
A Polynomial Chaos-Based Nonlinear Bayesian Approach for
Estimating State and Parameter Probability Distribution Functions

Vinay A. Bavdekar and Ali Mesbah

Abstract— Various systems engineering and control appli-
cations require the knowledge of the complete probability
distribution function (pdf) of system states and parameters. This
work presents a nonlinear Bayesian estimation approach that
uses the histogram filter algorithm to construct the posterior
pdfs of the state variables and uncertain parameters based on
histograms of the prior and likelihood pdfs. To address the
computational challenges associated with the Bayesian estima-
tion algorithms in obtaining the posterior pdfs, the generalized
polynomial chaos framework is used to enable efficient propa-
gation of the time-invariant probabilistic system uncertainties
with arbitrary distributions. The proposed estimation approach
is demonstrated on a benchmark continuous bioreactor, and its
performance and computational requirements are compared to
those of a sequential importance resampling particle filter.

I. INTRODUCTION

State and parameter estimation plays a crucial role in
many engineering applications including process monitoring,
model-based design, optimization, and control. State estima-
tion algorithms are mostly based on the recursive Bayesian
estimation framework, which determines the posterior prob-
ability distribution function (pdf) of states/parameters con-
ditioned on system measurements (e.g., [1], [2], [3]). For
nonlinear systems, however, there exists no closed-form
solution to the Bayes’ rule [2]. Thus, nonlinear state estima-
tion algorithms primarily aim at developing and improving
approximate solutions to the Bayes’ rule. State estimation for
nonlinear systems is further compounded by model uncer-
tainty, as well as exogenous disturbances that are ubiquitous
in complex dynamical systems.

Various nonlinear Bayesian state estimation algorithms
such as the ensemble Kalman filter (EnKF) [4] and particle
filters (PFs) [2] use sample-based techniques to account for
the system uncertainties in estimating the posterior pdf of the
states. For linear systems, histogram filter (HF) is proposed
to construct the histograms of the prior and likelihood using
randomly drawn samples of the states, disturbances, and
noise [5]. The prior and likelihood histograms are used in
the Bayes’ rule to construct the histogram of the posterior
pdf of the states. The sample-based estimation algorithms
mainly use Monte Carlo (MC) techniques to draw random
samples from the known pdfs of uncertainties. However, the
computational burden associated with MC-based Bayesian
state estimation algorithms can be prohibitive for nonlinear
systems with large state dimension. This shortcoming arises
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from the need to repeatedly solve the system model for every
uncertainty realization.

This work uses the generalized polynomial chaos (gPC)
framework [6] to address the recursive Bayesian estima-
tion problem for nonlinear systems with probabilistic time-
invariant uncertainties and (time-varying) system distur-
bances. The gPC framework allows for systematically ac-
counting for the effect of arbitrary, time-invariant uncer-
tainties in model parameters and initial conditions. In the
gPC framework, the stochastic state variables are expressed
as an expansion of orthogonal polynomial basis functions,
the coefficients of which yield the statistical moments of
the stochastic states. The polynomial chaos expansions can
also be used as a computationally efficient surrogate for the
original nonlinear model to perform MC simulations. The
gPC framework has been used as an efficient uncertainty
propagation tool in various applications such as stochastic
MPC [7], [8], active fault diagnosis [9], optimal experiment
design [10], and state estimation [11], [12], [13], [14], [15].

Konda et al. [14] proposed two gPC-based uncertainty
propagation approaches for state estimation of linear sys-
tems subject to time-invariant parametric uncertainties and
Gaussian disturbances. In the first approach, the mean and
covariance of the (Gaussian) states are expanded with respect
to parametric uncertainties using the gPC framework. In
the second approach, the states are mapped onto the space
of coefficients of the polynomial chaos expansions, which
are evaluated for different realizations of the Gaussian dis-
turbances. The mean and variance of states are then used
for estimating the statistics of the posterior state pdfs. For
nonlinear systems with uncertainties in model parameters
and initial conditions, [11] and [12] proposed, respectively, a
gPC-based ensemble Kalman filter (gPC-EnKF) and a gPC-
based extended Kalman filter (gPC-EKF). The prediction
and measurement update steps of the gPC-based filters are
defined in terms of the coefficients of PC expansion, which
are used to compute the moments of the state variables. In
[13], the gPC framework is used in conjunction with the
Gaussian mixture approximation to compute the posterior
pdf of states. Madankan et al. [15] used the Bayes’ rule to
compute the moments of the posterior pdf of states, based
on which the coefficients of the PC expansion are updated.
For nonlinear systems subject to stochastic disturbances and
parametric uncertainties, Madankan et. al. [16] proposed the
use of a conjugate unscented transform for computing the
first two moments of the posterior pdf of states. The work
assumes that the states have symmetric pdfs around the
mean, which can be a restrictive assumption for nonlinear



systems. Except for [14] and [16], the majority of the gPC-
based nonlinear state estimation algorithms only account for
the effect of time-invariant parametric and initial condition
uncertainties, while disregarding the effect of disturbances.
Further, most of the existing gPC-based state estimation
algorithms only determine the point estimates of the states
as well as their moments, instead of characterizing the entire
posterior pdf of states.

This work presents a Bayesian state estimation algorithm
for nonlinear systems with arbitrary probabilistic uncertain-
ties and disturbances. The proposed algorithm adopts the
gPC framework for propagation of the time-invariant proba-
bilistic uncertainties, and uses the principles of the HF algo-
rithm for constructing the posterior pdf of the uncertain states
and parameters. The key features of the proposed algorithm
are as follows: i) it accounts for time-invariant probabilistic
uncertainties as well as system disturbances, ii) it utilizes the
computational advantages offered by the gPC framework,
in which MC simulations are performed through algebraic
operations, to eliminate the need for repeatedly solving the
system model as in MC-based estimation techniques such as
the PF, and iii) it approximates the posterior pdf of states
(and parameters), instead of merely estimating the moments
of the posterior distribution. The proposed algorithm is
demonstrated on a benchmark bioreactor simulation case
study [17]. The performance and computational requirements
of the proposed algorithm are compared to those of an
MC-based sequential importance resampling (SIR) particle
filter [2].

Notation.
N = {1, 2, . . .} denotes the set of natural numbers, N0 =

N∪{0}. P (·) denotes the pdf of a stochastic variable. P (·|z)
denotes the conditional pdf, conditioned on z. N (µ,Σ)
denotes a Gaussian distribution with mean µ and covariance
Σ. N (x;µ,Σ) denotes the probability value of x, given the
distribution N (µ,Σ). E [·] denotes the expected value of a
stochastic variable.

II. PROBLEM FORMULATION

Consider a discrete-time nonlinear system

xk = f(xk−1, uk−1, θ0) + wk−1, (1a)
yk = h(xk) + vk (1b)

where k ∈ N0 is the time index; xk ∈ Rn denotes the system
states; uk ∈ Rnu denotes the system inputs; θ0 ∈ Rp denotes
the true system parameters; yk ∈ Rr (r ≤ n) denotes the
measured system outputs; f(·) denotes the nonlinear state
dynamics; h(·) denotes the measurement function; wk ∈ Rn
is zero-mean random system disturbances with a known pdf
P (w); and vk ∈ Rr is zero-mean measurement noise with a
known pdf P (v). It is assumed that the function f(·) is of
polynomial form or can be transformed into a polynomial-in-
states form [18]. For this assumption to hold, the sufficient
conditions are that f(·) is analytic with respect to xk and
separable with respect to xk, uk, and θ [18]. The function

h(·) is also assumed to be analytic and separable with respect
to xk.

The model used to describe the dynamics of (1) is subject
to probabilistic uncertainties arising from imperfect knowl-
edge of the model parameters and initial states. The model
parameters {θi}pi=1 are independently distributed with pdf
P (θi) , i = 1, 2, . . . , p. The initial states are also uncertain
with a known distribution x0 ∼ P (x0). Define a probability
space {Ω,F ,P} on the sample space Ω, σ-algebra F , and the
probability measure P on Ω. The time-invariant uncertainties[
x>0 θ>

]
∈ Rnξ , (nξ ≤ n + p) are defined in terms of

the standard random variables ξ ∈ Rnξ such that ξj ∈
L2 {Ω,F ,P}, where L2 {·} is the Hilbert space of ξj and
E
[
ξ2
j

]
< ∞. The elements {ξj}

j=nξ
j=1 are assumed to be

independently distributed with known pdfs P (ξj).
The objective of this work is to estimate the posterior pdf

of the states and uncertain parameters of system (1) using the
Bayes’ rule [2]. Under the assumption that (1) is a Markov
process, the Bayes’ rule is expressed as

P (xk|yk) =
P (yk|xk)P (xk|yk−1)

P (yk|yk−1)
, (2)

where P (xk|yk−1) denotes the prior pdf of the states based
on the measurements yk−1; P (yk|xk) denotes the likelihood,
that is, the probability of the measurements given a particular
value of the current states; P (yk|yk−1) is the evidence, a
normalizing constant that is the marginal of the measure-
ments; and P (xk|yk) denotes the posterior pdf of the states
conditioned on the measurements yk. A similar form of
the Bayes’ rule can be used to compute the posterior pdf
P (θi|yk) , i = 1, 2, . . . , p of the uncertain parameters.

There are two main challenges involved in solving the
Bayes’ rule in (2) for the uncertain nonlinear system (1).
The first challenge concerns efficient uncertainty propagation
through the nonlinear system dynamics. The gPC frame-
work [6] is used for uncertainty propagation (see Section III).
The second challenge arises from computing the prior, like-
lihood, and evidence in (2). Analytical expressions cannot be
obtained for the pdfs due to the nonlinearity of the system
dynamics. The HF algorithm is used to approximate these
distributions (see Section IV).

III. UNCERTAINTY PROPAGATION USING POLYNOMIAL
CHAOS

The generalized polynomial chaos (gPC) framework [6]
is used for efficient propagation of the probabilistic uncer-
tainties in θ and x0. In the gPC framework, a stochastic
variable ψ (ξ) is expressed as an infinite series expansion of
orthogonal polynomial basis functions

ψ (ξ) :=

∞∑
j=0

ajϕj (ξ) ,

where aj are the expansion coefficients and ϕj (ξ) , j ∈ N0

are the basis functions with maximum degree m with respect
to the standard random variables ξ. The basis functions
belong to the Wiener-Askey scheme of polynomials [6],



which consist of orthogonal basis functions in L2 {Ω,F ,P}
defined on the support space of the random variables
ξ. The orthogonality of the basis functions implies that
〈ϕi (ξ) , ϕj (ξ)〉 =

〈
ϕ2
i (ξ)

〉
δij , where 〈g1 (ξ) , g2 (ξ)〉 =∫

Ω
g1 (ξ) g2 (ξ)P (ξ) dξ is the inner product induced by P (ξ)

and δij is the Kronecker delta function. For computational
tractability, the expansion is truncated after l+1 terms, where
l + 1 =

(nξ+m)!
nξ!m! . Thus, ψ (ξ) is approximated as

ψ (ξ) ≈ ψ̂ (ξ) =

l∑
j=0

ajϕj (ξ) = aΛ> (ξ) , (3)

where a := [a0, . . . , al] and Λ (ξ) := [ϕ0 (ξ) , . . . , ϕl (ξ)]
>.

The expansion coefficients are defined by

aj =

〈
ψ̂ (ξ) , ϕj (ξ)

〉
〈ϕj (ξ) , ϕj (ξ)〉

, ∀ j = 0, . . . , l.

The inner products in the above equation can be computed by
evaluating the integrals analytically (the Galerkin projection)
when the system is of polynomial form [19], or through
sample-based methods such as the probabilistic collocation
methods (PCM) (e.g., see [20]). A brief description of both
methods is provided below (see [21] for further details).

A. Galerkin Projection

The ith state in (1) can be approximated using the poly-
nomial chaos expansion (3). The system equation for each
approximated uncertain state x̂i,k (ξ) takes the form
l∑

j=0

x̃i,j,kϕj (ξ) =fi

(
x̃1,k−1Λ> (ξ) , . . . , θ̃1Λ> (ξ) , . . . , u

)
,

∀ i = 1, . . . , n,
(4)

where x̃i,k and θ̃i denote the vector of expansion coefficients.
Since the system equations (1) are expressed as polynomial
functions in states, the Galerkin projection method is applied
to (4) to obtain a set of discrete-time, deterministic equations
for describing the dynamics of the coefficients of the PC
expansion for each state x̂i,k. The Galerkin projection is
performed by computing the following inner product [19]∫

Ω

fi

(
x̃1,k−1Λ> (ξ) , . . . , θ̃1Λ> (ξ) , . . . , u

)
P (ξ) .

The above projection ensures that the approximation error
between the true states and their respective polynomial chaos
approximations is orthogonal to the functional space spanned
by ϕj (ξ) [21]. The orthogonality of the basis functions
results in the following set of discrete-time equations that
describes the dynamics of the PC expansion coefficients for
each approximated state x̂i,k

x̃i,k = f̃i

(
x̃1,k−1, . . . , θ̃1, . . . , u

)
, ∀ i = 1, . . . , n, (5)

where f̃i (·) describes the dynamics of the expansion coeffi-
cients of the ith state.

B. Probabilistic Collocation Method

When the system equations are nonpolynomial in states, it
is impractical to use the Galerkin method.1 In this case, the
PCM is used for determining the expansion coefficients by
requiring the PC expansions ψ̂ (ξ) be exact at some chosen
collocation points. To this end, the approximation residual is
defined as

% (a, ξ) := ψ − ψ̂ (ξ) = ψ −
l∑

j=0

ajϕj (ξ) .

The coefficients {aj}lj=0 are computed such that % (a, ξ) is
orthogonal to ϕj (ξ) [20]∫

% (a, ξ)ϕj (ξ)P (ξ) dξ = 0, ∀ j = 0, · · · , l.

The above integral can be approximated using a quadrature
method
nc∑
o=0

ω(o)%(a, ξ(o))ϕj(ξ
(o))P(ξ(o)) = 0, ∀ j = 0, . . . , l, (6)

where ω(o) denotes the weights of the quadrature approx-
imation; nc ∈ N is the number of collocation points; and
ξ(o) denotes the samples of the standard random variable
ξ drawn from the pdf P (ξ). Using (6), the PC expansion
coefficients a can be estimated by computing %

(
a, ξ(o)

)
at

nc collocation points. The collocation points can be chosen
either deterministically as the roots of the polynomial basis
function of order (nξ + 1), or by random sampling of the
known distributions of uncertainties.

IV. GPC-BASED HISTOGRAM FILTER

The proposed gPC-based histogram filter, which approxi-
mates the posterior pdf of the stochastic states and uncertain
parameters, is presented in this section. The HF algorithm
discretizes the support of the pdf of the states and parameters
to obtain a closed-form approximation of the Bayes’ rule [5].

A. State Estimation

At time k, the prior pdf of states is obtained as fol-
lows. First, the coefficients of the PC expansions of states,
i.e., {x̃i,k|k−1}ni=1, are computed by solving (5). Subse-
quently, np realizations of the approximated stochastic states
{x̂i,k|k−1}ni=1 are obtained by drawing np random samples
from P (ξ) and P (w)

ξ(j) ∼ P (ξ) , j = 1, . . . , np,

w
(j)
k−1 ∼ P (w) , j = 1, . . . , np,

x̂
(j)
i,k|k−1 = x̃i,k|k−1Λ>(ξ(j)) + w

(j)
k−1, ∀ i = 1, . . . , n.

A multivariate histogram of the stochastic states
{x̂(j)

i,k|k−1}
np
j=1 can now be constructed using nb bins. Let

{Nc,i}nbi=1 represent the number of observations of the states
in each bin of the histogram, with ci being the center of the

1When transforming a general nonlinear model to its polynomial-in-states
form, the resulting equations may not be polynomial in the artificial states.



ith bin. The number of bins is chosen as nb = d√npe, where
d·e represents the ceiling operator.2 Given {Nc,i, ci}nbi=1, the
prior pdf with respect to the bin centers ci is computed as

P (xk = ci|yk−1) =
Nc,i∑Nb

i=1Nc,ibi
, ∀ i = 1, . . . , nb, (7)

where bi denotes the interval of each bin. On the other hand,
the likelihood of yk with respect to ci is defined by3

vi,k = yk − h (ci) ,

P (yk|xk = ci) = N (vi,k; 0, R) , ∀ i = 1, . . . , nb. (8)

Now, the expressions (7) and (8) can be used to estimate the
posterior pdf of the states as

P (xk = ci|yk) =
P (xk = ci|yk−1)P (yk|xk = ci)

P (yk)
(9)

with

P (yk) =

nb∑
i=1

biP (xk = ci|yk−1)P (yk|x = ci) .

Note that the area under the pdf P (xk|yk) is unity.
Since the posterior pdf of states evolves in time (as

described by (9)), the coefficients of the PC expansions
of states must be updated accordingly. An optimization
problem is formulated to recompute the coefficients of the
PC expansions based on the histogram of the posterior pdf of
states. Using the gPC framework, the qth moment of x̂i,k|k
in terms of its PC expansion coefficients is given by

υq (x̂i,k) =

l∑
j1=0

· · ·
l∑

jq=0

x̃i,j1,k · · · x̃i,jq,k
〈
ϕj1 (ξ) · · ·ϕjq (ξ)

〉
.

(10)
Using the histogram of states, the qth posterior moment of
x̂i,k is approximated as

Mx,q (x̂i,k) := Eq [x̂i,k] ≈
np∑
j=1

ω(j)
x

(
x̂

(j)
i,k

)q
, (11)

where ω(j)
x is the normalized posterior pdf of the jth sample

of the states.
The coefficients of the PC expansion of the ith state is

computed by minimizing the sum of squared error between
the moments obtained using (10) and (11)

x̃∗i,k|k := arg min
x̃i,k

m+1∑
q=1

‖ υq (x̂i,k)−Mx,q (x̂i,k) ‖2 . (12)

The updated coefficients obtained from (12) are used as the
initial condition in (5) for the next time step.

2This relation gives the minimum number of required bins. A larger
number of bins can be used to enhance the pdf approximations.

3The measurement error is assumed to have a zero-mean Normal dis-
tribution with variance R. However, the proposed estimation algorithm is
valid for arbitrary type measurement noise distributions.

B. Parameter Estimation

The Bayes’ rule is applied to estimate the uncertain
parameters. Due to the time-invariant nature of parametric
uncertainties in (1), the following holds

P (θi,k|yk−1) = P (θi,k−1|yk−1) , ∀ i = 1, . . . , p.

The samples of the parameters are available from the previ-
ous sampling instant. Thus, for {θi}pi=1 at time k

θ̂
(j)
i,k|k−1 = θ̂

(j)
i,k−1|k−1, ∀ j = 1, . . . , np

such that

P
(
θi,k = θ̂

(j)
i |yk−1

)
= P

(
θi,k−1 = θ̂

(j)
i |yk−1

)
, (13)

where np denotes the number of random realizations of the
uncertain parameters.

The likelihood of yk for every θ̂(j)
i is given by

v
(j)
k = yk − ŷk(θi = θ̂

(j)
i ),

P
(
yk|θ̂(j)

i

)
= N

(
v

(j)
k ; 0, R

)
. (14)

Thus, the posterior pdf of the parameters can be computed
by using (13) and (14) as

P
(
θi = θ̂

(j)
i |yk

)
=

P
(
yk|θ̂(j)

i

)
P
(
θi = θ̂

(j)
i |yk−1

)
P (yk)

,

where

P (yk) =

np∑
j=2

δθ
(j)
i P

(
yk|θ̂(j)

i

)
P
(
θi = θ̂

(j)
i |yk−1

)
,

δθ
(j)
i = θ̂

(j)
i − θ̂

(j−1)
i .

Similar to (12), the coefficients of PC expansions of the
parameters must be updated by minimizing the sum of
squared error between the moments obtained using the gPC
framework and the moments obtained using the histogram
of the posterior pdf of the parameters

θ̃∗i,k|k := arg min
θ̃i,k

m+1∑
q=1

‖ υq(θi)−Mq(θi) ‖2, (15)

where

υq(θi) =

l∑
j1=0

· · ·
l∑

jq=0

θ̃i,j1 · · · θ̃i,jq
〈
ϕj1(ξ) · · ·ϕjq (ξ)

〉
,

Mq(θi) := Eq [θi] ≈
np∑
j=1

ω
(j)
θ

(
θ

(j)
i

)q
,

and ω
(j)
θi

is the normalized posterior pdf of the jth sample
of θi.

A sufficiently large number of PC terms may be needed
to obtain good estimates for the arbitrary type pdfs of the
stochastic states and uncertain parameters.



V. CASE STUDY: A CONTINUOUS BIOREACTOR

The performance of the gPC-based histogram filter is
demonstrated on a benchmark continuous bioreactor [17].
The continuous-time system dynamics are described by

dh =
(Fin
πr2
− k1

πr2

√
h
)
dt+ σhdwh(t) (16a)

dX =
(
− Fin
πr2h

X + µX
)
dt+ σXdwX(t) (16b)

dS =
( Fin
πr2h

(Sf − S)− 1

YX|S
µX
)
dt+ σSdwS(t) (16c)

dP =
(
− Fin
πr2h

P + (αµ+ β)X
)
dt+ σP dwP (t), (16d)

where h is the level of the reactor; and X , S, and P are the
biomass concentration, substrate concentration, and product
concentration in the bioreactor. The terms wh(t), wX(t),
wS(t), and wP (t) are independent Wiener processes with
variances σi, i = {h,X, S, P} as given in Q in Table I.
The inlet flow rate Fin and the inlet substrate concentration
Sf are the inputs, and r is the radius of the reactor tank.
YX|S is the cell-biomass yield, and α and β are the yield
parameters for P . µ denotes the specific growth rate with
substrate inhibition

µ =
µmS

Km + S
,

where µm is the maximum specific growth rate. The system
parameters can be found in [17].

The bioreactor is run for a period of 12 hr with the steady-
state operating point chosen as the initial conditions. The
states h, S, and P are measured at regular sampling time
intervals of 0.25 hr. The measurements are corrupted by
white noise v ∼ N (0, R). The parameter µm is assumed
to be uncertain with distribution µm ∼ N (µm,0, σm).
The initial states are described by Normal distributions
N (mi,0, σi,0) , i = {h,X, S, P}, where mi,0 and σi,0 are,
respectively, the mean and variance of the initial states. The
properties of the system uncertainties and disturbances are
listed in Table I.

As the time-invariant parametric uncertainty and uncertain
initial states are all described by Normal distributions, Her-
mite polynomials are chosen as the basis functions in the
PC expansions. The order of the polynomial basis functions
is selected as m = 3. There are five uncertain variables
(i.e., nξ = 5); hence, the total number of terms in the

TABLE I: Properties of system uncertainties and disturbances

Variable Covariance/variance
Q 10−3 × diag [11.1 0.7 139.2 0.12]
R 10−3 × diag [0 5.6 15.6 0.1]

{µm,0, σm}
{
0.48, 1× 10−4

}{
mX,0, σX,0

}
{7.04, 0.12}{

mS,0, σS,0
}

{2.40, 0.015}{
mP,0, σP,0

}
{24.87, 1}{

mh,0, σh,0
}

{1, 0.003}

(a)

(b)

Fig. 1: Evolution of the posterior pdf of the uncertain
parameter µm estimated using (a) the gPC-based histogram
filter and (b) the SIR particle filter.

PC expansions is l = 56 (see Section III). The model
equations (16) consist of nonpolynomial expressions, which
are transformed to a polynomial-in-states form through state-
lifting [18]. This results in three extra artificial states, leading
to a total of seven dynamic system equations (not shown
here). A combination of the Galerkin projection and the
probabilistic collocation method is used to determine the
coefficients of the PC expansions.

Fig. 1a shows the evolution of the estimated posterior
pdf of µm. The estimated parameter values converge to the
true value of µm, and the pdf of the uncertain parameter
reduces to a Dirac-delta function within a few time steps. The
performance of the gPC-based histogram filter is compared
to that of a SIR particle filter [2] with 1000 MC particles.
The process conditions are identical to those used in the
gPC-based histogram filter. The evolution of the pdf of µm
estimated by the SIR particle filter, as shown in Fig. 1b,
is similar to that estimated by the gPC-based histogram
filter. However, the parameter estimates of the SIR particle
filter are slightly biased with respect to the true parameter
value. Further, the gPC-based histogram filter exhibits a
faster convergence to the true parameter value.

Fig. 2 shows the true profile of P as well as the mean
of its posterior pdfs estimated by the gPC-based histogram
filter and the SIR particle filter. The gPC-based histogram
filter provides reasonably accurate estimates for the state
P . Table II lists the root-mean-squared errors (RMSEs) of
the state estimates obtained by the gPC-based histogram
filter and the SIR particle filter based on 100 Monte Carlo
simulations of both estimators. The RMSE results indicate
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Fig. 2: Comparison of the true state P and the mean of the
posterior pdf of P estimated by the gPC-based histogram
filter and the SIR particle filter.

that the gPC-based histogram filter slightly outperforms the
SIR particle filter, except for the case of estimating the state
P . This is due to the slower convergence rate of the gPC-
based histogram filter for the estimation of P (see Fig. 2).

The performance of the two nonlinear estimation algo-
rithms is also compared in terms of their computational
requirements. On a desktop with a 3.6 GHz Intel Core-i7
processor and 8GB RAM, the CPU time for the prediction
step of the gPC-based histogram filter is 0.051 s, while that
of the SIR particle filter is 1.32 s. This suggests that the
gPC framework is a computationally efficient approach for
propagation of the probabilistic uncertainties. On the other
hand, the update step in the gPC-based histogram filter is
computationally more expensive (0.31 s) than that of the
SIR particle filter (0.05 s). This is due to the need to solve a
nonlinear least squares problem (i.e., (12) and (15)). The
computational advantage of the SIR particle filter in the
update step results from the fact that it uses the prior pdfs
as the importance distribution to sample the particles of
the posterior pdf. Overall, the gPC-based histogram filter is
approximately five times faster than the SIR particle filter.

VI. CONCLUSIONS

This paper presents a polynomial chaos-based histogram
filter for constructing the posterior pdf of stochastic states
and uncertain parameters. The advantages of the proposed
nonlinear estimation algorithm include accounting for time-
invariant system uncertainties and time-varying system dis-
turbances, utilizing the computationally efficient framework
of polynomial chaos for propagating the probabilistic uncer-
tainties, and estimating the full posterior pdf of states and
parameters. In future, the conditions for unbiased estimates
and convergence properties of the polynomial-chaos based
histogram filter will be investigated.

TABLE II: RMSE values of state estimates obtained by the
gPC-based histogram filter and SIR particle filter

State gPC-based Histogram Filter SIR Particle Filter
X 0.290 0.328
S 0.057 0.059
P 0.199 0.124
h 0.013 0.016
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