between men

and women in the adoption and use of technology. They found that,

in technology adoption decisions, men focus most on the system’s

Table 1. Recent neurosecurity literature

Author(s) Summary Neuroscience

method(s) used

Anderson et al. [6] Used fMRI to identify a set of polymorphic warning variations most resilient to habituation.

Corroborated MRI data with mouse cursor tracking in a more naturalistic lab study to val-

idate the effectiveness of polymorphic warnings on decreasing susceptibility to security

message habituation.

fMRI;

mouse-cursor

tracking

Hu et al. [17] Used EEG to compare neural activity between high and low self-control individuals as they

deliberated over hypothetical security policy violation scenarios.

EEG

Vance et al. [5] In a multipart study, measured risk perceptions using both EEG and self-reported methods.

EEG measurements predicted users’ security message disregard better than did self-re-

ported measurements during a more ecologically valid laboratory task.

EEG

Neupane et al. [18] Used an fMRI study to measure users’ security performance and underlying neural activity

during two critical security tasks: (i) distinguishing between a legitimate and a phishing

website; and (ii) heeding security malware warnings. Identifies neural markers associated

with users’ security-task performance, and examines the relationship between personality

traits and security behavior.

fMRI

Anderson et al. [19] Used fMRI to show how habituation occurs in the brain as a result of viewing security warn-

ings. Found habituation to security messages to be more severe than habituation to screen-

shots of general business software.

fMRI

Anderson et al. [20] Used eye tracking to show the eye movement-based memory effect (EMM effect), the phe-

nomenon of people paying less visual attention to images similar to ones viewed previ-

ously, in the context of phishing messages. Suggests that the EMM effect is a significant

contributing factor to users’ susceptibility to phishing. Proposed training that could help

users overcome the EEM effect and become less prone to phishing attacks.

Eye tracking
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usefulness, while women focus on the system’s ease of use. Women

were also influenced by how much they perceived that their peers

and superiors wanted them to use the technology.

The percentage of women using the Internet and online stores is

increasing, and is now only slightly less than men. A recent Pew

Internet study has shown that among adults, Internet usage for

women is now at 86%, compared to 87% for men [30]. Another

Pew Internet study [31] shows that teenage girls (76%) are more

likely to access the internet via mobile devices such as cell phones

and tablets than their male counterparts (72%).

In addition, some recent studies have examined the differences of

gender in information security, but results are mixed. For example,

Crossler and Belanger [32] found that computer self-efficacy and

gender significantly impacts a users’ use of security tools. Herath

and Rao [33] examined intrinsic and extrinsic for employee compli-

ance and found that females have higher policy compliance inten-

tions. However, Medlin and Cazier [34] were not able to find a

gender influence on consumer password choices for ecommerce.

These general differences in IT usage between men and women

suggest that researchers should be mindful of how the explanatory

power of predictive theories may depend on gender. In addition,

user interface design principles may need to account for the differ-

ences in how men and women will interact with and perceive the

artifact. Next, we specifically review literature on differences in on-

line trust between men and women. We do this because we predict

that online trust may impact how a user engages with security mes-

sages in myriad ways.

Gender differences in online trust
The general differences in IT usage between men and women extend

to differences in trust. The literature on gender differences in general

trust behavior shows that, in general, men trust more than women

do [35–37]. Similarly, the limited research on gender differences in

online trust has indicated that women trust less in online settings as

well. Most of this literature uses the context of online shopping. In

one study, Rodgers et al. [38] indicated that women were more

likely to pay attention to the more detailed aspects of a website,

whereas men tended to consider the site in general. Women’s higher

level of scrutiny was attributed to a lack of trust, or skepticism.

Additionally, women are less likely to trust a website [39] and are

more influenced by the impact of trust on loyalty to e-commerce

sites than men [40]. Garbarino and Strahilevitz [41] found that

women perceived a higher likelihood of risk with online shopping

compared to men, and that women also perceived the consequences

of risk to be more severe. Gefen et al. [42] studied trust in online en-

vironments and also concluded that women trusted online stores less

than did men.

Riedl et al.’s [10] study on neural gender differences in online

trust used neurophysiological tools to explain differences between

men and women. Using fMRI, they found that different brain re-

gions were activated when women and men were using online retail

stores, with the women’s brains showing more activation from more

regions than men’s. These results suggest that women’s brains pro-

cessed the information during the decision-making process more

comprehensively than men’s brains did. In addition, the findings

suggested that women processed the tasks more emotionally and

men processed the task more cognitively.

It is interesting to note that in spite of women’s lower trust in on-

line settings, the percentage of women using the Internet and online

stores is increasing, and it is now only slightly less than men, as was

reviewed in the “Gender and IT usage” section. Given this, we

reason that it is especially important to consider more fully the dif-

ferent impacts that trust can have on online interactions, such as

with security messages.

Effects of color on perception
Color has a significant effect on how individuals perceive their sur-

roundings. The color of a perceived item may affect a person’s over-

all emotion [14], attitude toward an advertisement [13], intellectual

performance [15], or may evoke a fight or flight response [43]. Elliot

and coauthors performed a series of studies to determine the effects

the color red has on individuals who perceive it in various contexts.

They found that red has a deleterious effect on intellectual perform-

ance [14] and evokes avoidance behavior [44].

Color can also attract attention. Although there are some prob-

lems with using color as the only method of conspicuity (e.g. color

blindness), it is frequently used as one of several features used to at-

tract attention to warnings [16:54]. Color has also been shown to af-

fect users’ perceptions of the hazard. The color red has been shown

to communicate a greater hazard than yellow or orange, with no sig-

nificant differences found between the latter two. Other colors, such

as blue and green, generally express less or no hazard [16:785]. In

another study, warnings printed in red were noticed more quickly

than warnings printed in black [16:138]. Similarly, Braun and Silver

[45] found that red conveyed the highest level of perceived hazard,

followed by orange, black, green, and blue. Additionally, hazard-

related words received various levels of attention based on the color

of the words. In another study conducted by Anderson et al. [6], re-

searchers tested a series of warning appearance variations and found

that a red security warning was one of the most resilient designs

against waning attention over repeated exposure.

Wogalter [16] noted that the color of a warning should be dis-

tinctive in the environment in which it is placed. For example, a yel-

low warning in a mostly yellow environment will have a weaker

effect on conspicuity than a red warning in a mostly yellow environ-

ment. Braun and Silver [45] found support for this notion—in this

study, a common household cleaning product labeled “WARNING:

SEVERE EYE IRRITANT. HARMFUL IF SWALLLOWED” col-

ored in blue received less attention than when the warning was

printed in red.

Based on our review of this stream, more research is needed to

discover differences in the processing of warning message of various

colors. Specific to a security message context, it remains to be tested

whether colors such as red are equally effective at drawing attention

to hazards when used in security warnings.

EEG measures
The neurophysiological measure we used in this study is the P300

component of an event-related potential (ERP) measured with EEG.

The P300 is a positive-going component that peaks between 250

and 500 milliseconds after stimulus onset and has been observed in

tasks that require stimulus discrimination [46]. Passive stimulus pro-

cessing generally produces smaller P300 amplitudes than active

tasks; when task conditions are undemanding, the P300 amplitude is

smaller. It has been proposed that the P300 reflects processes related

to updating mental representations of the task structure [47, 48].

According to the “context-updating theory”, incoming stimuli are

compared against stimuli previously held in working memory. If the

new stimulus matches the previous stimuli, no updating is required

and no P300 is generated. If, however, the new stimulus produces a

mismatch with the stimuli held in working memory, the context for

that stimulus is updated and a P300 is generated. It is believed that
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because infrequent, low-probability stimuli can be biologically im-

portant, it is adaptive to inhibit unrelated activity to promote pro-

cessing efficiency and thereby yield large P300 amplitudes [46].

EEG has been used in broader information systems research as

well. In one study, researchers first used an eye-tracking device to

capture eye fixations and then used EEG to measure changes in

P300 levels once the eye fixations began [49]. This method allows

researchers to precisely capture users’ neural activity at the exact

time at which they start to cognitively process a stimulus (e.g. an

event on the screen). In a neurosecurity study conducted by Vance

et al. [5], researchers used EEG to measure people’s risk perceptions.

They found that the EEG measure of risk perception was a better

predictor of users’ subsequent security behaviors than their own

stated risk perceptions. This study emphasizes the point that while

users commonly state that they are concerned about security, their

actions frequently do not match their stated perceptions. This high-

lights the need for more objective measures of user perception of se-

curity, such as those that can be obtained using neuroscience

methodologies like EEG.

Hypotheses

Our experiment falls into what is termed an “oddball paradigm”

[50] because our subjects will see one of the targets (the malware

warning) relatively infrequently. Passive stimulus processing gener-

ally produces smaller P300 amplitudes than active tasks. In other

words, when task conditions are undemanding, P300 amplitude is

smaller. Since infrequent, low probability stimuli can be biologically

important, it is adaptive to inhibit unrelated activity to promote pro-

cessing efficiency, thereby yielding large P300 amplitudes [11].

Because the malware warning could be a very important (although

infrequent) event, we would expect the respective P300 to be higher

relative to the legitimate website. Therefore we hypothesize:

H1. P300 will be higher for all participants when viewing mal-

ware warning screenshots than when viewing legitimate website

screenshots.

The relationship between gender and P300 has been controver-

sial as some studies see no gender bias or larger amplitudes in males

[12]. However, Kolb and Whishaw [51] demonstrated that ERPs are

sensitive to gender. Using both auditory and visual oddball tasks,

Steffensen et al. [11] reported that females have a larger P300 com-

ponent than do males. Additionally, Guillem and Mograss [52]

showed that females had a greater P300 response to an ERP for the

relevant stimulus than did males.

Papanicolaou et al. [53] and Polich [54] proposed that hemi-

spheric asymmetry might give rise to greater P300 amplitudes in fe-

males than in males. Because the brains of men are typically more

lateralized (asymmetrical) than those of women [55], women should

evince more symmetrical processing of visual stimuli. This difference

in symmetry may lead to differences between the measures of P300

at the Cz (central) and Pz (parietal) sites. Females show a larger an-

teroposterior amplitude gradient, meaning the front part the brain

plays a more critical role in females [e.g. 56–58].

It has been suggested that stimulus “intensity” may be an im-

portant variable in determining P300 amplitude [59]. Fjell and

Walhovd [60] reported that a larger P300 amplitude was elicited by

viewing unpleasant scenes rather than pleasant scenes presented on

slides. Paired with the general distrust shown by women in online

environments [61, 62], we hypothesize that the P300 amplitude will

be higher for women than for men, subject to brain topography:

H2. P300 will be higher for women than for men when viewing

malware warning screenshots.

Individual differences for P300 latency are correlated with men-

tal function speed, such that shorter latencies are related to superior

cognitive performance [63]. While there has been research on la-

tency and children [64], aging [14], and dementia and brain disease

[13], there have not been any conclusive studies about gender and

P300 latencies. Consequently, there is no precedent for gender dif-

ferences in latency, so we cannot predict whether or not there will

be a difference. Nonetheless, we offer an exploratory hypothesis to

examine whether one group or the other has an additional process

or a slower process in classifying the malware screen:

H3. P300 will be slower for women or men.

In the set of experiments conducted by Elliot et al. [14], partici-

pants’ reactions were measured using EEG. Although this measure-

ment focused on the differences between the brain’s right and left

prefrontal cortexes, it sets a precedent for using EEG to measure in-

dividuals’ reactions to color and demonstrates the need to determine

what those reactions are. As our experiment focuses on P300 inter-

pretation, and because P300 is a measurement of stimulus discrimin-

ation, we craft our hypothesis with respect to the P300.

Additionally, we take into consideration the findings of Elliot and

colleagues regarding the color red.

Although our experiment does not present an achievement con-

text as Elliot and Maier define in their several studies, we hypothesize

the following based on the discrimination measurement of the P300:

H4a. P300 will be higher for all participants when viewing red

malware warning screenshots than when viewing grayscale mal-

ware warning screenshots.

H4b. P300 will be higher for all participants when viewing red

legitimate website screenshots than when viewing non-red legit-

imate website screenshots.

Method

Participants and materials
A total of 61 healthy volunteers (32 females, 29 males) were re-

cruited from a large private university to participate. Participants

gave written informed consent before participation and received $10

for their participation. Participants had normal color vision and

were free from head injuries, neurological insults, and major psychi-

atric disorders. The mean age for participants was 22.44

(SD¼2.35); females: 21.69 (2.62); males: 23.28 (1.69). The stimuli

consisted of 20 screen shots of popular websites (e.g. amazon.com,

netflix.com) as well as a full color and grayscale version of Google

Chrome’s web browser warning screen (Fig. 1).

Procedures
Participants were instructed that this was a target-detection task in

which they would be shown images of common websites and

browser warning screens. Participants were familiarized prior to the

experiment with the warning screen and instructed to press one but-

ton with the index finger of their right hand for “safe” websites and

another button with the middle finger of their right hand for warn-

ing screens. Stimuli were presented in an electrically shielded testing

room on a 17-inch LCD computer monitor, and responses were re-

corded with an EEG-compatible keypad. Each trial of the experi-

ment began with a central fixation screen for 2000 ms, followed by

a safe website or warning screen stimulus. Each safe website was
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presented five times for a total of 100 safe websites. The colorized

warning screen was presented eight times, and the grayscale warning

screen was presented twice. Stimulus order was randomized. Stimuli

were presented for 3000 ms, during which time participants were in-

structed to press a button in order to classify the stimulus. Stimulus

presentation was followed by a “blink” screen for 1500 ms, during

which participants were instructed to blink.

Electrophysiological data recording and processing
The EEG was recorded from 128 scalp sites using a HydroCel

Geodesic Sensor Net and an Electrical Geodesics Inc (EGI; Eugene,

Oregon, USA; Fig. 2) amplification system (amplification 20K, nom-

inal bandpass 0.10–100 Hz). The EEG was referenced to the vertex

electrode and digitized at 250 Hz. Impedances were maintained

below 50 kX. EEG data were processed off-line beginning with a

Figure 1. Color screenshot of Google Chrome malware warning screen shown to participants.

Figure 2. The 128-node HydroCel Geodesic Sensor Net used for recording the EEG.
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0.1-Hz first-order highpass filter and 30 Hz lowpass filter. Stimulus-

locked ERP averages were derived spanning 200ms pre-stimulus to

1000 ms poststimulus, and they were segmented based on trial type

criteria (safe websites, warning screens). Eye blinks were removed

from the segmented waveforms using ICA in the ERP PCA Toolkit

[65]. The ICA components that correlated at 0.9 with the scalp topog-

raphy of a blink template generated based on the current data were

removed from the data [35–37]. Artifacts in the EEG data due to sac-

cades and motion were removed from the segmented waveforms using

PCA in the ERP PCA Toolkit [38]. Channels were marked bad if the

fast average amplitude exceeded 100mV or if the differential average

amplitude exceeded 50 mV. Data from three participants (1 female, 2

males) were excluded from ERP analyses due to low trial counts or ex-

cess bad channels. Data from the remaining participants were average

re-referenced, and waveforms were baseline corrected using a 200-ms

window prior to stimulus presentation.

Analysis
The P300 amplitudes were extracted as the mean amplitude

within the 300–600 ms poststimulus window [60]. Latencies

were calculated as the 50% area latency [61, 62] for the 300–

600 ms poststimulus window. Amplitudes and latencies were

analyzed for the Cz and Pz electrodes using repeated measures

ANOVAs.

Results

Behavioral performance
As a group, participants correctly identified 96.9% (SD¼7.9%) of

safe websites and 99.3% (2.6%) of warning screens. Because of the

disproportionate number of safe trials (100 out of 110), participants

could have responded “safe” regardless of the stimulus and still ob-

tained a 91% correct score. Accordingly, we calculated a discrimin-

ability measure (d’) that takes into account hit rates as well as false

alarm rates. The mean d’ measure was well above chance: mean

d’¼4.66 (0.60) (t[57]¼58.74, p<0.0001). Discriminability did

not differ across gender: male mean d’¼4.58 (0.68); female mean

d’¼4.73 (0.53) (t[56]¼0.94, p¼0.35). Likewise, reaction times

(RTs) did not differ across gender: male mean RT¼952.3 (322.3)

ms; female mean RT¼847.4 (275.9) ms (t[56]¼1.34, p¼0.19).

Taken together, these results indicate that men and women per-

formed approximately equally on the behavioral task.

The P300 ERP
Investigation of the topographical activation maps confirmed a cen-

trally distributed positivity at 300 ms poststimulus onset (Fig. 3).

Figure 4 depicts the grand average waveforms for the Cz and Pz elec-

trode sites. The P300 amplitude was analyzed during the 300–

600 ms poststimulus period (shaded).

For our hypothesis testing, we first examined whether P300 was

higher for all participants when viewing malware warning screen-

shots than when viewing legitimate website screenshots (H1). At the

Cz electrode site, an ANOVA on the mean amplitude revealed a

main effect of screen type (safe sites versus warning screens)

(F[1,56]¼34.23, p<0.0001). Similarly, at the Pz electrode site, an

ANOVA revealed a main effect of screen type (F[1,56]¼23.35,

p<0.0001). Thus, H1 was supported.

We next examined whether P300 will be higher for women than

for men when viewing malware warning screenshots (H2). At the Cz

electrode site, an ANOVA demonstrated a main effect of gender

(F[1,56]¼4.63, p<0.05; Table 2). At the Pz electrode site, no main

effect of gender was found (F[1,56]¼0.12, p¼0.73). Thus, the

amplitude of P300 was greater for women than for men at the Cz

electrode overall, but not at the more posterior Pz electrode site.

Therefore, H2 was supported, albeit only for the Cz electrode site.

Interestingly, although we observed the expected P300 enhance-

ment for warning screens relative to legitimate websites at both elec-

trode sites, the gender by screen type interaction was not significant

(cZ: F[1,56]¼0.15, p¼0.70); pZ: F[1,56]¼0.01, p¼0.95). This

indicates that while women do exhibit higher P300 than do men

when viewing malware warning screens, the size of the enhancement

or “boost” to P300 when viewing malware warning screens was not

greater for women than for men at either electrode site. In other

words, for both women and men, P300 increased by approximately

the same amount when viewing the malware warning (Fig. 3).

We also examined the P300 latency at both electrode sites.

Because P300 is dependent on stimulus classification, its latency has

often been used as an indication of stimulus classification processes

[e.g. 66]. Latency was defined as the 50% area latency [65] for the

300–600 ms poststimulus window. Latencies at the Cz and Pz elec-

trodes are listed in Table 3. At the Cz electrode, a 2�2 (screen

type� gender) ANOVA revealed no significant main effects or inter-

actions (p>0.05). Similarly, at the Pz electrode, the ANOVA re-

vealed no significant main effects or interactions (p>0.05). Thus,

H3 was not supported. These results indicate that men and women

relied on similar cognitive processes in the initial categorization of

the safe websites and the warning screens.

Finally, we examined whether P300 will be higher for all partici-

pants when viewing red malware warning screenshots than when

viewing grayscale malware warning screenshots (H4a), as well as

when viewing red legitimate website screenshots compared to non-

red legitimate website screenshots (H4b). To test these hypotheses,

we randomly presented a subset of the warning screens as grayscale

images. Also, a subset of the safe websites were predominately red

as was the warning screen. We examined ERP amplitudes for these

four stimulus categories (safe sites, red safe sites, grayscale warning

screens, and red warning screens) separately at the Cz and Pz elec-

trode sites. Twenty-four men and 25 women had sufficient trials for

this more restricted ERP analysis. An ANOVA on the Cz amplitude

data revealed a main effect of screen type (F[1,47]¼59.02,

p<0.001) but no main effect of color and no interactions between

color and gender or color and screen type (p>0.05). At the Pz elec-

trode site, an ANOVA revealed a main effect of screen type

(F[1,47]¼4.86, p<0.05) and a main effect of color (F[1,47]¼4.92,

p<0.05) but no color by gender or color by screen type interactions

(p>0.05). Taken together, these results indicate that the stimulus

color did not differentially impact cognitive processing, as indexed

by the P300 amplitude. Thus H4a and H4b were not supported.

Discussion

We next discuss our results, which are summarized in Table 4, as

well as implications for further research and practice.

First, the amplitude of the P300 for all subjects increased when

viewing the malware warning screenshot regardless of gender, support-

ing H1. This finding indicates that malware warnings do elicit a re-

sponse in the brain, even for screenshots in our simulated laboratory

setting. Although users may be habituated to security warnings [6], this

finding at least shows that the malware warnings succeeded in gaining

participants’ attention and prompting a cognitive decision process.

Second, we found that women exhibited higher P300 when

viewing malware warning screens than did men for electrodes in
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the Cz region. However, we found no support for a difference in

gender in the more posterior Pz region. Thus, H2 is supported, al-

beit only for the Cz region. This finding corresponds to previous

findings in trust research, which showed that women are gener-

ally less trusting of online sites than are men [35–37]. For

example, Rodgers and Harris [38] found that women were more

likely than men to pay attention to detailed characteristics of a

website when forming impressions of initial trust. This finding is

consistent with the higher levels of P300 that we observed in our

experiment.

Figure 4. Grand average ERP waveforms at the Cz and Pz electrode sites. At the Cz electrode site, women had greater amplitudes for the P300 for both safe web-

sites and the warning screen. The P300 amplitude was enhanced for the warning screen across genders at both electrode sites.

Figure 3. Topographical distribution of ERPs for the 300–600 ms poststimulus periods. There was a centrally distributed positivity at 300 ms poststimulus onset.
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Third, in an exploratory hypothesis, we examined whether the

P300 was elicited more quickly for one gender. We found no differ-

ence in gender in terms of how quickly the P300 is elicited, failing to

support H3. This result is consistent with previous neurobiological

work, which has failed to demonstrate that P300 is elicited more

quickly based on gender [13]. Finally, we tested color differences

between red and grayscale malware warnings and between predom-

inantly red screenshots (including malware warning screens) and

non-red screenshots. Our results found no difference in the P300

based on the color of the screenshot received. Therefore, H4a and

H4b were not supported. This finding is contrary to practice, as

popular web browsers such as Chrome and Firefox use the color red

in the display of malware warnings (Appendix A).

This study makes three primary contributions. First, it provides

empirical evidence that men and women’s brains process malware

warnings differently. Although preliminary in nature, our findings

indicate that significant differences exist in the brain based on gen-

der. These findings could potentially be useful in designing security

interfaces that adapt to the user based on a profile that includes

gender.

Second, our findings in relation to the effects of color on brain

activity when viewing security warnings highlight an interesting phe-

nomenon: research relying on self-purported measures indicate that

color should increase brain activity while our research using EEG

showed no additional activity when viewing predominantly red

screens versus grayscale screens. As noted above, these findings are

contrary to prior research and practice in this area and should be

investigated further.

Finally, this study demonstrates the benefit of using neuroscience

methods to study cybersecurity behaviors. Neurosecurity allows re-

searchers to open the “black box” of the brain to better understand

fundamental cognitive factors that may be difficult or impossible to

investigate using conventional methods. Because automatic or un-

conscious mental processes underlie much of human cognition and

decision-making, they likely play an important role in a number of

other security behaviors, such as security education, training, and

awareness (SETA) programs, password use, and information secur-

ity policy compliance. Additionally, neuroscience methods have the

potential to lead to the development of more complete behavioral

security theories and guide the design of more effective security

interventions. For example, rather than creating security interven-

tions and expecting users to change their behavior in response, re-

searchers and developers may instead use neurosecurity techniques

to design security interfaces that are more compatible with users’

biology and natural tendencies.

Limitations and future research

Our research is subject to a number of limitations. First, we em-

ployed a laboratory experiment that showed simulated screenshots

to participants. Laboratory experiments have the advantage of

greater precision and control, but they come with the cost of weak

generalizability to real-world situations [67]. The realism and gener-

alizability of our study could be strengthened in future research by

employing a free simulation experiment, in which treatment levels

are allowed to range freely in accordance with how participants

interact naturally with the simulation [68, 69]. For example, experi-

mental participants could use a web service such as StumbleUpon

(http://stumbleupon.com) in which at the press of a button they will

be taken to a random website. On 10% of the sites, participants

would receive a warning screen and be given a choice to continue or

go back. Not only would such a design provide greater realism in

the experimental task by providing a level of user control beyond

the recognition task in our current study, it would also reveal differ-

ences in behavior and timing.

Second, and related to the previous point, our subjects consisted

of a homogenous sample of university undergraduates.

Homogenous samples are useful for falsifying theory due to more

stringent statistical tests of hypotheses due to decreased error in the

sample, but they come at the cost of external validity [70]. Further

research is needed to test the effects of gender on security behavior

in other settings.

Third, our sample consisted of 61 participants. While more data

are generally better, Dimoka [71] points out that although sample

sizes tend to be smaller for neuroscience studies due to the expense

and time commitment required per subject, neuroscience methods

generally provide many data points per subject. In our case, we

Table 4. Hypotheses and outcomes

Hypothesis Supported?

H1 P300 will be higher for all participants when viewing malware warning screenshots than when viewing legit-

imate website screenshots.

Yes

H2 P300 will be higher for women than for men when viewing malware warning screenshots. Yes, for the Cz region

H3 P300 will be slower for women or men. No

H4a P300 will be higher for all participants when viewing red malware warning screenshots than when viewing

grayscale malware warning screenshots.

No

H4b P300 will be higher for all participants when viewing red legitimate website screenshots than when viewing

non-red legitimate website screenshots.

No

Table 2. Mean amplitude (and standard deviation) of the P300 ERP

component as measured during the 300–600 ms poststimulus

period

Cz Pz

Females Males Females Males

Safe 0.07 (1.73) �1.02 (1.89) 2.11 (1.99) 2.36 (2.32)

Warning 2.30 (3.34) 0.94 (2.85) 3.70 (3.58) 3.92 (3.29)

Table 3. Mean 50% area latency (and standard deviation) of the

P300 ERP component for the 300–600 ms poststimulus period

Cz Pz

Females Males Females Males

Safe 431.7 (30.8) 427.0 (25.0) 453.9 (26.1) 445.6 (30.7)

Warning 434.1 (27.5) 438.7 (26.5) 446.1 (27.5) 443.7 (26.5)
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collected over 300 behavioral observations per participant while re-

cording EEGs at 250 Hz. Thus, the amount of data captured and

used in our analysis was actually much greater than a sample size of

61 would suggest.

Fourth, our results are based upon a single research method.

While multi-method approaches can be beneficial to research gener-

ally [72], additional methods are especially useful for neurosecurity

studies, which are largely exploratory and can therefore benefit

most from corroborating evidence provided by additional data col-

lection methods [73]. For example, eye-tracking equipment could be

used to measure eye movement to observe which aspects of malware

warnings are most salient or persuasive to participants. Similarly,

whereas EEG excels in inferring temporal ordering of brain activity,

fMRI can demonstrate which areas, and therefore, which functions

of the brain are activated by responding to malware warnings [71].

Thus, additional and complimentary neurosecurity methods may to-

gether yield results that are difficult or impossible to obtain with a

single research method alone.

Fifth, this study examined one aspect of security warnings:

whether perceptions of malware warnings differ by gender. Other

factors are known to influence users’ reception of security warnings,

including habituation [6], lack of comprehension [74], and con-

scious decisions to ignore security messages [75]. These and similar

questions are ripe for examination by neurosecurity methods that,

to an increasing extent, open the “black box” of user behavior.

Finally, our study only used the color red to compare against

grayscale versions of screenshot warnings and webpages. As previ-

ously discussed, “The color red has been shown to express greater

hazard than yellow or orange, which between them are not substan-

tially different from each other. Other colors, such as blue and

green, generally express less or no hazard,” and “dynamic warnings

designed to reflect the current status of the situation could change:

from yellow or orange for lower hazards to red for higher hazards”

[16:785]. With this insight, further research should be done to inves-

tigate whether different colors in security messages elicit greater

brain activity over the color red.

In summary, we call for future research to use neuroscience

methods to investigate individual differences such as gender and de-

sign factors such as color, and to incorporate findings into compre-

hensive behavioral security theories. Such theories can be used as

foundations to inform the experimental designs and hypotheses of

future behavioral security research, and to inform the design of se-

curity messages in practice.

Conclusion

Although there is growing evidence of the value of cognitive neuro-

science in studying information security (neurosecurity), as yet there

has been limited work applied to this domain. We contribute by

conducting a neurosecurity study of the comparative performance of

men and women in performing a security task: discriminating be-

tween web browser malware warnings and legitimate websites. We

found support for the position that mental processing of malware

warnings differs depending on gender; women display higher brain

activity when viewing malware warnings than do men. While our re-

sults are preliminary in nature, the discovery of gender differences in

the processing of security information can potentially be useful in

designing more effective security warning interfaces. Further, our

findings illustrate the kind of unique insights that can be provided

via neurosecurity methods and point the way to several promising

avenues for future research.
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Appendix A—browser security warning
examples

Figure A1. Google Chrome browser malware warning, build 43.0.2357.81 m.

Figure A2. Mozilla Firefox browser malware warning, build 38.0.1.
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