
A Pivot-based Filtering Algorithm for Enhancing

Query Performance of LSH

Lei Zhang
1,2

, Xiao-guang Gu
1,2

, Yong-dong Zhang
1
, Dong-ming Zhang

1
 and Jin-tao Li

1

1
Institute of Computing Technology, Chinese Academy of Sciences

2
Graduate University of Chinese Academy of Sciences

Beijing, China

Email: {zhanglei09, xggu, zhyd, dmzhang, jtli}@ict.ac.cn

Abstract—In recent years, Locality Sensitive Hashing (LSH)
(and its variant Euclidean LSH) has become a popular index
structure for large-scale and high-dimensional similarity search
problem. In this paper, we analyze a phenomenon we called
“Non-Uniform” that degrades the query performance of LSH
and propose a pivot-based algorithm to improve the query
performance. We also provide a method to get optimal pivot for
even larger improvement. Experiments show that our algorithm
significantly improves the query performance of LSH.

I. INTRODUCTION

As the problem of high-dimensional similarity search
becomes more popular in content-based search systems, an
efficient high-dimensional index is more desirable. Many
index structures for approximate similarity search have been
proposed. Among these, Locality Sensitive Hashing (LSH) [1],
[2] is a popular high-dimensional index. The first successful
variant of LSH, Euclidean LSH [3], expands the application
range, but requires too many hash tables to guarantee the
query accuracy. In order to reduce the memory consumption,
other improved versions [4], [5], [6] have been proposed. All
these variants of LSH are based on the same structure as
Euclidean LSH.

LSH is efficient to organize and query large-scale and
high-dimensional databases. However, when using LSH for
query, a final filtering process based on exact similarity
measure is needed. When the database is large-scale, which is
common in practical applications, the number of points
needed to filter is large; thus the cost of filtering is the domain
factor that degrades the query performance. Euclidean LSH
uses quantization of the projection of a data point to a
randomly selected direction as the hash value, which makes
the number of points in some buckets is significantly larger
than others when constructing index; maps a query to a bucket
containing too many data points with high probability when
querying. This phenomenon, which we called “Non-Uniform”,
makes the cost of filtering process significantly higher, and
moreover, when the dataset is large-scale, the problem of
“Non-Uniform” will be even worse.

Our main contribution is to propose a pivot-based
algorithm using Triangle Inequality to accelerate the filtering

process of Euclidean LSH. In addition, we provide a method
to get an optimal pivot. In Section II, we state a formal
analysis of “Non-Uniform” of Euclidean LSH. In Section III,
we introduce our algorithm and optimal pivot selection. The
corresponding experiments are described in Section IV.

II. PROBLEM ANALYSIS

The basic idea of LSH is to use hash functions to hash
similar points to same bucket with higher probability than
dissimilar points. Let be the domain of data point and
be the distance measure. A function family
is called -sensitive for if for any :

where and to ensure the function family H
is useful. Hash function used in LSH is defined as:

where () and . The

hash value of each data point is a K-dimensional integer
vector and used to construct hash tables. LSH uses many hash
tables to guarantee query accuracy. The hash function used in
Euclidean LSH is:

 ⌊

⌋

where W is a positive real number and b is chosen form
uniform distribution ; is a vector with the same
dimension as and each component is chosen independently
from standard Gaussian distribution. Since Gaussian
distribution is a 2-stable distribution, the distribution of
 ⁄ is ‖ ⁄ ‖

 . Thus the probability of ⁄
between ‖ ⁄ ‖ ‖ ⁄ ‖ is almost 95.5%.
Moreover, in order to hash similar points to same bucket with
high probability, is always comparable to ‖ ‖, which
means ‖ ⁄ ‖ is not very large. Therefore, a majority of
 ⁄ is distributed in a small interval (shown in Fig. 1a),
thus the hash value is distributed in a small interval. This
phenomenon also occurs when query: the hash value of query

This work is supported by the National Basic Research Program of China
(973Program, 2007CB311100); National High Technology and Research

Development Program of China (863 Program, 2009AA01A403); Co-building

Program of Beijing Municipal Education Commission.

point is also distributed in a small interval (shown in Fig. 1b),
thus a query will be hashed to a bucket containing too many
points with high probability.

From the above analysis, we can conclude that when the
dataset is large-scale, there will be more data points in a
bucket and the problem of “Non-Uniform” will be more
serious. Therefore, the final filtering process based on exact
similarity measure will be exhaustive and seriously degrade
the query performance.

III. PIVOT-BASED FILTERING ALGORITHM

As the similarity measure is Euclidean distance in
Euclidean LSH, we may use Triangle Inequality, which has
been used in many Metric Space index structures [7], to
accelerate the filtering process. Triangle Inequality in
Euclidean space is:

 | | (2)

Thus for each bucket, we choose a point as Pivot Point
(denoted by PP in the following, the corresponding vector is
denoted by Vpp), precompute the distance between each data
point and PP, and add the distance to index. For a query q, we
compute at the beginning, and when determining
whether a data point p is similar with q, we could first
compute | | : if exceeds
similarity threshold, then it is not necessary to compute the
exact distance . With different PP, the computation
reduced is very different. In this section, we present a method
to get an optimal PP and propose our pivot-based algorithm.

A. Randomly Selected Pivot Point

After constructing index, for each bucket, we randomly
choose a data point as PP and compute the distance between
other data points and PP. The advantage of this method is:
there is no effect on the dynamics of index. When adding or
deleting data points, it is not necessary to alter PP and
recompute all distances. It’s a simple method while does not
take account of the information provided by the data. In
Section IV, our experiment shows that the query performance
can be improved by this method, but not very impressive.

B. Data-based Pivot Point

As we use Triangle Inequality to avoid exhaustive
distance computation, the bigger | |,
the higher the probability of exceeding similarity
threshold. Thus a proper selection criterion for PP is that

 | | should be as large as possible.

Let be the dataset in a bucket and query q is
extracted from the distribution of X, the quality of a pivot
point PP can be measured by the Mean Difference between
Distances of each data point p and query q to PP (MDD):

 | | (3)

 ∬ | |

where and is the probability distribution
of . Fig. 2 illustrates how to choose PP (red points): the
mean difference between distances of each data point to PP
that chosen in the line with direction dir1, is larger than that
chosen in the line with direction dir2. We call the direction of
the line through PP and mean vector of as Main Direction
(denoted by MD in the following), with direction vector ,
and we get an optimization problem:

 | | (5)

where . We could shift PP to the origin and all
data points by subtracting Vpp without changing the value of
(5). Let be the shifted dataset
and (5) can be written as:

 |‖
 ‖ ‖

 ‖ |

where

 . Since these data points are in the same
bucket, the distribution scale in some directions is relatively
small (as dir2 in Fig. 2). If PP is far from these data points, as
shown in Fig. 3, we would have and make an
approximation of ‖

 ‖ ‖
 ‖ :

 |‖
 ‖ ‖

 ‖ | |

|

 |

 |

→ | | (9)

where are projections of

 to .

(a) (b)

Fig. 1. Distribution histograms of projection of dataset [10] and query

set. Vertical ordinate is the number of points and horizontal ordinate is the
projection value. (a) histogram of the dataset, (b) histogram of the query

set. As shown in this figure, the projection of all data points and query

points are both distributed in a small interval.

-2 0 2 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

-2 0 2 4
0

100

200

300

400

500

Fig. 2. An example illustrates how to choose an efficient Pivot Point.

Fig. 3. Approximation of difference of distances when Pivot Point is

far away.

Equation (9) means ‖
 ‖ ‖

 ‖ is proportional to
the difference between their projections to when PP is far
away. Thus, to maximize MDD(PP) is to maximize
 |

 | when is far away. After the shift,

 is the only factor and (6) can be written as:

 |

 | (10)

where

 . Let be the
projection set of the original dataset to and
 be the projection set of the shifted
dataset to . From Cauchy–Schwarz inequality we have:

 |

 | (|

 |)

Equation (11) gives an upper bound of MDD. Maximizing
the upper bound would guarantee a high probability to
maximize the related MDD. It is easy to prove

 |

 | |

 |

where

 and is the variance of .
Since the original data points are shifted by subtracting Vpp,
the change in all original projections is the same, thus

where . From Principal Components Analysis [8], we
know that when data points are projected to the eigenvector
of Covariance Matrix with the largest eigenvalue, the
variance of the distribution of projections will be largest.
Thus can be obtained by solving the following equation:

 (14)

where S is the Covariance Matrix of . The direction vector
of eigenvector of S with largest eigenvalue is selected as ,
and PP, as shown in Fig. 4, is:

 ̅ (15)

where ̅ is the mean vector of and L is a scalar. In order
for PP to be far from , L should be large enough. In our
following experiment, L is set to ‖ ̅‖ .

Larger improvement can be obtained by using
multi-pivots. We can use the eigenvector with the second
largest eigenvalue to get another pivot. In Section IV, our
experiment shows that by using multi-pivots, the query
improvement is higher.

C. Pivot-Based Filtering Algorithm

After constructing LSH index, for each bucket, invoke
UpdateIndex to get PP and compute the distance between
PP and each data point. Algorithm UpdateIndex is illustrated
in Algorithm 1.

Invoke algorithm QueryFiltering to process a query. It

is illustrated in Algorithm 2. For Range query, the similarity

threshold is similar radius; for (Approximate) Nearest

Neighbor query, the threshold is the distance between q and

the nearest neighbor encountered so far.

 In the following section, we conduct a series of
experiments to test our algorithm, and these experiments
illustrate the effectiveness of our algorithm.

IV. EXPERIMENT RESULT

In practical applications, the most common similarity
search problems are Range query and (Approximate) Nearest
Neighbor query. In this section, we conduct a series of
experiments to test our algorithm. Our objective is to verify
the speedup of filtering process of Euclidean LSH obtained by
our algorithm. The experiments are done on a PC with a 32-bit
2.6GHz CPU and 4GB RAM.

A. Range Query

The benchmark dataset we used is the Audio Data in [9].
The search set contains 54,387 192-dimensional data points,
and we randomly choose 1,000 points from query set as our
query set. Since each hash table in LSH is independent, the
effectiveness of speedup can be observed just by one hash
table, thus we use one hash table and set the dimension of
hash value K=6. For each query point q, we record the number
of points skipped (the actual distance of these points to q is not
calculated) when searching data point p in the dataset that
 , where r is the similar radius, and calculate the
speedup of filtering process. We increase r gradually and set
W=4r to get best performance. With different Pivot Point

ALGORITHM 1: UpdateIndex

∑

 ̅ ̅

 ̅

Input: a data bucket, the dataset in it is X

1. Calculate the Covariance Matrix:

where N is the number of points, and ̅ is the

mean vector of X. Choose the eigenvector with the largest

eigenvalue as .

2. Set

3. Compute the distance between PP and each data point.

Output: an updated data bucket

ALGORITHM 2: QueryFiltering

Input: a query q

1. Hash q to the corresponding bucket in each hash table.

2. For each data point p in the bucket, first calculate:

 | |
3. If exceeds the similarity threshold, skip p and go to 2

for the next data point.

4. Else calculate to determine whether p is similar

with q. Go to 2 for the next data point.

Output: Query result

Fig. 4. An example illustrates the relationship between Pivot Point,

 ̅ and .

 ̅

selection, the speedup is averaged among 1000 queries. As
shown in Fig. 5, by using our algorithm, the filtering process
is significantly accelerated: the speedup of filtering process
obtained by data-based pivot is about 200%, higher than
randomly selected pivot (about 140%). While using
multi-pivots (2 pivots), the speedup is even higher, almost
300%.

B. Approximate Nearest Neighbor Query

The benchmark dataset [10] used to illustrate the
effectiveness for ANN query is the INRIA Holidays dataset,
consisting of 128-dimensional SIFT descriptors. We
randomly choose 100,000 data points from the search set as
our search set and 1,000 data points from the query set as our
query set, and all these data points are normalized by dividing
each dimension by the largest norm in search set. We set the
dimension of hash value K=5 and use one hash table. For
each query point q, the number of points skipped when
searching the nearest neighbor p in search set is recorded. We
only use one data-based pivot and the speedup is averaged
among 1000 queries under different W. As shown in Fig. 6,
the speedup of ANN query is almost 500%, which means the
exact distance computation is significantly reduced.

Another important similarity search problem is
k-Approximate Nearest Neighbor query (k-ANN), which is
an important variant of ANN query. Our method is able to
speed up ANN query, leading to the potential to speed up
k-ANN query.

From Fig. 5 and Fig. 6, we can conclude that by using
our algorithm, the query process of LSH is almost 5 times
faster for ANN query and 2-3 times faster for Range query.
When the dataset is large-scale and high-dimensional, the
exact similarity computation reduced is significant while the
memory enlargement compared with the original memory
occupation is negligible, e.g. when using E2LSH with 8-d
hash value and 20 hash tables to query a 128-d SIFT dataset
containing 1,000,000 data points, the original memory
occupation is at least 4×(128+8×20)×1,000,000 bytes while
the enlargement is 4×20×1,000,000 bytes, only 6.9% of the
original memory occupation.

V. CONCLUSION

In this paper, we analyze the phenomenon “Non-Uniform”
that degrades the query performance of Euclidean LSH.
“Non-Uniform” will cause exhaustive computation in the
filtering process of LSH and significantly degrade the query
performance, especially when the dataset is large-scale. We
propose a pivot-based algorithm to accelerate the filtering
process and also provide a method to get optimal pivot. Our
algorithm is simple, and experiments show that by using our
algorithm, with little memory enlargement, the filtering
process is almost 5 times faster for ANN query and 2-3 times
faster for Range query, which means the cost of computation
is significantly reduced. Moreover, since we make no
assumption about the dataset, our method can be applied to
most Euclidean LSH-based index structures [4], [5].

REFERENCES

[1] P. Indyk and R. Motwani. “Approximate nearest neighbor: towards
removing the curse of dimensionality,” Proceedings of the Symposium
on Theory of Computing, pages 604-613, 1998.

[2] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” CACM, 51, 1
(2008), pages 117-122.

[3] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” In Proc. of the 20th
Symposium on Computational Geometry(SCG), 2004.

[4] R. Panigrahy, “Entropy based nearest neighbor search in high
dimensions,” In Proc. of ACM-SIAM Symposium on Discrete
Algorithms(SODA), pages 1186–1195, 2006.

[5] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
lsh: efficient indexing for high-dimensional similarity search,” In Proc.
of VLDB, pages 253-262, 2007.

[6] A. Joly and O. Buisson, “A posteriori multi-probe locality sensitive
hashing,” In Proc of ACM MM, 2008.

[7] E. Cháves, G. Navarro, R. Baeza-Yates, and J.L. Marroquín,“Searching
in metric spaces,” ACM Computing Surveys, 33(3):273–321, 2001.

[8] I.T. Jolliffe. Principal Component Analysis, Series: Springer Series in
Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p. 28 illus. ISBN
978-0-387-95442-4.

[9] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li, “Modeling
lsh for performance tuning,” In CIKM, 2008.

[10] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Y. Wu, “An
optimal algorithm for approximate nearest neighbor searching,” J. of
the ACM, 45:891–923, 1998.

Fig. 5. Speedup of filtering process obtained by our algorithm for Range

query with different pivot selection. The horizontal ordinate is similar

radius and the vertical ordinate is percentage of speedup. The data-based
pivot is effective than randomly selected pivot, while multi-pivots is more

effective.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
100

150

200

250

300

350

similar radius

s
p
e
e
d
u
p
 %

randomly selected

data-based:1 pivot

data-based:2 pivots

Fig. 6. Speedup of filtering process obtained for Approximate Nearest

Neighbor query by using one data-based pivot. The horizontal ordinate is

W, the vertical ordinate is percentage of speedup. The speedup is almost
500% which means the exact distance computation reduced is significant.

1 1.2 1.4 1.6 1.8 2
500

520

540

560

580

600

W

s
p
e
e
d
u
p
%

data-based pivot

http://www.springer.com/west/home/statistics/statistical+theory+and+methods?SGWID=4-10129-69-173621571-0
http://www.springer.com/west/home/statistics/statistical+theory+and+methods?SGWID=4-10129-69-173621571-0
http://en.wikipedia.org/wiki/Special:BookSources/9780387954424
http://en.wikipedia.org/wiki/Special:BookSources/9780387954424

