

Improved 3D Lighting Environment Estimation for Image Forgery Detection

Bo Peng, Wei Wang, Jing Dong and Tieniu Tan CRIPAC, NLPR, Institute of Automation, Chinese Academy of Sciences

2015.11.18 Roma Tre University

模式识别国家重点实验室 National Laboratory of Pattern Recognition

Outline

Introduction & Motivation

- Methods
 - Reflection Model
 - 3D Face Fitting
 - Lighting Coefficients Estimation
- Experiments & Conclusion
 - Datasets
 - Estimation Accuracy
 - Splicing Detection Efficacy
 - Conclusions

Introduction – Image Forensics

- Pixel based
 - Copy move, resampling, steep edge…
- Format based
 - JPEG quantization, double JPEG…
- Camera based
 - Chromatic aberration, CFA, sensor noise…
- Scene based
 - Illumination color, geometric constraints,
 - lighting direction ···

Introduction – Lighting Direction

- An effective kind of forensic method robust for low resolution and low quality images.
- Objects from different images are usually in different lighting conditions.

Previous Work

(Johnson and Farid 2005)

(Johnson and Farid 2007)

(Kee and Farid 2010)

2D, single direction

2D, complex lighting environment

3D, complex lighting environment

Motivation

- Previous work's assumptions:
 - Known 3D geometry
 - Distant lighting
 - Lambertian reflection
 - Linear camera response
 - Convex surface
 - Untextured object

Shadows

Facial hair, Pimples...

- Human faces are non-convex and textured !
- The relaxation of the two assumptions is more applicable and will lead to improved efficacy.

Outline

- Introduction & Motivation
- Methods
 - Reflection Model
 - 3D Face Fitting
 - Lighting Coefficients Estimation
- Experiments & Conclusion
 - Datasets
 - Estimation Accuracy
 - Splicing Detection Efficacy
 - Conclusions

Methods - Reflection Model

• Previous model (Kee and Farid 2010):

$$I(\vec{x}) = \rho \int_{\Omega} R(\vec{V}, \vec{N}(\vec{X})) L(\vec{V}) d\vec{V}$$

- $L(\vec{V})$: spherical lighting function, distant light assumption
- ρ : constant albedo, **untextured** assumption

- $R\left(\vec{V}, \vec{N}(\vec{X})\right) = \max(\cos(\theta), 0)$: Lambertian & **convex** assumption

Methods – Reflection Model

• Our model:

RELAXATION ! $I(\vec{x}) = \int_{\Omega} \rho(\vec{X}) G(\vec{X}, \vec{V}) R(\vec{V}, \vec{N}(\vec{X})) L(\vec{V}) d\vec{V}$ Texture Occlusion term term

 $\rho(\vec{X})$: spatially varying albedo. Texture!

 $G(\vec{X}, \vec{V})$: spherical mask function indicating the self-occlusion. Non-convex!

Define $A(\vec{X}, \vec{V}) = \rho(\vec{X})G(\vec{X}, \vec{V})R(\vec{V}, \vec{N}(\vec{X}))$ as the transfer function We have: $I(\vec{x}) = \int_{\Omega} A(\vec{X}, \vec{V})L(\vec{V}) d\vec{V}$

How to get

the *TEXTURE* and *OCCLUSION* information?

Outline

- Introduction & Motivation
- Methods
 - Reflection Model
 - 3D Face Fitting
 - Lighting Coefficients Estimation
- Experiments & Conclusion
 - Datasets
 - Estimation Accuracy
 - Splicing Detection Efficacy
 - Conclusion

Methods – 3D Face Fitting

- 3D face shape & texture
 - Face scanning: access to involved person (not practical)

(Images from the Internet)

- Face fitting: FaceGen

Two material images to get accurate shape; Uniform lighting in material images to get accurate texture map;

Outline

- Introduction & Motivation
- Methods
 - Reflection Model
 - 3D Face Fitting
 - Lighting Coefficients Estimation
- Experiments & Conclusion
 - Datasets
 - Estimation Accuracy
 - Splicing Detection Efficacy
 - Conclusions

Methods – Spherical Harmonics (SH)

• $Y_{n,m}(\vec{V})$: A set of orthogonal basis functions on the spherical surface

Methods – SH Representation

• Representing $L(\vec{V})$ and $A(\vec{X}, \vec{V})$ using SH coefficients

$$L(\vec{V}) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} l_{n,m} Y_{n,m}(\vec{V}) \qquad A(\vec{X}, \vec{V}) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} a_{n,m}(\vec{X}) Y_{n,m}(\vec{V})$$

Lighting
Coefficients
Transfer
Coefficients

• Image intensity: Integration to inner product

$$I(\vec{x}) = \int_{\Omega} A(\vec{X}, \vec{V}) L(\vec{V}) d\vec{V}$$

$$I(\vec{x}) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} l_{n,m} a_{n,m}(\vec{X}) = \vec{l}^T \cdot \vec{a}(\vec{X})$$

Spatial Domain
Frequency Domain

Methods - Lighting Coefficients Estimation

• Least Square Error Estimation

$$I(\vec{x}) = \vec{l}^{T} \cdot \vec{a}(\vec{X})$$

$$\begin{bmatrix} a_{0,0}(\vec{X}_{1}) & a_{1,-1}(\vec{X}_{1}) & \cdots & a_{2,2}(\vec{X}_{1}) \\ a_{0,0}(\vec{X}_{2}) & a_{1,-1}(\vec{X}_{2}) & \cdots & a_{2,2}(\vec{X}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ a_{0,0}(\vec{X}_{q}) & a_{1,-1}(\vec{X}_{q}) & \cdots & a_{2,2}(\vec{X}_{q}) \end{bmatrix} \begin{bmatrix} l_{0,0} \\ l_{1,-1} \\ \vdots \\ l_{2,2} \end{bmatrix} = \begin{bmatrix} I(\vec{x}_{1}) \\ I(\vec{x}_{2}) \\ \vdots \\ I(\vec{x}_{q}) \end{bmatrix}$$

Solving:
$$A\vec{l} = \vec{b}$$

 $\vec{l} = (A^T A)^{-1} A^T \vec{b}$

Two Problems

- How to get the **correspondence** between \vec{x} and \vec{X} ?
- How to get the **transfer coeff** $\vec{a}(\vec{X})$ at each point **?**

$$\begin{bmatrix} a_{0,0}(\vec{X}_{1}) & a_{1,-1}(\vec{X}_{1}) & \cdots & a_{2,2}(\vec{X}_{1}) \\ a_{0,0}(\vec{X}_{2}) & a_{1,-1}(\vec{X}_{2}) & \cdots & a_{2,2}(\vec{X}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ a_{0,0}(\vec{X}_{q}) & a_{1,-1}(\vec{X}_{q}) & \cdots & a_{2,2}(\vec{X}_{q}) \end{bmatrix} \begin{bmatrix} l_{0,0} \\ l_{1,-1} \\ \vdots \\ l_{2,2} \end{bmatrix} = \begin{bmatrix} I(\vec{x}_{1}) \\ I(\vec{x}_{2}) \\ \vdots \\ I(\vec{x}_{q}) \end{bmatrix}$$

transfer coeff

Methods – Correspondence

 3D Face Alignment : we minimize the distance between the detected 2D facial landmarks and the projected 3D ones

Alignment Error: $E(R, \vec{t}) = \sum_{i=1}^{N} ||\hat{\vec{x}}_{i} - K(R \,|\, \vec{t}\,) \vec{X}_{i}\,||$

23 detected facial landmarks and the alignment result

• Solving: Levenberg-Marquardt algorithm

Methods - Transfer Coefficients Fitting

 Render the fitted 3D model under many (42) known distant lighting directions.

Outline

- Introduction & Motivation
- Methods
 - Reflection Model
 - 3D Face Fitting
 - Lighting Coefficients Estimation

Experiments & Conclusion

- Datasets
- Estimation Accuracy
- Splicing Detection Efficacy
- Conclusions

Experiments - Datasets

- Synthetic dataset
 - 500 images, random pose, random lighting directions, 1 individual
- Yale B sub-dataset
 - 490 images, 1 frontal pose, 49 lighting directions, 10 individuals

(a) Synthetic dataset

(b) Yale Face Database B

Experiments - Estimation Error Distribution

• Distance measurement (Johnson and Farid 2007)

$$D(\vec{l}_{1}, \vec{l}_{2}) = \frac{1}{2}(1 - corr(\vec{l}_{1}, \vec{l}_{2}))$$

$$corr(\vec{l}_{1}, \vec{l}_{2}) = \frac{\vec{l}_{1}^{T}Q\vec{l}_{2}}{\sqrt{\vec{l}_{1}^{T}Q\vec{l}_{1}}\sqrt{\vec{l}_{2}^{T}Q\vec{l}_{2}}}$$
Errata !

• Geometry (occlusion) and texture information can progressively improve estimation accuracy.

Experiments - Different Individuals

• Our method constantly outperforms previous method for all individuals and is more stable.

TABLE I.ESTIMATION ACCURACY ON THE YALE FACE DATABASE B

	ID 1	ID 2	ID 3	ID 4	ID 5
Kee & Farid's	0.121	0.045	0.068	0.083	0.100
Proposed	0.040	0.028	0.022	0.014	0.040
	ID 6	ID 7	ID 8	ID 9	ID 10
Kee & Farid's	0.061	0.074	0.091	0.127	0.040
Proposed	0.021	0.020	0.051	0.035	0.023

ID1 & ID9 have relatively heavy facial hair. Previous method does not incorporate facial texture.

Experiments – Splicing Detection Efficacy

- All possible pairs in YaleB are "virtually" spliced together. Images taken under the same lighting direction are treated as "pristine". Those taken under different lightings are treated as "spliced".
- At a false alarm rate of around 1%, the detection rate of Kee & Farid's is 78.5%, while ours achieves 89.2%, achieving an improvement of more than 10% !

Experiments – A Splicing Example

• Using the threshold at 1% false alarm rate, our method can detect more subtle inconsistency.

Conclusions

- The relaxation of the convexity and constant reflectance assumptions are more applicable to human faces, and it can get improved forgery detection efficacy
- The more information we have, the more reliable forensic determination we will get. (in this case, the non-convex shape & facial texture)
- More assumption relaxations, e.g. distant light and Lambertian reflection, may further benefit the lighting based forensic techniques.

Thanks! **Q**&A

E-mail: bo.peng@nlpr.ia.ac.cn