
The Role of Data Cap in Optimal Two-part Network Pricing

Xin Wang
University of Science and

Technology of China
yixinxa@mail.ustc.edu.cn

Richard T. B. Ma
School of Computing, National

University of Singapore
tbma@comp.nus.edu.sg

Yinlong Xu
University of Science and

Technology of China
ylxu@ustc.edu.cn

ABSTRACT
Internet services are traditionally priced at flat rates; however,

many Internet service providers (ISPs) have recently shifted to-
wards two-part tariffs where a data cap is imposed to restrain data
demand from heavy users and usage over the data cap is charged
based on a per-unit fee. Although the two-part tariff could gener-
ally increase the revenue for ISPs and has been supported by the
FCC chairman, the role of data cap and its revenue-optimal and
welfare-optimal pricing structures are not well understood.

In this paper, we study the impact of data cap on the optimal two-
part pricing schemes for congestion-prone service markets, e.g.,
broadband or cloud services. We model users’ demand and prefer-
ences over pricing and congestion alternatives and derive the mar-
ket share and congestion of service providers under a market equi-
librium. Based on the equilibrium model, we characterize the two-
part structures of the revenue-optimal and welfare-optimal pricing
schemes. Our results reveal that 1) the data cap provides a mecha-
nism for ISPs to transition from flat-rate to pay-as-you-go type of
schemes, 2) with growing data demand and network capacity, the
revenue-optimal pricing moves towards usage-based schemes with
diminishing data caps, and 3) the structure of the welfare-optimal
tariff comprises lower fees and data cap than those of the revenue-
optimal counterpart, suggesting that regulators might want to pro-
mote usage-based pricing but regulate the per-unit fees. Our results
could help providers design revenue-optimal pricing schemes and
guide regulatory authorities to legislate desirable regulations.
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1. INTRODUCTION
Traditionally, Internet service providers (ISPs) use flat-rate pric-

ing [19] for network services, where users pay fixed monthly fees
for unlimited data usage. Flat-rate pricing was widely adopted be-
cause it was easy for ISPs to implement and was preferred by users
for its simplicity. However, with the rapid development and grow-
ing popularity of data intensity services, e.g., online video stream-
ing and cloud-based applications, the Internet traffic keeps growing
more than 50% per annum [13], which exposes some disadvantages
of the flat-rate scheme. Because flat-rate does not count the users’
data usage, “bandwidth hogs” [18] consume an unfair share of ca-
pacity and are subsidized by normal users, and ISPs cannot gener-
ate enough revenue to recoup their costs, especially for the mobile
providers. As a consequence, most mobile LTE providers [17] and
even broadband ISPs, e.g., Verizon [23] and AT&T [25], start to
introduce a data cap and adopt a two-part tariff structure, a combi-
nation of flat-rate and usage-based pricing. Under such a two-part
scheme, additional charges are imposed if a user’s data demand ex-
ceeds the data cap and the exceeded amount is charged based on a
per-unit fee.

Although prior work [5, 6, 8, 18] has shown that data-capped
schemes could help ISPs generate higher revenue than that under
the flat-rate pricing and the FCC chairman has recently backed
usage-based pricing for broadband to penalize heavy Internet users
[22], little is known about 1) the data cap’s role and impact on a
provider’s optimal pricing structure, 2) the optimal two-part pric-
ing structure and its dynamics under varying system parameters,
e.g., the users’ data values and demand, the capacity of providers
and market competition, and 3) potential regulations on two-part
pricing for protecting social welfare from monopoly providers. In
this paper, we focus on a generic congestion-prone service mar-
ket, e.g., mobile, broadband or cloud services, and study the data
cap under two-part pricing schemes. Unlike physical commodities,
the quality of network service is intricately influenced by a nega-
tive network effect (or network externality): the more users access
the service simultaneously, the worse performance it provides. We
model this service congestion as a function of providers’ capacity
and their data load. We characterize users by their demand and
values on data usage, and analyze the market shares and conges-
tion levels of the providers under varying pricing and market struc-
tures. Based on our model, we analyze the effect of data cap on the
provider’s optimal pricing structure and the resulting congestion
and revenue. We also analyze and compare the revenue-optimal
and welfare-optimal two-part schemes under varying system envi-
ronments, and derive regulatory implications. Our main contribu-
tions and findings include the following.

• We model users’ optimal data usages and preferences over
various pricing schemes and exogenous levels of congestion.
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We characterize the existence and uniqueness (Theorem 1)
of a market equilibrium and show its monotonic dynamics
(Theorem 2) under varying pricing and market structures.

• We analyze the impact of data cap on a provider’s optimal
pricing structure (Theorem 3) and find that data cap plays a
transitional role between pay-as-you-go and flat-rate pricing
and could increase the provider’s revenue (Corollary 3).

• We characterize the dynamics of revenue-optimal two-part
pricing (Theorem 4) under varying demand and values of
users and capacities of providers. We find that with grow-
ing demand of users and capacity of providers, the structure
of revenue-optimal solution moves closer to pay-as-you-go
pricing with diminishing data cap, which provides a smooth
transition from flat-rate to usage-based schemes. Although
market competition drives pricing “cheaper”, it does not nec-
essarily change the structure of an optimal two-part tariff.

• We characterize the dynamics of welfare-optimal two-part
pricing (Theorem 6) and find that welfare-optimal pricing
imposes stricter data cap but lower fees than its revenue-
optimal counterpart (Theorem 5). Our result implies that,
to protect social welfare, regulators might want to encour-
age the use of two-part pricing with a limited data cap, while
regulating the per-unit fee of the usage-based component.

We believe that our work provides new insights into the role of
data cap in the optimal structure of two-part tariff. Our results could
help service providers design revenue-optimal pricing schemes and
guide regulatory authorities to legislate desirable regulations. The
rest of this paper is organized as follows. Section 2 reviews related
work. Section 3 models the behavior of users and characterizes
the market equilibrium under providers’ two-part pricing schemes.
We analyze the impact of data cap and the revenue-optimal pricing
in Section 4, and study the welfare-optimal pricing in Section 5,
respectively. We draw some conclusions in Section 6.

2. RELATED WORK
As the demarcation between the lump-sum and usage-based fees,

data cap plays a crucial role in the two-part tariff structures. From
the perspective of economic theory, prior work [5–8, 18] demon-
strated that data-capped schemes can increase providers’ revenue
compared with the traditional flat-rate pricing [19]. Odlyzko et al.
[20] showed that ISPs could also reduce network congestion by
imposing data caps. Our analysis and results also confirm these ob-
servations. Furthermore, we focus on understanding the impact of
data cap on the structures of revenue-optimal and welfare-optimal
tariffs. The impact and optimal design of data cap have been em-
pirically studied. In a qualitative study of households users under
bandwidth caps, Chetty et al. [4] studied how the uncertainties of
user types and demand would impact the setting of data cap and
operator’s revenue, and proposed new tools to help users manage
their caps. Poularakis et al. [12] proposed a framework to calculate
the optimal data caps and empirically evaluated the gains of ISPs
when they adopt data caps based on traffic datasets. Unlike these
efforts, our work adopts an analytical approach to characterize the
desirable data cap and the optimal structure of the two-part pricing
schemes.

More generally, there have been several works that study the
usage-based Internet pricing. Hande et al. [10] characterized the
economic loss due to ISPs’ inability or unwillingness to price broad-
band access based on the time of use. Li et al. [14] studied the op-
timal price differentiation under complete and incomplete informa-

tion. Basar et al. [1] and our related work [27] devised a revenue-
maximizing pricing under varying user scale and network capac-
ity. Shen et al. [24] investigated optimal nonlinear pricing policy
design for a monopolistic service provider and showed that the in-
troduction of nonlinear pricing provides a large profit improvement
over linear pricing. In this paper, we focus on the two-part pricing.
Besides optimizing the revenue from the provider’s perspective, we
also look into the welfare-optimal solution, through which we de-
rive regulatory implications.

From a modeling perspective, Chander [2], Reitman [21], Ma
[15] and our work all consider the service market with conges-
tion externalities. Chander [2] studied the quality differentiation
strategy of a monopoly provider and Reitman [21] studied a multi-
provider price competition. Both of them modeled the market as
a continuum of non-atomic users, each of which is characterized
by a quality-sensitivity parameter. However, this one-dimensional
model only applies for flat-rate pricing and the distribution of users
was often assumed to be uniform for analytical tractability. To
faithfully characterize the utility of users under two-part tiered pric-
ing, we establish a novel two-dimensional model that describes
users by their data demand and valuation on data usage. Further-
more, we analyze a class of distributions, including the uniform
distribution, to understand the impact of user demand and value on
the optimal pricing structures of the providers. Ma [15] also con-
sidered a two-dimensional user model; however, the author only
focused on the pay-as-you-go pricing, a special case of the two-
part tariff structure studied in this paper.

3. MODEL

3.1 Model of Users and Their Data Demand
We model each user by two orthogonal characteristics: her av-

erage value of per-unit data usage v and desirable data demand u.
The user’s data demand is measured by what she is billed, e.g., the
number of bits transmitted or the amount of time being online.

We denote q as the congestion level of an ISP. Given the network
congestion q, we denote ρ(u, q) as the user’s achievable demand.

Assumption 1. ρ(u, q) : R+ × R+ 7→ R+ is a continuous func-
tion, increasing in u and decreasing in q. It has an upper-bound
ρ(u, 0) = u and satisfies lim

q→+∞
ρ(u, q) = 0.

Assumption 1 states that a user’s achievable data demand equals
its desirable demand u under no congestion and decreases mono-
tonically when the network congestion q becomes more severe.

Beside network congestion, the user’s actual data demand also
depends on her ISP’s pricing. We consider an ISP that adopts a
two-part tiered pricing structure θ = (g, f, p), where g, f and p
denote a data cap, a lump-sum service fee and a per-unit usage fee,
respectively. Under this scheme, we denote t(y, θ) as the user’s
charge when y units of data are consumed, defined as

t(y, θ) , f + p(y − g)+.

Intuitively, if a user’s usage is below the data cap g, the ISP only
collects the lump-sum fee f ; otherwise, extra charges are imposed
on the usage above the data cap with the per-unit usage fee of p.
This two-part structure is also a generalization of flat-rate, i.e., g =
+∞, and pay-as-you-go [15] pricing, i.e., f = 0 and g = 0.

We denote π(y) as the user’s utility when she consumes y units
of data, defined by π(y) , vy − t(y, θ), i.e., the total traffic value
minus the charge. We assume that users determine their optimal
data demands that maximize their utilities. In other words, each
user tries to solve the following optimization problem:
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Maximize π(y) = vy − t(y, θ)

subject to 0 ≤ y ≤ ρ(u, q),
(1)

where a user’s actual data demand is constrained by the achievable
demand ρ(u, q) under the network congestion q. We define ϕ =
(u, v) as the type of the user and denote y∗(ϕ, θ, q) as its optimal
demand under ISP’s pricing scheme θ and congestion q. Due to the
space limitation, proofs of some lemmas, theorems and corollaries
are omitted, but are available in the technical report [26].

Lemma 1. Given an ISP with pricing scheme θ and congestion q,
a user of type ϕ has a unique solution y∗ that maximizes her utility.
This optimal demand satisfies

y∗(ϕ, θ, q) = ρ(u, q)−
[
ρ(u, q)− g

]+
1{v<p} (2)

and is non-increasing in p and q and non-decreasing in u, v and g.
Lemma 1 states that if a user’s achievable demand ρ(u, q) is be-

yond the data cap g and her value v is lower than the extra per-unit
usage fee p, she would avoid consuming extra usage above g which
would result in reducing her utility, and thus the optimal data de-
mand equals the data cap, i.e., y∗ = g; otherwise, the optimal data
demand equals her achievable demand, i.e., y∗ = ρ(u, q). Lemma
1 also intuitively states that the optimal demand would increase if
the user’s value v or desirable demand u increases, or the provider’s
per-unit fee p or data cap g or congestion q alleviates.

3.2 Users’ Preferences over Providers
We consider a market that comprises of a set N of providers.

We denote θ = (θi : i ∈ N ) and q = (qi : i ∈ N ) as the
pricing strategy and congestion vectors of the providers. We define
y∗
i (ϕ) , y∗(ϕ, θi, qi) as the optimal demand of user type ϕ when

it chooses provider i. For any two providers i, j ∈ N , we denote
i ≻ϕ j if users of type ϕ prefer i over j. We denote Φi as provider
i’s market share, i.e., the set of user types that choose to use i,
defined as follows.

Definition 1. We denote πi(y) as the user’s utility function when
using provider i. For any i, j ∈ N , i ≻ϕ j if and only if 1)
πi(y

∗
i (ϕ)) > πj(y

∗
j (ϕ)) or 2) πi(y

∗
i (ϕ)) = πj(y

∗
j (ϕ)) and i is

chosen over j by the user based on any arbitrary tie-breaking con-
dition. Thus, the market share of provider i is defined as

Φi(θ,q) = {ϕ : i ≻ϕ j,∀j ∈ N\{i}}.

Definition 1 assumes that users would choose the provider that
induces the highest utility under their optimal data demand. How-
ever, a user’s best provider might still induce negative utility. Thus,
we allow users not to use any of the providers if they all induce
negative utility as follows.

Assumption 2. There exists a dummy provider 0 ∈ N with fees
f0 = p0 = 0 and congestion q0 = +∞.

Under Assumption 2, users can choose the dummy provider to
obtain zero utility and Φ0(θ,q) conveniently defines the set of
users that do not use any of the real providers. Next, we show
how providers’ market shares Φi(θ,q) (i ∈ N ) vary when the set
of competing providers N or the pricing strategies θ change.

Lemma 2. For a set N of providers, if two pricing strategies θ̂
and θ satisfy ĝi ≥ gi, f̂i ≤ fi, p̂i ≤ pi for some i ∈ N and
θ̂j = θj for all j ̸= i, we have

Φi(θ,q) ⊆ Φi(θ̂,q) and Φj(θ,q) ⊇ Φj(θ̂,q), ∀ j ̸= i.

For two sets N and N ′ of providers, if N ⊆ N ′ and (θ′i, q
′
i) =

(θi, qi) for all i ∈ N , we have Φi(θ
′,q′) ⊆ Φi(θ,q), ∀ i ∈ N .

Lemma 2 states that under fixed levels of congestion q, the mar-
ket share of a provider would increase if the provider reduces its
fees f or p, or raises its data cap g, unilaterally. Meanwhile, the
market share of any other provider will decrease. It implies that
monopolistic providers could use fees and data cap to trade off
its market share and revenue; while, oligopolistic providers could
compete for market shares by decreasing their fees and increasing
data caps. Lemma 2 also implies that bringing new providers into
the market will intensify market competition and existing providers’
market shares will decrease, because some of their users might
switch to the new providers.

Lemma 2 holds under the condition of fixed network congestion.
However, a provider’s congestion level depends on its market share
and the data usage of its users. We discuss the dynamics of network
congestion and equilibrium in the next subsection.

3.3 Network Congestion and Equilibrium
We denote U and V as the maximum desirable data demand and

maximum per-unit data value of all users. Thus, the domain of
users is defined as Φ = [0, U ]×[0, V ]. We model the set of all users
by the measure space (Φ, µ), where µ denotes a product measure

µ(E1 ×E2) = µu(E1)×µv(E2), ∀ E1 ⊆ [0, U ], E2 ⊆ [0, V ],

where µu and µv are two continuous measures, defined by

µu ((u1, u2]) = Fu(u2)− Fu(u1),∀u1 ≤ u2, and
µv ((v1, v2]) = Fv(v2)− Fv(v1), ∀v1 ≤ v2,

for some non-decreasing distribution functions Fu and Fv .
Based on the distribution of users, we denote di as provider i’s

data load, i.e., the aggregate data demand of users of i, defined by

di = D(Φi(θ,q); θi, qi) ,
∫
Φi(θ,q)

y∗
i (ϕ, θi, qi)dµ (3)

On the one hand, given congestion levels q, provider i has an
induced data load di = D(Φi; θi, qi). On the other hand, the
provider’s congestion level qi is influenced by its data load di. We
denote ci as provider i’s capacity and model its congestion qi as a
function qi = Qi(di, ci) of its data load di and capacity ci.

Assumption 3. Qi(di, ci) : R2
+ 7→ R+ is continuous, increasing

in di, decreasing in ci and satisfies Qi(0, ci) = 0.
Different forms of the congestion function Qi can be used to

model the different technologies used by the provider. Assumption
3 implies that a provider i’s congestion increases (decreases) when
its data load di (capacity ci) increases, and no congestion exists
when no user consumes data from the provider.

We denote Q−1
i (qi, ci) as the inverse function of Qi(di, ci) with

respect to di, which defines the implied load under the capacity ci
and an observed congestion level of qi. By Assumption 3, we know
that Q−1

i (qi, ci) is continuous, increasing in both qi and ci, and sat-
isfies Q−1

i (0, ci) = 0. We denote c = (ci : i ∈ N ) as the vector
of the capacities of all the providers. When the providers make ex-
ogenous pricing decisions θ and capacity planning decisions c, the
resulting congestion q of the providers can be determined endoge-
nously when users choose their best providers. We define such a
market equilibrium of the system as follows.

Definition 2. For a set N of providers with any fixed pricing strate-
gies θ and capacities c, q is an equilibrium if and only if

qi = Qi

(
Di

(
Φi(θ,q); θi, qi

)
, ci

)
, ∀i ∈ N .
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Figure 1: Shift of market share for a monopoly provider

To better understand the above definition, we can equivalently
rephrase the above equality condition as Di

(
Φi(θ,q); θi, qi

)
=

Q−1
i (qi, ci), where the left-hand side is the induced data load of

provider i given its market share Φi(θ,q), pricing strategy θi and
congestion qi and the right-hand side is its implied data load un-
der capacity ci. In equilibrium, both equal the actual aggregate
user demand di. Because the equilibrium is depend on the pricing
strategies θ and capacities c, we also denote it as q(θ, c).

Theorem 1. Under Assumption 1-3, for any fixed pricing strate-
gies θ and capacities c, there always exists a market equilibrium
q. In particular, when the market has only one (real monopoly)
provider, the equilibrium is unique.

Theorem 1 states that under minor assumptions of the demand
(Assumption 1) and congestion (Assumption 3), the existence of
a market equilibrium can be guaranteed. Besides, the equilibrium
is unique in a market consisting of a monopoly provider. For this
case, we denote I as the monopoly provider and define I = {I}.
The next theorem shows how a monopoly provider’s congestion
level varies when its pricing strategy θI and capacity cI change, or
other providers enter the market to compete.

Theorem 2. In a monopoly market I, provider I’s unique level of
congestion qI(θI , cI) in equilibrium is non-increasing in its fees
fI , pI and capacity cI , but is non-decreasing in its data cap gI .
When new providers enter and form a new market N ⊇ I = {I},
where provider I keeps its pricing θI and capacity cI , if qI(θ, c) is
I’s congestion under an equilibrium, then qI(θ, c) ≤ qI(θI , cI).

Theorem 2 states that when the monopoly provider increases fees
or decreases data cap, its induced congestion level will be allevi-
ated, because its market share as well as data load will decrease.
When the provider increases capacity, the congestion level will
decrease, although the resulting market share and data load will
increase. It also shows that with more competing providers, the
existing monopoly’s congestion will decrease, as users have more

choices and may switch to other providers. This implies that com-
petition could alleviate the congestion at the providers, because ef-
fectively more providers bring higher capacity to the entire market.

Under any market equilibrium q(θ, c), we denote Ri and Si as
the revenue and social welfare generated by provider i, defined as

Ri ,
∫
Φi

t (y∗
i (ϕ), θi) dµ and Si ,

∫
Φi

vy∗
i (ϕ)dµ, (4)

where y∗
i (ϕ) = y∗(ϕ, θi, qi) and Φi = Φi(θ,q) are evaluated at

the equilibrium q(θ, c).

3.4 Model Parameters and Properties
Although our model is built upon generic assumptions (Assump-

tion 1 and 3), it does not yet capture the characteristics of net-
work services. To this end, we carefully choose the model parame-
ters, i.e., the congestion function Qi(di, ci), the achievable demand
function ρ(u, q) and the measure space (Φ, µ) of user domain. We
discuss the rationales and implications of our choices as follows.

First, we adopt the congestion function Qi(di, ci) = di/ci,
which models the capacity sharing [3] nature of network services.
This form has been used in much prior work such as [3, 9, 11].

Corollary 1. Suppose Qi(di, ci) = di/ci for all i ∈ N and q
is an equilibrium of a system with capacities c and a measure µ
of the users. For any scaled system with capacities ĉ = kc and
µ̂(E) = kµ(E) for all E ⊆ Φ for some k > 0, q̂ = q is also an
equilibrium, under which d̂i = kdi for all i ∈ N .

Corollary 1 states that when the providers’ capacities and the
user size scale linearly at the same rate, the market equilibrium does
not change. Thus, by appropriately scaling the capacities, we can
normalize the measure of the users to be µ(Φ) = 1, i.e., Fu and Fv

can be normalized to probability distribution functions Fu(U) =
Fv(V ) = 1 without loss of generality.

Next, we choose a quintessential form ρ(u, q) = ue−q for the
achievable demand function, which is used by prior work [16, 21].
Under this form, the user’s achievable demand decays exponen-
tially at a rate of q, i.e., the level of congestion.

Corollary 2. If ρ(u, q) = ue−q and Qi(di, ci) = di/ci for all
i ∈ N , let q be an equilibrium under parameters θ, c,Φ and µ.
For another market with f̂ = f/(UV ),ĝ = g/U ,p̂ = p/V , ĉ =

c/U , Φ̂ = [0, 1] × [0, 1] and µ̂([0, û] × [0, v̂]) = µ([0, Uû] ×
[0, V v̂]) for all (û, v̂) ∈ Φ̂, we must have q̂ = q as an equilibrium
under which d̂i = di/U for all i ∈ N .

Corollary 2 states that under the exponential form of achievable
demand, any domain of the users can be normalized onto the do-
main [0, 1] × [0, 1]. In particular, the equilibrium does not change
when 1) the lump-sum fees, data caps, capacities and the users’
desirable demands are normalized by U , or 2) the lump-sum and
per-unit fees and users’ values are normalized by V . Based on this
result, we can focus on U = V = 1 without loss of generality
and we will consider the forms Fu(x) = xα and Fv(x) = xβ for
x ∈ [0, 1], where α and β model the distribution of users with re-
spect to their desirable data demands and values, respectively. For
instance, when β = 1, user values are uniformly distributed; oth-
erwise, they are leaning toward the high (β > 1) or low (β < 1)
values in the domain [0, 1]. In summary, we will analyze the two-
part tiered pricing of the providers with the following assumption.

Assumption 4. Any provider i’s congestion satisfies Qi(di, ci) =
di/ci, the users are distributed by Fu(x) = xα, Fv(x) = xβ for
x ∈ [0, 1], and their achievable demands satisfy ρ(u, q) = ue−q .
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When the level of congestion is exogenously given, Lemma 2
implies that the market share of a monopoly provider will decrease
when it raises fees, e.g., fI and pI , or reduces data cap gI . How-
ever, the higher fees or lower data cap would alleviate the provider’s
congestion in equilibrium by Theorem 2, which results in attract-
ing more congestion-sensitive users to join. As a result, the dy-
namics of the provider’s market share combines both effects and
is not monotonic. Under Assumption 4, we illustrate an example
in Figure 1 that shows how a monopoly provider’s market share
shifts when it changes the pricing strategy under equilibrium. In
this example, the user distribution is parameterized by α = 4.0 and
β = 0.8 and the provider has a capacity of cI = 0.5. In each
subfigure, x-axis and y-axis vary the desirable data demand u and
value v of the user types. In other words, each point in the subfig-
ures represents a unique user type. In subfigure (a), we illustrate the
market share ΦI as the shaded area when the provider uses strat-
egy θI = (gI , fI , pI) = (0.4, 0.2, 0.9) and induces congestion
qI = 0.35389 and data load dI = 0.17695 in equilibrium. Notice
that the region of market share ΦI has a flat-bottom on the right
side where the desirable demand u is large. This flat boundary
corresponds to the value of v = fI/gI , because if a user’s per-
unit value is lower than the effective average per-unit value for the
capped amount data gI , she would not use the provider. From sub-
figure (a) to (b), the provider decreases fI from 0.2 to 0.15 and the
cheaper lump-sum fee attracts a larger market share for the provider
and induces higher data load and congestion in equilibrium. From
subfigure (a) to (c), the provider decreases pI from 0.9 to 0.5 and
the cheaper per-unit usage fee induces higher load and congestion.
However, the market share ΦI shrinks, because higher congestion
reduces the utility of some users, forcing them to leave the provider.
From subfigure (a) to (d), the provider increases gI from 0.4 to 0.6
and the larger data cap again induces higher data load and conges-
tion in equilibrium. However, the resulting market share attracts
more low-value heavy users and loses some high-value light users.
Notice that although the changes in market share from subfigure (a)
to subfigures (b) to (d) are not monotonic, the increase in conges-
tion and data load in these cases are consequences of cheap prices
and larger data caps stated in Theorem 2.

4. REVENUE-OPTIMAL PRICING
In this section, we study the revenue-optimal two-part pricing of

the providers and characterize its dynamics under changes of sys-
tem parameters, i.e., the distribution of users’ demand and values,
and the capacity of the providers. Because data cap is the demar-
cation between the lump-sum (for demand below the data cap) and
usage-based (for demand above the data cap) charges, we first an-
alyze the impact of data cap on the provider’s pricing decisions
and the corresponding data load, congestion and revenue, and then
identify the role of data cap in the two-part pricing structure.

4.1 The Role of Data Cap
We start with a monopoly provider and assume that it chooses

its pricing strategy, i.e., fI and pI , to maximize its revenue RI .
Given any fixed data cap gI , we denote f∗

I (gI) and p∗I(gI) as the
optimal lump-sum and per-unit fee, respectively, and d∗I(gI) and
R∗

I (gI) as the resulting data load and maximum revenue. We study
how various data caps influence its optimal pricing decisions, e.g.,
f∗
I and p∗I , and the resulting optimal revenue R∗

I . In particular, we
compare two-part schemes with the flat-rate pricing, a special case
of an infinite data cap, i.e., gI = +∞. For simplification, we define
the maximum revenue under the flat-rate as R∗

∞ , lim
gI→∞

R∗
I (gI).
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Figure 2: Optimal lump-sum fee f∗
I (gI) and per-unit fee p∗I(gI)

under varying data cap gI .
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Figure 3: Corresponding data load d∗I(gI) and maximum rev-
enue R∗

I (gI) under varying data cap gI .

We consider the models under Assumption 4 where the maxi-
mum desirable demand is normalized as U = 1. As a result, an
effective data cap g that might influence the users’ demand has
to be less than or equal to 1. In other words, when gI is larger
than 1, the two-part pricing is equivalent to a flat-rate scheme, i.e.,
R∗

I (gI) = R∗
∞ = R∗

I (1) for any gI ≥ 1. Thus, we will focus on
gI ∈ [0, 1] without loss of generality.

Figure 2 plots the optimal lump-sum fee f∗
I (gI) and the optimal

per-unit fee p∗I(gI) as a function of the data cap gI varying along
the x-axis, respectively, where users are uniformly distributed, i.e.,
α = β = 1, and the provider has a unit capacity, i.e., c = 1. We
observe that both fees increase with the data cap; however, when gI
is small, f∗

I (gI) increases steeper and p∗I(gI) is almost flat; when
gI is large, f∗

I (gI) becomes flatter and p∗I(gI) increases steeper.
This observation also illustrates that when gI is small, the pricing
structure is close to the pay-as-you-go pricing, where the lump-
sum component is close to zero and the per-unit charge is close to
the optimal pay-as-you-go price p∗I(0); when gI becomes large, the
pricing structure converges to the flat-rate scheme, where the lump-
sum component converges to the optimal flat-rate f∗

I (1) and the
per-unit fee further increases to capture revenue from high-value
users with large demands. The following theorem shows that our
observed trends in the optimal fees are not particular to the model
parameters, i.e., α = β = c = 1.

Theorem 3. Under Assumption 4, for any monopoly market with
parameters α, β, c > 0, the optimal lump-sum fee f∗

I (gI) is non-
decreasing and concave in the data cap gI , and the optimal per-unit
fee p∗I(gI) is non-decreasing and convex in the data cap gI .

Theorem 3 intuitively states that when the data cap is relaxed,
a monopoly provider could compensate by increasing its prices so
as to maximize revenue. Without adapting prices, larger data cap
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Figure 4: Optimal two-part pricing (g∗I , f
∗
I , p
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I) and the resulting maximum revenue R∗

I under varying α.
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I) and the resulting maximum revenue R∗

I under varying c.

will induce higher load and congestion in a new equilibrium by
Theorem 2. However, the optimal tradeoff between prices and data
load will induce an increase in prices, which oppositely results in
a decrease in load as stated by Theorem 2. Under any fixed data
cap gI , if new providers enter the market, by Theorem 2, the exist-
ing provider’s congestion and load will decrease. To increase load
and maximize revenue under competition, it would need to reduce
prices as compared to the prices in a monopoly market. Thus, un-
der market competition, we would observe lower prices but similar
pricing trends, e.g., when gI = 0 and gI = 1, the optimal per-unit
and lump-sum prices will be lower than p∗I(0) and f∗

I (1), respec-
tively. The convexity of p∗I(gI) and concavity of f∗

I (gI) shown in
Theorem 3 also imply that the rate of change of the optimal per-unit
and lump-sum fees are slow when the data cap is small and large,
respectively. The reason is that in the regime of small (large) data
cap, the two-part pricing structure is very close to that of the pay-as-
you-go (flat-rate) scheme; and therefore, the revenue-optimal per-
unit (lump-sum) fee is close to the optimal pay-as-you-go p∗I(0)
(flat-rate f∗

I (1)) price. In general, the increase in data cap transi-
tions a provider’s pricing from a more pay-as-you-go structure to a
more flat-rate structure regardless of the market structure.

Figure 3 plots the corresponding load d∗I(gI) and maximum rev-
enue R∗

I (gI), respectively. We observe that although the resulting

data load under any data cap gI does not vary much, the maximum
revenue R∗

I (gI) varies significantly. In particular, when the pricing
converges to the flat-rate structure as gI goes to 1, the optimal rev-
enue decreases to a minimum value. The following corollary shows
that this observation is a very general result that does not depend
on Assumption 4 of our model.

Corollary 3. Under Assumption 1-3 and any monopoly market,
the provider’s revenue satisfies R∗

I (gI) ≥ R∗
∞, ∀gI ≥ 0.

Corollary 3 implies that the maximum revenue generated from
any optimal two-part pricing under a fixed data cap gI ≥ 0 is no
less than that under a flat-rate scheme. In other words, a provider
could always be better off by switching from an optimal flat-rate
scheme to an optimal two-part pricing scheme. Intuitively, under
any fixed lump-sum fI , the two-part structure generalizes the flat-
rate scheme under which pI = 0 and data cap does not play a role.
Consequently, even without changing its flat-rate fI , the provider
could restrict gI and increase pI to trade off between higher us-
age revenue from high-value users’ demand and its market share,
which potentially lead to higher total revenue. This result is consis-
tent with the views in prior work [5, 6, 8] that data cap could help
providers extract higher revenue from the market. Although pure
flat-rate is inferior to two-part schemes, Figure 3 shows that the
maximum revenue does not always increase when the pricing struc-
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Figure 7: Resulting data load d∗I under varying α, β and c, and
congestion q∗I under varying c.

ture moves towards the pure pay-as-you-go scheme, i.e., gI = 0. In
the next subsection, we further explore the optimal two-part pricing
structure and its dynamics under various system parameters.

4.2 Optimal Two-Part Pricing Structure
In the previous subsection, we considered the revenue-optimal

prices f∗
I (gI) and p∗I(gI) under any fixed data cap gI . In this sub-

section, we further explore revenue-optimal data cap g∗I . Under any
distribution of users specified by parameters α and β, and any fixed
capacity c of the provider, we denote θ∗I , (g∗I , f

∗
I , p

∗
I) as the opti-

mal two-part pricing that results in the maximum revenue R∗
I . We

explore the dynamics of optimal two-part pricing θ∗I when system
parameters, i.e., α, β and c, change.

Figures 4 to 6 plot the optimal two-part pricing g∗I , f∗
I and p∗I ,

and the resulting maximum revenue R∗
I as functions of 1) param-

eter α of the distribution of users’ demands, 2) parameter β of the
distribution of users’ values, and 3) parameter c of the provider’s
capacity, respectively. In each of the second and fourth subfigures,
we also plot the optimal flat-rate price f∗

I (1) and its correspond-
ing revenue for comparison, respectively. We observe that as α,
β and c increase, the maximum revenue increases under both the
optimal flat-rate and optimal two-part schemes, where the latter
induces higher revenue than the former as stated by Corollary 3.
Intuitively, larger α, β and c imply higher users’ demand, users’
value and provider’s capacity, respectively, where the provider is in
a more advantageous position in extracting revenue. For example,
we observe that the optimal flat-rate price f∗

I (1) always increases
under these changes. We also observe that when α or c increases,
g∗I , f∗

I and p∗I all decrease; however, when β increases, g∗I , f∗
I and

p∗I all increase. These monotonicities could be formally stated as
follows.

Theorem 4. Under Assumption 4, the data cap g∗I , lump-sum fee
f∗
I and per-unit fee p∗I of the optimal two-part pricing are non-

increasing in α and c, and are non-decreasing in β. The resulting
maximum revenue R∗

I is non-decreasing in all α, β and c.
By Theorem 3, we know that the optimal fees f∗

I (gI) and p∗I(gI)
increase with the data cap gI when the provider’s pricing structure

transitions from pure pay-as-you-go to pure flat-rate pricing. Theo-
rem 4 implies that when the demand of the users or/and the capacity
of the provider increase, the optimal two-part pricing moves closer
to a more pay-as-you-go type of structure; however, when the val-
ues of the users increase, it moves closer to a structure that has a
bigger lump-sum component with a larger data cap. When the ca-
pacity increases, it reduces the network congestion and increases
the achievable demand of the users. Because flat-rate pricing does
not restrict the users’ demand, it cannot effectively optimize the
provider’s revenue when the user demand increases; therefore, the
provider will transition to impose a data cap and a per-unit fee so as
to restrict demands from “bandwidth hogs”. On the contrary, when
the values of users tend to be concentrated towards the high-end,
the provider could impose a high per-unit fee and also introduce
a lump-sum component to capture users in the low-value and low-
demand regime. The high per-unit fee does not affect these users
as their demand is lower than the data cap.

Under market competition, if the provider keeps the same data
cap g∗I , it has to reduce the lump-sum and per-unit prices to capture
market share and optimize revenue; however, it might be better off
to increase data cap from g∗I to attract more users rather than de-
creasing the fees too much. In general, all three components of
the optimal two-part pricing under market competition have to be
“cheaper” than those under a monopoly market. However, it does
not alter the structure of the optimal two-part pricing, i.e., whether
it is more like pay-as-you-go or flat-rate, in an obvious manner.

The implications of Theorem 4 also provide compelling expla-
nations of why Internet service providers have shifted their pric-
ing from the traditional flat-rate to the two-part structure recently.
In the early years of the Internet, data demands were mostly for
texts and used by small groups of advanced users with high-value
tasks, e.g., scientific and business purposes. The network capacities
were scarce before the emergence of fiber optics backbones. Under
such conditions, flat-rate pricing could be used to effectively recoup
costs and the maximum revenue under two-part pricing would not
be much higher than that under an optimal flat-rate scheme. As a re-
sult, most providers adopted flat-rate pricing because of its simplic-
ity. As mobile devices become a key means to access the Internet
for end-users and multimedia content become more pervasive, to-
gether with the increase in network capacities, Internet traffic keeps
growing more than 50% per annum [13]. As a result, providers
now feel that flat-rate schemes cannot effectively influence users’
demand and optimize their revenues; and therefore, start to adopt
two-part pricing schemes. Furthermore, implied by Theorem 4, if
these trends continue, we would expect that providers will further
reduce the lump-sum component and data cap and move closer to
pure pay-as-you-go pricing in the near future. In practice, the in-
troduction of data cap in the two-part pricing also provides a means
for providers to transition from flat-rate to pay-as-you-go smoothly,
so that the changes will not be too abrupt for users and providers
will not lose users due to the structural change of pricing schemes.

Figure 7 plots the corresponding data load under the optimal
flat-rate and two-part pricing schemes when α, β and c increase,
respectively. As the system congestion has the same trends as data
load under fixed capacities, we only plot the corresponding network
congestion in the lower-right subfigure when capacity c varies. We
observe that the induced data load and network congestion do not
differ much under the optimal two-part and flat-rate schemes. In
general, increasing in users’ desirable demand, users’ values or
provider’s capacity will induce higher data load in the system; how-
ever, the congestion will decrease when the capacity becomes more
abundant.
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Figure 8: Welfare-optimal and revenue-optimal pricing schemes under varying α.
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Figure 9: Welfare-optimal and revenue-optimal pricing schemes under varying β.
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Figure 10: Welfare-optimal and revenue-optimal pricing schemes under varying c.

Corollary 4. Under Assumption 4 and an optimal two-part pric-
ing θ∗I = (g∗I , f

∗
I , p

∗
I), the provider’s data load d∗I is non-decreasing

in α, β and c, and the corresponding network congestion q∗I is non-
decreasing in α and β, but is non-increasing in c.

Corollary 4 implies that when the demand or values of users,
or the capacity of the provider increases, under the optimal two-
part pricing, the system will accommodate higher data load. The
system congestion will decrease if the capacity increases; other-
wise, it will increase. The increase in data load shows that revenue-
optimal pricing is partially aligned with the users’ welfare where
the provider would adaptively serve more data demand. In the next
section, we will explore how different the revenue-optimal pricing
is from the welfare-optimal solution, through which we will obtain
some insights on how monopolistic providers should be regulated
for social welfare maximization.

In summary, the structure of revenue-optimal two-part pricing is
largely influenced by the data cap, which plays a transitional role
(mechanism) between flat-rate and pay-as-you-go pricing schemes.
As users’ demand and providers’ capacity grow in the Internet,
revenue objectives will drive providers to shift from flat-rate to-

wards usage-based schemes, where data cap and both lump-sum
and per-unit fees would decrease. Although market competition
would force the providers to use “cheaper” schemes, i.e., higher
data cap and lower lump-sum and per-unit fees, it does not neces-
sarily change the structure of the optimal two-part pricing.

5. WELFARE-OPTIMAL PRICING
In the previous section, we studied the revenue-optimal pricing

and showed that it accommodates higher data load when the users’
demand or values, or the providers’ capacities increase. However,
the revenue-optimal solution does not maximize the social welfare,
i.e., the total utility of the providers and their users. Although mar-
ket competition could improve the social welfare, which would
be maximized under a perfect competitive market, a large devia-
tion from the maximum welfare would more likely happen in a
monopoly market. In the section, we focus on a monopoly provider
and compare its welfare-optimal and revenue-optimal solutions.

Under any distribution of users specified by parameters α and β,
and any capacity c of the provider, we denote θ◦I , (g◦I , f

◦
I , p

◦
I) as

the optimal two-part pricing that maximizes the social welfare SI
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(defined in Equation 4) and results in the maximum welfare S◦
I . We

denote the corresponding network congestion and data load as q◦I
and d◦I , respectively. To make a comparison, we denote S∗

I as the
social welfare achieved under the provider’s revenue-optimal pric-
ing θ∗I . Similarly, we explore the dynamics of the welfare-optimal
pricing θ◦I when system parameters, i.e., α, β and c, change.

Figures 8 to 10 plot the welfare-optimal solution g◦I , f◦
I and p◦I ,

and the resulting maximum welfare S◦
I as functions of 1) parame-

ter α of the distribution of users’ demands, 2) parameter β of the
distribution of users’ values, and 3) parameter c of the provider’s
capacity, respectively. As a comparison, we also plot the corre-
sponding revenue-optimal solution g∗I , f∗

I and p∗I , and the resulting
social welfare S∗

I in the four subfigures, respectively. We observe
that the curves of the welfare-optimal pricing g◦I , f◦

I and p◦I are al-
ways lower than those of the revenue-optimal pricing g∗I , f∗

I and
p∗I , respectively. This observation can be formally shown as fol-
lows.

Theorem 5. Under Assumption 4, for any monopoly market with
parameters α, β, c > 0, we have g◦I ≤ g∗I , f◦

I ≤ f∗
I and p◦I ≤ p∗I .

Theorem 5 implies that to shift the provider’s two-part pricing
from revenue-optimal to welfare-optimal, one should lower its fees,
i.e., fI and pI ; however, allow the provider to further throttle the
data cap and move towards a usage-based structure. Besides rev-
enue maximization, this result provides justifications for regulators,
e.g., the US FCC, to encourage usage-based pricing for the Internet
service providers. On the one hand, exorbitant fees reduce users’
utilities and data demand, resulting lower social welfare; on the
other hand, limiting the data cap will self-regulate the demand of
low-value, and therefore, increase the social welfare.

When comparing the trends between the revenue and welfare-
optimal solutions, we further observe that the welfare-optimal so-
lution has the same trend as that of the revenue-optimal solution
when β or c increases; however, this trend is reversed when α in-
creases. These monotonicities could be formally stated as follows.

Theorem 6. Under Assumption 4, the data cap g◦I , lump-sum fee
f◦
I and per-unit fee p◦I of the welfare-optimal two-part pricing are

non-increasing in c, and are non-decreasing in α and β. The re-
sulting revenue S◦

I is non-decreasing in all α, β and c.
Similar to the result of Theorem 4, Theorem 6 shows that when c

increases, the welfare-optimal solution moves towards usage-based,
but also reduces the per-unit fee to allow more user demand. How-
ever, when users’ demand becomes more concentrated at the high-
end as α increases, although the welfare-optimal solution is close
to the pay-as-you-go scheme, the optimal per-unit fee increases so
as to discourage the data demand from low-value users.

By comparing the maximum social welfare S◦
I with S∗

I , we ob-
serve that the difference widens when α and c increases, but reaches
largest as the values of users are uniformly distributed, i.e., β = 1.
This implies that regulations are most in need when the capacity
and users’ demand become large. In both cases, we observe that
both revenue and welfare-optimal solution tend to be pure pay-as-
you-go, i.e., gI = 0; however, the per-unit price for maximum wel-
fare is lower than that of the revenue-optimal solution. This further
implies that regulators could encourage usage-based pricing for the
providers; however, price regulation on the per-unit fee might be
needed to guarantee higher social welfare.

Add on to Figure 7, Figure 11 compares the data load and con-
gestion under the revenue and welfare-optimal pricing schemes.
We observe that the network congestion drops as the capacity c
increases; however, when α or c becomes large, the achieved load
from welfare-optimal pricing is much higher. This coincides with
the large gaps in social welfare, where regulation is most in need.

10
-2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

10
-2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

10
-2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

10
-2

10
0

10
2

0

0.5

1

1.5

2

2.5

Figure 11: Resulting data load d∗I and d◦I under varying α, β
and c, and congestion q∗I and q◦I under varying c.

The trends of d◦I and q◦I under the welfare-optimal pricing θ◦I are
similar to those under the revenue-optimal pricing θ∗I shown in
Corollary 4, and can be shown as follows.

Corollary 5. Under Assumption 4 and a welfare-optimal two-part
pricing θ◦I = (g◦I , f

◦
I , p

◦
I), the data load d◦I is non-decreasing in

α, β and c, and the corresponding network congestion q◦I is non-
decreasing in α and β, but is non-increasing in c.

Compared to the result of Corollary 4, Corollary 5 is even more
intuitive: higher provider’s capacity and users’ demand and values
will lead to higher social welfare when it is optimized.

In summary, our results suggest that regulatory authorities might
want to regulate a monopoly market under heavy demand of users
or abundant capacity of the provider. Under these scenarios, welfare-
optimal solution will have lower fees and data cap than the revenue-
optimal solution, forcing the pricing structure of the provider mov-
ing further towards usage-based. As the growth of users’ demand
and providers’ capacities in the current Internet, our result further
justifies from a welfare perspective that the regulators should en-
courage ISPs to shift towards two-part pricing with limited data
caps; however, it also suggests that the per-unit fees might need to
be regulated when market competition does not exist.

6. CONCLUSIONS
In this paper, we study the role of data cap in the optimal struc-

ture of two-part tariffs. We present a novel model of users’ demand
and preferences over pricing and congestion alternatives and derive
the market share and congestion of the service providers under a
market equilibrium. Based on the equilibrium model, we charac-
terize the two-part structure of the revenue-optimal and welfare-
optimal pricing schemes. We identify that the data cap provides
a mechanism for service providers to transition from flat-rate to
pay-as-you-go type of usage-based schemes. Our results reveal
that with growing data demand and network capacity in the current
Internet, revenue-optimal pricing will move towards usage-based
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schemes with diminishing data caps. Although market competition
might drive pricing “cheaper”, it does not necessarily change the
optimal structure of the two-part tariff. From a perspective of so-
cial welfare, our results suggest that regulators might want to pro-
mote usage-based pricing but regulate the per-unit fees, because
the structure of the welfare-optimal tariff comprises lower fees and
data cap than those of the revenue-optimal counterpart.
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APPENDIX
A. PROOFS OF SELECTED RESULTS

Proof of Lemma 1: For any user type ϕ that uses the ISP with
pricing scheme θ and congestion q, her utility is π(y) = vy −
f − p(y − g)+ from Equation 1. When v ≥ p, the utility π(y)
is non-decreasing in y ∈

[
0, ρ(u, q)

]
and thus the optimal demand

is y∗(ϕ, θ, q) = ρ(u, q). When v < p, the utility π(y) is non-
decreasing in y ∈

[
0, g

]
and non-increasing in y ∈

(
g, ρ(u, q)

]
,

and thus the optimal demand is y∗(ϕ, θ, q) = g. In summary, we
have y∗(ϕ, θ, q) = ρ(u, q)−

[
ρ(u, q)−g

]+
1{v<p}, and therefore,

the optimal usage y∗(ϕ, θ, q) is non-increasing in p and q and non-
decreasing in u,v and g. �

Proof of Lemma 2: For a set N of providers and any user type
ϕ ∈ Φi(θ,q), we have y∗(ϕ, θ̂i, qi) ≥ y∗(ϕ, θi, qi). Because the
optimal data usage y∗ is non-increasing in p and non-decreasing
in g from Lemma 1. Further, the utility function π(y) is non-
decreasing in the data usage y, thus it satisfies π

(
y∗(ϕ, θ̂i, qi)

)
≥

π
(
y∗(ϕ, θi, qi)

)
≥ π

(
y∗(ϕ, θj , qj)

)
= π

(
y∗(ϕ, θ̂j , qj)

)
for ∀j ̸=

i. Then we have ϕ ∈ Φi(θ̂,q) from Definition 1 and therefore
Φi(θ,q) ⊆ Φi(θ̂,q). Similarly, we can show that Φj(θ,q) ⊇
Φj(θ̂,q), ∀ j ̸= i.

For two sets N and N ′ of providers and any provider i ∈ N , for
any user type ϕ ∈ Φi(θ

′,q′), based on Definition 1, it satisfies
that π

(
y∗(ϕ, θi, qi)

)
= π

(
y∗(ϕ, θ′i, q

′
i)
)
≥ π

(
y∗(ϕ, θ′j , q

′
j)
)
=

π
(
y∗(ϕ, θj , qj)

)
, ∀j ∈ N\{i}. Then we have ϕ ∈ Φi(θ,q) and

therefore Φi(θ
′,q′) ⊆ Φi(θ,q), ∀i ∈ N . �

Proof of Theorem 1: We first prove the existence of equilib-
rium. By Definition 2, q is an equilibrium if and only if for all
i ∈ N ,

qi = Qi

(
Di

(
Φi(θ,q); θi, qi

)
, ci

)
= Qi

(
Di(θ,q), ci

)
.

Since θ and c are constants, we omit them in the notation and write
the above in a matrix form as q = Q

(
D(q)

)
= Q ◦D(q). Thus,

we can view the composite function Q ◦D as a mapping from the
convex set R|N|

+ to itself. By Assumption 3, we know that each
Qi(di, ci) is continuous in di and thus each Qi

(
Di(θ,q), ci

)
is

continuous in q. To this end, we know that Q◦D(q) is continuous
in q. By Brouwer fixed-point theorem, there always exists a fixed
point that satisfies Q ◦D(q) = q and is also an equilibrium.

We then prove the uniqueness of the equilibrium in a monopoly
market by contradiction. Suppose there exist two equilibriums qI
and q′I under fixed pricing strategy θI and capacity cI . Without
loss of generality, we assume that q′I > qI . For any user type

ϕ ∈ ΦI

(
θI , q

′
I

)
, we have y∗(ϕ, θI , qI) ≥ y∗(ϕ, θI , q

′
I). Be-

cause the optimal data usage y∗ is non-increasing in the conges-
tion qI from Lemma 1. Further, the utility function π(y) is non-
decreasing in the data usage y, thus it satisfies π

(
y∗(ϕ, θI , qI)

)
≥

π
(
y∗(ϕ, θI , q

′
I)
)
≥ 0 implying that ϕ ∈ ΦI

(
θI , qI

)
from Def-

inition 1. Thus we have ΦI(θI , q
′
I) ⊆ ΦI(θI , qI). By Equa-

tion 3, we deduce DI

(
θI , qI

)
=

∫
ΦI (θI ,qI )

y∗(ϕ, θI , qI)dµ ≥∫
ΦI (θI ,q

′
I
)
y∗(ϕ, θI , q

′
I)dµ = DI

(
θI , q

′
I

)
. Because QI(dI , cI) is

non-decreasing in dI from Assumption 3, we have

qI = QI

(
DI

(
θI , qI

)
, cI

)
≥ QI

(
DI

(
θI , q

′
I

)
, cI

)
= q′I

based on Definition 2, which is contradictory with the supposition
that q′I > qI . Therefore, the equilibrium is unique in the market
with only one real provider. �

Proof of Theorem 2: We first prove the congestion qI(θI , cI)
is non-increasing in the lump-sum fee fI by contradiction. Sup-
pose qI(θI , cI) is not non-increasing in fI , there must exist pric-
ing strategies θ′I = (gI , f

′
I , pI) and θI = (gI , fI , pI) satisfy-

ing f ′
I > fI and qI(θ

′
I , cI) > qI(θI , cI). For any user type

ϕ ∈ ΦI

(
θ′I , qI(θ

′
I , cI)

)
, because the optimal data usage y∗ is non-

increasing in the congestion q and the lump-sum fee f from Lemma
1, we have y∗(ϕ, θ′I , qI(θ′I , cI)) ≤ y∗(ϕ, θI , qI(θI , cI)). Further-
more, because the utility function π is non-decreasing in y and non-
increasing in f , we have

π
(
y∗(ϕ, θI , qI(θI , cI))) ≥ π

(
y∗(ϕ, θ′I , qI(θ′I , cI))) ≥ 0

implying that ϕ ∈ ΦI

(
θI , qI(θI , cI)

)
from Definition 1. Thus

we have ΦI

(
θ′I , qI(θ

′
I , cI)

)
⊆ ΦI

(
θI , qI(θI , cI)

)
. From Equation

3, it satisfies DI

(
θ′I , qI(θ

′
I , cI)

)
≤ DI

(
θI , qI(θI , cI)

)
. Because

QI(dI , cI) is non-decreasing in dI from Assumption 3, we have

qI(θ
′
I , cI) = QI

(
DI

(
θ′I , qI(θ

′
I , cI)

)
, cI

)
≤ QI

(
DI

(
θI , qI(θI , cI)

)
, cI

)
= qI(θI , cI)

by Definition 2, which is contradictory with the supposition that
qI(θ

′
I , cI) > qI(θI , cI). Therefore, qI(θI , cI) is non-increasing

in fI . Similarly, we can prove that qI(θI , cI) is non-increasing
in the per-unit fee pI , the capacity cI and non-decreasing in the
data cap gI , and when new providers enter the market, the ex-
isting provider’s congestion must be improved, i.e., qI(θ, c) ≤
qI(θI , cI). �

Proof of Corollary 1: Given ĉ = kc, Qi(di, ci) = di/ci and
d̂i = kdi for all i ∈ N , we know that q̂i = Q(d̂i, ĉi) = d̂i/ĉi =
kdi/kci = Qi(di, ci) = qi and therefore q̂ = q. Thus, we only
need to show that under q̂ = q, we must have d̂i = kdi for all
i ∈ N . Since θ does not change and q̂ = q, we know that
Φ̂i = Φi and y∗

i (ϕ, θi, q̂i) = y∗
i (ϕ, θi, qi) for all i ∈ N . Thus,

we have d̂i =
∫
Φ̂i

y∗
i (ϕ, θi, q̂i)dµ̂ =

∫
Φi

y∗
i (ϕ, θi, qi)dkµ = kdi

for all i ∈ N . �
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