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ABSTRACT

Motivation: The accurate prediction of residue–residue contacts,
critical for maintaining the native fold of a protein, remains an
open problem in the field of structural bioinformatics. Interest in
this long-standing problem has increased recently with algorithmic
improvements and the rapid growth in the sizes of sequence families.
Progress could have major impacts in both structure and function
prediction to name but two benefits. Sequence-based contact
predictions are usually made by identifying correlated mutations
within multiple sequence alignments (MSAs), most commonly
through the information-theoretic approach of calculating mutual
information between pairs of sites in proteins. These predictions are
often inaccurate because the true covariation signal in the MSA is
often masked by biases from many ancillary indirect-coupling or
phylogenetic effects. Here we present a novel method, PSICOV,
which introduces the use of sparse inverse covariance estimation to
the problem of protein contact prediction. Our method builds on work
which had previously demonstrated corrections for phylogenetic and
entropic correlation noise and allows accurate discrimination of direct
from indirectly coupled mutation correlations in the MSA.
Results: PSICOV displays a mean precision substantially better than
the best performing normalized mutual information approach and
Bayesian networks. For 118 out of 150 targets, the L/5 (i.e. top-
L/5 predictions for a protein of length L) precision for long-range
contacts (sequence separation >23) was ≥0.5, which represents an
improvement sufficient to be of significant benefit in protein structure
prediction or model quality assessment.
Availability: The PSICOV source code can be downloaded from
http://bioinf.cs.ucl.ac.uk/downloads/PSICOV
Contact: d.jones@cs.ucl.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Residue–residue contacts are known to play critical roles in
maintaining the native fold of proteins and guiding protein folding
(Gromiha and Selvaraj, 2004). Such residue contacts are usually well

∗To whom correspondence should be addressed.

separated with regards to the primary sequence but display close
proximity within the 3D structure. Although different geometric
criteria for defining contacts have been given in the literature,
typically, contacts are regarded as those pairs of residues where the
C-β atoms approach within 8 Å of one another (C-α in the case of
Glycine) (Fischer et al., 2001; Graña et al., 2005a, b; Hamilton and
Huber, 2008).

It has long been observed that with sufficient correct information
about a protein’s residue–residue contacts, it is possible to elucidate
the fold of the protein (Gobel et al., 1994; Olmea and Valencia,
1997). However, accurate prediction of intrachain residue–residue
contacts from sequence data alone remains an open problem.
A solution would yield benefits for a range of endeavours including
fold recognition, ab initio protein folding, 3D model quality
assessment and de novo protein design.

The majority of successful approaches for contact prediction
attempt to extract contact information from the content of a
multiple sequence alignment (MSA); usually through the simple
identification of correlated mutations (Ashkenazy and Kliger, 2010;
Gobel et al., 1994; Neher, 1994; Pollock and Taylor, 1997) or
by calculating the mutual information (MI) between columns in
the MSA (Burger and van Nimwegen, 2010; Dunn et al., 2008).
The underlying rationale rests on the fact that any given contact
critical for maintaining the fold of a protein will constrain the
physicochemical properties of the amino acids involved. Should
a given contacting residue mutate and potentially perturb the
properties of the contact, then its contacting partner will be more
likely to mutate to a physicochemically complementary amino acid
residue, to ensure the native fold of the protein remains stabilized.
Turning this observation around, pairs of residues seen to co-
evolve in tandem and thus preserving their relative physiochemical
properties, are likely candidates to form contacts. Such linked
mutational events are often referred to simply as ‘correlated
mutations’. The physicochemical similarity of residue pairs is
typically scored with the McLachlan matrix (McLachlan, 1971),
although recent work has called into question its use (Burger and
van Nimwegen, 2010; Lena et al., 2011). To date, a wide variety
of information theory and machine learning algorithms have been
applied to the problem of correlated mutation analysis including MI,
Neural Networks, Support Vector Machines and linear regression
models (Fariselli et al., 2001; Hamilton et al., 2004; MacCallum,
2004; Martin et al., 2005; Pollastri and Baldi, 2002; Punta and
Rost, 2005; Shao and Bystroff, 2003; Xue et al., 2009; Yuan, 2005).
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A thorough review of the currently available methods can be found
in Horner et al. (2008)

Despite significant attention, what success there has been in
predicting structurally important contacts has generally been rather
modest, and progress in the field has remained slow (Ezkurdia et al.,
2009). Even the best methods display low accuracies and, while the
predictions are better than random, an accuracy between 20% and
40% is typical (Burger and van Nimwegen, 2010; Fariselli et al.,
2001; Hamilton et al., 2004; Pollastri and Baldi, 2002; Punta and
Rost, 2005). This low accuracy, indicating a large number of false
positives in the prediction, is a consequence of two further features
of the MSA: additional phylogenetic residue correlations and linked
chains of covariance. Both these factors add considerable noise
to the signal contained in the MSA (Lapedes et al., 1999). Many
prediction methods attempt to enrich the prediction set by filtering
out the false positives using simple heuristic rules. The most direct
method being to filter out contacts in excess of the expected number
of contacts each residue can make (Yuan, 2005). Additionally,
statistical methods such as bootstrapping (Olmea and Valencia,
1997), estimating the background phylogenetic noise (Dunn et al.,
2008) or the use of ancillary predictions such as secondary structure
prediction (Shao and Bystroff, 2003) have also been applied with a
degree of success.

As already mentioned, for purely sequence-based approaches to
contact prediction, there are two main sources of noise in the analysis
of correlated mutations: phylogenetic bias and indirect coupling
effects (Lapedes et al., 1999). The latter problem of determining
direct from indirect coupling effects in correlation mutation analysis
seems to have received the lesser amount of attention in the
literature. Lapedes et al. related the problem of decoupling mutation
correlations in sequence alignments to the inverse Ising problem in
statistical physics, and proposed a solution based on maximization of
entropy. This idea has been further refined using a message-passing
algorithm (Weigt et al., 2009). Recently, Burger and van Nimwegen
(2010) used a computationally efficient Bayesian network approach
to tackle the same indirect coupling problem.

In this article, we propose the use of sparse inverse covariance
estimation techniques (Meinshausen and Bühlmann, 2006) to deal
with the coupling effects and test our method on a benchmark set
of experimentally determined protein structures. These graphical
inference techniques are simple and yet remarkably powerful, and
while they have been applied to other areas of computational biology
such as gene network discovery (Friedman et al., 2008), they have
not previously been applied to sequence analysis problems.

2 METHODS

2.1 Mutual information
The most common method for identifying correlated mutations in MSAs is
to calculate the MI between two sites:

MI=
∑

ab

f (AiBj) log
f (AiBj)

f (Ai)f (Bj)
(1)

where f (AiBj) is the observed relative frequency of amino acid pair ab at
columns ij, f (Ai) is the observed relative frequency of amino acid type a
at column i and f (Bj) is the observed frequency of amino acid type b at
column j. The usefulness of MI to predict protein contacts can be further
enhanced by normalization to take into account bias in the sequence family
being analysed (Dunn et al., 2008). Both entropic bias and some measure of

phylogenetic bias can be removed by this kind of normalization. Entropic bias
refers to the false signals that arise from either having insufficient sequences
to properly sample residue types or from extremes of conservation (sites
with very high or very low conservation can lead to spurious predictions of
contacts). Phylogenetic bias refers to the false signals due to functionally
related clusters of residues appearing to co-evolve according to the structure
of the underlying evolutionary tree. Despite doing a reasonable job of
correcting for entropic and phylogenetic bias, such normalization cannot help
reduce the effects of chaining within the protein’s contact graph (i.e. indirect
coupling effects where direct coupling between sites AB and BC can result in
observed correlations between AC, even though no direct interaction exists
betweenAC). Here we attempt to correct for these effects using sparse inverse
covariance estimation.

2.2 Inferring directly coupled sites using covariance
The starting point of our method is to consider an alignment with m columns
and n rows, where each row represents a different homologous sequence and
each column a set of equivalent amino acids across the evolutionary tree,
with gaps considered as an additional amino acid type. We can compute a
21m by 21m sample covariance matrix as follows:

Sab
ij = 1

n

n∑

k=1

(xak
i − x̄a

i )(xbk
j − x̄b

j ) (2)

where xak
i is a binary variable (x∈{0,1}) indicating the presence or absence

of amino acid type a at column i in row k and xbk
j the equivalent variable

for observing residue type b at column j in row k. This calculation of
covariance based on binary amino acid variables is similar to that used by
Halabi et al. (2009) to determine independent evolutionary units. Based on
the standard identity for covariance of Cov(X,Y )=E(XY )−E(X)E(Y ), and
the expectation of a binary variable E(x) being equivalent to the probability
of a positive observation p(x=1), this simplifies to the following expression
based on the observed marginal frequencies of amino acids (f (Ai) and f (Bj))
and amino acid pairs (f (AiBj)) at the given sites in the set of aligned
sequences:

Sab
ij =E(xa

i xb
j )−E(xa

i )E(xb
j )= f (AiBj)− f (Ai)f (Bj) (3)

Any individual element of this matrix gives the covariance of amino acid type
a at position i with amino acid type b at position j. By calculating the matrix
inverse of the covariance matrix, the precision or concentration matrix (�)
is obtained, from which a matrix of partial correlation coefficients for all
pairs of variables can be calculated as follows:

ρij =− �ij√
�ii�jj

(4)

In the simplest case, a partial correlation coefficient can be calculated
between two random variables with the controlling effect of a third random
variable taken into account. The partial correlation matrix above, however,
gives the correlations between all pairs of variables with the controlling
effects of all other variables taken into account [e.g. see Bühlmann and
van de Geer (2011); Chapter 13, Section 13.4]. Here, the partial correlation
matrix gives the correlation between any pair of amino acids at any two
sites, conditional on the frequencies of amino acids at all other sites. Thus,
assuming the sample covariance matrix can in fact be inverted, the inverse
covariance matrix provides information on the degree of direct coupling
between pairs of sites in the given MSA. Off-diagonal elements of the inverse
covariance matrix which are significantly different from zero are indicative
of pairs of sites which have strong direct coupling (and are likely to be in
direct physical contact in the native structure).

Unfortunately, the empirical covariance matrices produced in this
application are guaranteed to be singular due to the fact that not every amino
acid will be observed at every site, even in very large families, and thus
there will be more variables than observations. Similar issues occur in the
areas of finance (in calculating correlations between stock prices) and in gene
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network reconstruction where the number of observed variables is again often
less than the dimensionality of the problem. Although different approaches
have been proposed to allow inverse covariance estimation where the sample
covariance matrix cannot be directly inverted, one of the most powerful
techniques is that of sparse inverse covariance estimation. In the absence of
other constraints on obtained solutions, the expected sparsity of the inverse
covariance matrix itself provides a powerful self-contained constraint on the
obtained solution. In general terms, where an inverse covariance estimate is
constrained to be sparse, the non-zero terms tend to more accurately relate
to correct positive correlations in the true inverse covariance matrix. The
expectation of sparsity in this application is well justified from observations
of contacts in known protein structures, where on average only around 3%
of all residue pairs are observed to be in direct contact.

2.3 Sparse inverse covariance estimation
The problem of sparse inverse covariance estimation has previously been
studied by different authors, for example see Banerjee et al. (2008); Friedman
et al. (2008); Meinshausen and Bühlmann (2006); Yuan and Lin (2007)
and the additional references therein. Here, we follow the formulation of
Banerjee et al. (2008), which is known as the graphical Lasso method,
and the implementation provided by Friedman et al. (2008). We summarize
the main idea behind this method and comment on how the algorithm of
(Friedman et al., 2008) can be used to solve the problem.

Let S be the empirical covariance matrix computed from a sequence of
d-dimensional vectors, x1,...,xn, sampled from some fixed but unknown
probability distribution. Matrix S can be computed as Sij = 1

n

∑n
k=1(xk

i −
x̄i)(xk

j − x̄j), for every i,j=1,...,d, where x̄ is the empirical mean. The
graphical Lasso is a statistical method which estimates the inverse covariance
of the data by minimizing the objective function:

d∑

ij=1

Sij�ij −logdet�+ρ

d∑

ij=1

|�ij| (5)

In this function, the d×d matrix � is required to be symmetric and positive
definite. The first two terms in (5) can be interpreted as the negative log-
likelihood of the inverse covariance matrix � under the assumption that the
data distribution is a multivariate Gaussian.

The third term in (5) is the �1-norm of matrix �, a special kind of
regularization or penalty term. One main insight behind such a regularizer is
that it favours sparse solutions, in the sense that many of the components of
the positive definite matrix �̂ which minimizes (5) will be zero. The amount
of sparsity in �̂ is controlled by the positive parameter ρ, which needs to be
chosen by the user. Typically, as ρ increases the number of zero components
of �̂ increases, eventually reaching the point where all the components are
equal to zero.

The need for a sparse inverse covariance matrix is well understood when
the data probability distribution is a multivariate Gaussian distribution with
covariance �. In this case, it is well known that �−1

ij =0 if and only if
the variables i and j are conditionally independent. Hence, if we know a
priori that many pairs of variables are conditionally independent, it seems
appropriate to estimate the inverse covariance by the graphical Lasso method.
The parameter ρ can be selected to reach a desired sparsity level, provided
this is known a priori .

An important rationale for sparse estimation comes from the observation
that in many practical applications the size of the matrix � is much larger than
the number of data points n, but the underlying inverse covariance matrix
which we wish to estimate is known to be sparse. Under this assumption
and certain technical conditions, it has been shown that the solution �̂

of the above problem is a good estimate of the inverse covariance. More
importantly, the sparsity pattern of �̂, namely the set of non-zero entries
of this matrix, is close to the sparsity pattern of �−1, thereby providing a
valuable tool for selecting the pairs of conditionally dependent variables, see
for example Bühlmann and van de Geer (2011) and the associated references
therein.

We find the solution �̂ by solving the dual optimization problem (Banerjee
et al., 2008) and using the block coordinate descent technique described
in Friedman et al. (2008). This formulation also allows one to use the
more general penalty term

∑
ij rij|�ij| where the rij’s are some positive

parameters, which incorporate prior knowledge on the relative important
pairs of components.

A final point worth noting here is that while all of the above is under the
assumption that input data distribution is multivariate Gaussian, it has been
shown by Banerjee et al. (2008) that this dual optimization solution also
applies to binary data (as is the case in this application).

2.4 Shrinking the sample covariance matrix
Although the graphical Lasso approach works well in dealing with singular
or poorly conditioned sample covariance matrices, the time taken to
reach convergence can be problematic in some cases (e.g. families with
few sequences or highly conserved regions). To speed up convergence,
particularly in the worst cases, we condition the sample covariance matrix
by shrinking towards a highly structured unbiased estimator:

S′ =λF +(1−λ)S (6)

where F is the structured estimator matrix and λ∈[0,1] is the so-called
shrinkage parameter. The shrinkage target we used was F =diag(S̄,S̄,...,S̄)
i.e. the identity matrix scaled by the mean sample variance (mean of the
sample covariance matrix diagonal values). Although various approaches
have been proposed to choose the ideal shrinkage parameter [e.g. Ledoit and
Wolf (2003)], these methods either do not apply to binary variables or are
based on unsuitable shrinkage targets. Here, therefore, we use the simple
ad hoc approach of gradually increasing λ until the adjusted covariance
matrix is no longer singular i.e. has no remaining negative eigenvalues
(tested by Cholesky decomposition). Given the large number of dimensions,
this shrinking procedure is generally much faster than the more common
approach of truncating negative eigenvalues after finding all the eigenvalues
and eigenvectors of the matrix.

Having conditioned the covariance matrix by shrinking, the graphical
Lasso algorithm is then used to compute its sparse inverse.

2.5 Final processing
To arrive at the final predictions of contacting residues, for alignment
columns i and j, the �1-norm is calculated for the 20×20 submatrix of
� corresponding to the 20×20 amino acid types ab observed in the two
alignment columns (contributions from gaps are ignored):

Scontact
ij =

∑

ab

|�ab
ij | (7)

To calculate a final score which has reduced entropic and phylogenetic bias,
we can correct the raw precision norms Scontact

ij using the same average
product correction (APC) used to adjust MI for background effects as
described by Dunn et al. (2008). Thus, the final PSICOV score for positions
i and j is given by:

PCij =Scontact
ij − S̄contact

(i−) S̄contact
(−j)

S̄contact
(8)

where S̄contact
(i−) is the mean precision norm between alignment column i and

all other columns, S̄contact
(−j) is the equivalent for alignment column j, and

S̄contact is the mean precision norm across the whole alignment. Finally, this
background corrected score can easily be converted into an estimated positive
predictive value by fitting a logistic function to the observed distribution of
scores.

2.6 Experimental details
A program to implement this method, called PSICOV (Protein Sparse
Inverse COVariance), was written in C and linked to the glasso

186

 by guest on M
ay 9, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[17:34 20/12/2011 Bioinformatics-btr638.tex] Page: 187 184–190

PSICOV: contact prediction using sparse inverse covariance estimation

Fortran code as obtained from the CRAN archive (http://cran.r-
project.org/web/packages/glasso). Good initial results were obtained with the
lasso regularization parameter ρ set to a constant value of 0.001. However,
we find that slightly better results can be obtained (at the expense of a 2–3×
increase in calculation time) by iteratively adjusting ρ to achieve a target
density of 3% (i.e. 3% non-zero terms in the final precision matrix). This
target density was chosen to roughly correspond to the expected fraction
of contacting residue pairs in globular protein domains. We tried both the
exact and approximate algorithms implemented in the glasso code and found
the quicker to calculate approximate solution (Meinshausen and Bühlmann,
2006) was often just as good as (and occasionally better than) the exact
solution. However, with recent upgrades in the glasso code (V1.7 and later),
the speed advantage of the approximation over the exact method is now only
around 50% and so all results presented here are based on exact solutions.

MIp values were calculated as described in Dunn et al. (2008). Results for
the method of Burger and van Nimwegen (2010) were generated using Perl
scripts and C++ source code kindly provided by the authors. The software as
provided by Burger and van Nimwegen employs the same product correction
used in PSICOV and MIp, but it does not include the knowledge-based priors
discussed in their paper.

Alignments were generated for Pfam families with ≥1000 sequences
[http://pfam.sanger.ac.uk, Finn et al. (2010)] where a highly resolved
(resolution ≤1.9 Å) X-ray crystallographic structure was available, the target
protein was known to be a biological monomer, and where the structure
comprised a single copy of the Pfam domain. Target sequences shorter
than 50 residues and longer than 275 were not considered, giving a final
total of 150 chains (listed in Supplementary Material). The actual target
sequences were derived from the C-αATOM records in the PDB files
[http://www.pdb.org, Berman et al. (2000)]. As the seed alignments in Pfam
are often derived from structure-based alignments, our alignments were
generated automatically using the jackhmmer program, which is part of the
HMMER 3.0 package (http://hmmer.org). For each of the 150 PDB-derived
sequences, three iterations of jackhmmer, searching against the UNIREF100
data bank (Magrane and the UniProt Consortium, 2011), were used to find
and align homologues. In the final alignments, duplicate rows (i.e. sequences
100% identical over the length of the alignment) and columns with gaps
in the target sequence were deleted so that the number of columns in each
alignment equalled the target sequence length. Numbers of distinct sequences
in each alignment ranged from 511 (AraC-like ligand binding domain) to
74 836 (response regulator receiver domain). A full list of the 150 targets
used, along with PDB codes, Pfam identifiers, chain lengths and numbers of

aligned sequences is provided as Supplementary Material. Full datasets will
be made available alongside the program source code.

In computing the marginal relative frequencies [f (AiBj), f (Ai) and f (Bi)],
simple BLOSUM-style sequence weighting (Henikoff and Henikoff, 1992)
and pseudocount regularisation are used. The sequence weighting was carried
out with a threshold of 62% sequence identity (as used in the construction
of the standard BLOSUM62 matrix), and a pseudocount of 1 was used in
all experiments. The same weighting and pseudocount procedures were also
applied to the calculation of MIp values.

For benchmarking purposes, a true contact was defined as any pair of
residues where the C-β to C-β distance (C-α to C-α distance in the case of
glycine) was <8 Å. This corresponds to the standard contact prediction
evaluation criteria used in the biennial CASP experiment (Ezkurdia et al.,
2009). In addition, all atom contacts were used, where a contact is defined
when any pair of heavy atoms in the two residues are closer than <6 Å.

3 RESULTS AND DISCUSSION
Figure 1, Tables 1 and 2 summarize the performance of PSICOV in terms
of precision (alternatively known as positive predictive value in some texts)
compared to the Bayesian approach of Burger and van Nimwegen (2010)
(B&vN), and MIp when applied to the benchmark set of 150 proteins
as described in the Section 2. Results are also subdivided by sequence
separation of predicted pairs, as it is expected that contacting residue pairs
far apart in the sequence will be harder to predict than those close together.
Figure 1 also shows the relative effects of sequence weighting on both
PSICOV and MIp. It is quite clear that PSICOV is greatly superior to the
best MI approach in predicting contacts. There is very little difference in
results across all four methods for the top 100 ranked predictions at lower
sequence separations, but this is only to be be expected as there are a limited
number of true contacts to find in those ranges. The large gap between MIp
and the two direct coupling approaches for sequence range 5–9 suggests
that indirect coupling effects have a stronger effect for residue pairs close in
the sequence. Possibly this is a result of the rigidity of secondary structure
elements amplifying indirect coupling effects, and we are keen to investigate
that hypothesis in future work.

The earlier Bayesian network approach also performs better than MIp, in
agreement with the original results of Burger and van Nimwegen (2010), but
for long range contact prediction, it does not outperform MIp with sequence
weighting. The importance of applying sequence weighting to the calculation

Fig. 1. Average precision of the top n ranked predictions. The graphs compare performance between normalized MI scoring as per Dunn et al. (2008) (MIp),
normalized MI scoring with sequence weighting (MIp + SW), the method of Burger and van Nimwegen (2010) (B&vN) and our own PSICOV method both
with (PSICOV) and without (PSICOV-SW) sequence weighting. The three panels indicate the average precision at sequence separations between 5 and 9
residues (a), between 10 and 23 residues (b) and >23 residues (c).
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Table 1. Mean precision values for the top-L or top-L/2 contacts divided by
sequence separation ranges where the C-β-C-β distance <8 Å

[i−j]>4 [i−j]>8

L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV 0.43 0.56 0.69 0.74 0.4 0.54 0.67 0.73
B&vN 0.32 0.41 0.52 0.6 0.29 0.39 0.51 0.58
MIp + SW 0.29 0.34 0.42 0.48 0.3 0.38 0.46 0.53

[i−j]>11 [i−j]>23

L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV 0.39 0.52 0.66 0.73 0.33 0.46 0.62 0.69
B&vN 0.28 0.37 0.5 0.56 0.24 0.33 0.45 0.5
MIp + SW 0.3 0.38 0.48 0.54 0.27 0.35 0.45 0.51

Table 2. Mean precision values for the top-L or top-L/2 contacts divided by
sequence separation ranges where the any heavy atom distance is <6 Å

[i−j]>4 [i−j]>8

L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV 0.5 0.63 0.76 0.82 0.46 0.6 0.74 0.81
B&vN 0.37 0.47 0.59 0.67 0.34 0.44 0.57 0.64
MIp + SW 0.37 0.43 0.53 0.6 0.35 0.43 0.53 0.6

[i−j]>11 [i−j]>23

L L/2 L/5 L/10 L L/2 L/5 L/10

PSICOV 0.44 0.58 0.73 0.8 0.38 0.52 0.68 0.76
B&vN 0.33 0.43 0.56 0.63 0.28 0.38 0.51 0.58
MIp + SW 0.35 0.44 0.55 0.62 0.32 0.4 0.52 0.58

of MI was previously highlighted by Buslje et al. (2009), and similarly,
PSICOV also benefits from sequence weighting. Nevertheless, even without
sequence weighting, PSICOV still significantly outperforms all the other
methods across all sequence separation ranges.

Looking at the rank-50 results for the hardest case of sequence separation
>23, PSICOV is able to predict over 50% of true contacts compared to
just under 40% in the case of MIp (and around 20% in the case of raw
MI). This level of accuracy is likely to be of very significant benefit in
protein structure prediction applications. In this respect, Table 1 gives a more
accurate view of performance, where precision values are given for the top
L, L/2, L/5 and L/10 predicted contacts, where L is the length of the target
protein. These thresholds are commonly used in independent assessments of
contact prediction methods (Ezkurdia et al., 2009). Although, for simplicity,
C-β distances are most commonly used in benchmarking contact prediction
methods, a more realistic criterion is to define contacts between any heavy
atom in the two amino acids. Table 2 gives the equivalent benchmark data for
all heavy atom contacts. Again, PSICOV produces substantially more correct
predictions than the other tested methods across all sequence separation
ranges and for all ranking subsets. For the all-atom contact definition, we
find that for 59% of the targets the L precision is >0.5. With 1 predicted
contact per residue and a precision of over 50%, this information would be
sufficient to narrowly constrain the fold of a given protein.

Fig. 2. Top-L, top-L/2, top-L/5 and top-L/10 precision values for all 150
benchmark targets for sequence separation >4 and >23 residues.

Average performance only provides part of the picture, of course. Of
perhaps more interest is the distribution of benchmark results across the set
of targets. Figure 2 shows the range of precision values for all 150 targets,
and from this we see that the L precision distribution is fairly symmetric,
with around 25 poor results (L precision <0.3) and a similar number of
excellent results (L precision >0.6). For the smaller subsets of predicted
contacts, as expected, the precision distributions skew to higher values, with
85% of targets having an L/10 precision of 0.6 or better. Unfortunately,
it is difficult to find a single factor that determines prediction accuracy. No
correlations were observed between prediction accuracy and sequence length
or number of gaps in the alignment. A weak correlation (Spearman ρ = 0.3)
was observed with mean alignment entropy (basically the degree of sequence
conservation). As might be expected, there was a moderate correlation
with the number of aligned sequences (Spearman ρ=0.596). No stronger
correlation was observed (Spearman ρ=0.588) with the effective number
of aligned sequences (i.e. taking the sequence redundancy into account).
Figure 3 shows these two relationships.

Finally, to look at the added value of the graphical Lasso procedure over
and above the widely used MIp measure, Figure 4 shows the L/2 precision
for PSICOV compared with that of MIp. Clearly the treatment of indirect
coupling effects by the graphical Lasso has a substantial positive effect on
prediction accuracy in almost every case. In five cases, the graphical Lasso
analysis seems to slightly reduce accuracy, although it is not clear to us what
is special about these cases. The worst case example is that of one of the
shortest targets 1M8A-A (61 residues) where PSICOV predicts 17 contacts,
compared with 13 in the case of MIp. This is hardly a significant difference,
but it is still apparent that the direct coupling analysis is not helping in this
case, for whatever reason.

Looking at the performance of PSICOV both in terms of average
performance and performance in the best cases, it is clear that it can provide
spatial constraints for protein modelling beyond those that can be obtained by
even the best machine learning-based contact prediction approaches. In the
CASP8 experiment, the best contact prediction server had a precision of 30%
for the top L/5 predicted contacts (sequence separation >23) over a common
subset of nine targets (Ezkurdia et al., 2009). Although the benchmark set in
this case is different, PSICOV achieves an average accuracy of 62% using the
same criteria. It is also possible that PSICOV could be further improved by
incorporating it in a more general machine learning-based contact prediction
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(a) (b)

Fig. 3. These graphs show the correlation between precision (top-L predicted
contacts) with the number of sequences aligned (a) or the effective number
of aligned sequences taking weighting into account (b).

Fig. 4. PSICOV top-L/2 precision plotted against normalized sequence-
weighted mutual information (MIp) precision for the 150 benchmark targets
(line x=y shown for reference).

method that also takes into account information such as predicted secondary
structure and solvent accessibility.

Although the problem of indirect versus direct coupling in residue
covariation has been known for some time, surprisingly few approaches
have been proposed to tackle it. Weigt et al. (2009) focus on the problem
of predicting protein–protein interactions, and their method is extremely
computationally intensive, requiring several days of CPU time to evaluate
just 60 pre-selected alignment columns in bacterial two-component systems.
Recently, the same group have tried adapting the method to predicting
intrachain contacts with apparently good results (C.Sander and D.Marks,
personal communication). The method of Burger and van Nimwegen (2010)
has actually been applied to the task of intrachain contact prediction, and
here we have benchmarked it directly against PSICOV on the same set
of alignments. This Bayesian network method is far less computationally
demanding than the message-passing approach of Weigt et al. (2009), and
is also substantially faster than PSICOV, taking a median of 2 mins per
target compared with a median of 30 mins per target for PSICOV (range
1–240 mins). Despite the obvious speed advantage of the Bayesian network
approach, it is clear from the results shown that PSICOV is the more precise
method across all sequence separations and residue rankings.

As high-throughput sequencing rapidly expands the sizes of protein
families, the applicability of contact prediction from large MSAs will clearly
be expected to increase. Nevertheless, it is important to consider the targets
which performed poorly in our benchmark and yet had large numbers of

homologous sequences available (Fig. 3). These cases are unlikely to be
improved by simply collecting further sequence data. Although PSICOV is
able to effectively disentangle indirect coupling effects, some alignments are
impossible to analyse due to functional or structural noise. A good example
of a problem case would be a family of homo-multimers, where it would
be impossible to determine which correlations are due to interchain contacts
and which are due to intrachain contacts. Other problems would include high
conservation in some families, particularly conservation around ligands or
co-factors.

4 CONCLUSION
We have demonstrated that the graphical Lasso procedure,
previously applied successfully to other graphical inference
problems such as gene network reconstruction, performs excellently
in the task of identifying directly coupled covarying columns in large
MSAs, which are indicative of residue–residue contacts in protein
families. For 44% of the targets, contact prediction was excellent
with a precision >0.5 for the longest-range top-L/2 predicted
contacts (i.e. >50% correctly predicted long-range contacts per
residue). At this level of accuracy, predicted contacts should be
invaluable in determining protein folds; e.g. in protein model
quality assessment or decoy selection (Miller and Eisenberg, 2008).
Both the mean and peak performance of PSICOV is substantially
higher than that achieved by either the recently proposed Bayesian
network approach of Burger and van Nimwegen (2010) or the
APC corrected mutual information approach of Dunn et al. (2008),
and it is likely that when further combined with other predicted
structural information such as predicted secondary structure and
solvent exposure that PSICOV will be able to reach even higher
levels of accuracy.

Although PSICOV is able to deal with many of the statistical
problems in contact prediction from large MSAs, there remain
several practical issues. First, sequence weighting becomes more
important as the sizes of families increase. It turns out that for large
families, sequence weighting occupies the bulk of the computation
time as it is an O(n2) procedure. More efficient sequence weighting
schemes do exist [e.g. Henikoff and Henikoff (1994)], but we
found these schemes performed poorly in this application, probably
because they tend to overweight misaligned or incorrect sequences.
Secondly, the practical difficulties of accurately and automatically
aligning tens or hundreds of thousands of protein sequences cannot
be underestimated. Better alignment methods for large sequence
families are certain to offer improvements in contact prediction
accuracy.

Although the standard graphical Lasso approach has been used in
PSICOV, other sparse learning algorithms could easily be applied to
the same problem. One interesting possibility, that we are currently
investigating, is to make use of a group Lasso approach (Ma et al.,
2007) to cluster together covariances relating to different residue
pairs. In the current approach, each potential contact is scored by
summing 20×20 matrix values relating to the individual amino acid
pairs in the two alignment columns. In a grouped Lasso approach,
rather than treating the matrix values in the 20×20 submatrix
as independent, they could be processed as a group of related
variables. Overall, we would hope that more tailored sparse learning
algorithms, better alignment algorithms, along with better sequence
weighting and regularization schemes will significantly improve the
results obtained from methods such as PSICOV in the future.
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