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Abstract—In recent years, Locality Sensitive Hashing (LSH) 
(and its variant Euclidean LSH) has become a popular index 
structure for large-scale and high-dimensional similarity search 
problem. In this paper, we analyze a phenomenon we called 
“Non-Uniform” that degrades the query performance of LSH 
and propose a pivot-based algorithm to improve the query 
performance. We also provide a method to get optimal pivot for 
even larger improvement. Experiments show that our algorithm 
significantly improves the query performance of LSH. 

I. INTRODUCTION 

As the problem of high-dimensional similarity search 
becomes more popular in content-based search systems, an 
efficient high-dimensional index is more desirable. Many 
index structures for approximate similarity search have been 
proposed. Among these, Locality Sensitive Hashing (LSH) [1], 
[2] is a popular high-dimensional index. The first successful 
variant of LSH, Euclidean LSH [3], expands the application 
range, but requires too many hash tables to guarantee the 
query accuracy. In order to reduce the memory consumption, 
other improved versions [4], [5], [6] have been proposed. All 
these variants of LSH are based on the same structure as 
Euclidean LSH. 

LSH is efficient to organize and query large-scale and 
high-dimensional databases. However, when using LSH for 
query, a final filtering process based on exact similarity 
measure is needed. When the database is large-scale, which is 
common in practical applications, the number of points 
needed to filter is large; thus the cost of filtering is the domain 
factor that degrades the query performance. Euclidean LSH 
uses quantization of the projection of a data point to a 
randomly selected direction as the hash value, which makes 
the number of points in some buckets is significantly larger 
than others when constructing index; maps a query to a bucket 
containing too many data points with high probability when 
querying. This phenomenon, which we called “Non-Uniform”, 
makes the cost of filtering process significantly higher, and 
moreover, when the dataset is large-scale, the problem of 
“Non-Uniform” will be even worse. 

Our main contribution is to propose a pivot-based 
algorithm using Triangle Inequality to accelerate the filtering 

process of Euclidean LSH. In addition, we provide a method 
to get an optimal pivot. In Section II, we state a formal 
analysis of “Non-Uniform” of Euclidean LSH. In Section III, 
we introduce our algorithm and optimal pivot selection. The 
corresponding experiments are described in Section IV. 

II. PROBLEM ANALYSIS 

The basic idea of LSH is to use hash functions to hash 
similar points to same bucket with higher probability than 
dissimilar points. Let   be the domain of data point and   
be the distance measure. A function family           
is called              -sensitive for   if for any      : 

                                      

                                      

where       and       to ensure the function family H 
is useful. Hash function used in LSH is defined as: 

           

where      (                   )  and     . The 

hash value of each data point is a K-dimensional integer 
vector and used to construct hash tables. LSH uses many hash 
tables to guarantee query accuracy. The hash function used in 
Euclidean LSH is: 

     ⌊
     

 
⌋                                       

where W is a positive real number and b is chosen form 
uniform distribution       ;   is a vector with the same 
dimension as   and each component is chosen independently 
from standard Gaussian distribution. Since Gaussian 
distribution is a 2-stable distribution, the distribution of 
   ⁄  is     ‖  ⁄ ‖ 

  . Thus the probability of    ⁄  
between    ‖  ⁄ ‖   ‖  ⁄ ‖   is almost 95.5%. 
Moreover, in order to hash similar points to same bucket with 
high probability,   is always comparable to ‖ ‖, which 
means ‖  ⁄ ‖ is not very large. Therefore, a majority of 
   ⁄  is distributed in a small interval (shown in Fig. 1a), 
thus the hash value is distributed in a small interval. This 
phenomenon also occurs when query: the hash value of query 
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point is also distributed in a small interval (shown in Fig. 1b), 
thus a query will be hashed to a bucket containing too many 
points with high probability. 

From the above analysis, we can conclude that when the 
dataset is large-scale, there will be more data points in a 
bucket and the problem of “Non-Uniform” will be more 
serious. Therefore, the final filtering process based on exact 
similarity measure will be exhaustive and seriously degrade 
the query performance. 

III. PIVOT-BASED FILTERING ALGORITHM 

As the similarity measure is Euclidean distance in 
Euclidean LSH, we may use Triangle Inequality, which has 
been used in many Metric Space index structures [7], to 
accelerate the filtering process. Triangle Inequality in 
Euclidean space is: 

          |             |          (2)      

Thus for each bucket, we choose a point as Pivot Point 
(denoted by PP in the following, the corresponding vector is 
denoted by Vpp), precompute the distance between each data 
point and PP, and add the distance to index. For a query q, we 
compute         at the beginning, and when determining 
whether a data point p is similar with q, we could first 
compute    |               | : if    exceeds 
similarity threshold, then it is not necessary to compute the 
exact distance       . With different PP, the computation 
reduced is very different. In this section, we present a method 
to get an optimal PP and propose our pivot-based algorithm. 

A. Randomly Selected Pivot Point 

After constructing index, for each bucket, we randomly 
choose a data point as PP and compute the distance between 
other data points and PP. The advantage of this method is: 
there is no effect on the dynamics of index. When adding or 
deleting data points, it is not necessary to alter PP and 
recompute all distances. It’s a simple method while does not 
take account of the information provided by the data. In 
Section IV, our experiment shows that the query performance 
can be improved by this method, but not very impressive. 

B. Data-based Pivot Point 

As we use Triangle Inequality to avoid exhaustive 
distance computation, the bigger    |             |, 
the higher the probability of    exceeding similarity 
threshold. Thus a proper selection criterion for PP is that 

   |               | should be as large as possible. 

Let      be the dataset in a bucket and query q is 
extracted from the distribution of X, the quality of a pivot 
point PP can be measured by the Mean Difference between 
Distances of each data point p and query q to PP (MDD): 

          |               |              (3) 

 ∬       |               |        

     

 

where       and        is the probability distribution 
of      . Fig. 2 illustrates how to choose PP (red points): the 
mean difference between distances of each data point to PP 
that chosen in the line with direction dir1, is larger than that 
chosen in the line with direction dir2. We call the direction of 
the line through PP and mean vector of   as Main Direction 
(denoted by MD in the following), with direction vector  , 
and we get an optimization problem: 

                |                 |  (5)

where        . We could shift PP to the origin and all 
data points by subtracting Vpp without changing the value of 
(5). Let                   be the shifted dataset 
and (5) can be written as: 

                |‖  
 ‖  ‖  

 ‖ | 

where   
    

    . Since these data points are in the same 
bucket, the distribution scale in some directions is relatively 
small (as dir2 in Fig. 2). If PP is far from these data points, as 
shown in Fig. 3, we would have         and make an 
approximation of ‖  

 ‖  ‖  
 ‖  : 

 |‖   
 ‖  ‖   

 ‖ |  |
               

           

|                         

    |
     

           

         |        

       
→     |      |         (9) 

where       are projections of    
    

  to  .  
 

 

 

 
(a)                         (b) 

Fig. 1.   Distribution histograms of projection of dataset [10] and query 

set. Vertical ordinate is the number of points and horizontal ordinate is the 
projection value. (a) histogram of the dataset, (b) histogram of the query 

set. As shown in this figure, the projection of all data points and query 

points are both distributed in a small interval. 
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Fig. 2.   An example illustrates how to choose an efficient Pivot Point. 

    

   
   
 

  
    

    
  

     
  

    
  

Fig. 3.   Approximation of difference of distances when Pivot Point is 

far away. 

 



Equation (9) means ‖  
 ‖  ‖  

 ‖  is proportional to 
the difference between their projections to   when PP is far 
away. Thus, to maximize MDD(PP) is to maximize 
  |  

      
   |  when    is far away. After the shift, 

  is the only factor and (6) can be written as: 

              |  
      

   | (10)

where   
    

    . Let               be the 
projection set of the original dataset   to   and    
                be the projection set of the shifted 
dataset    to  . From Cauchy–Schwarz inequality we have: 

  |  
      

   |  (  |  
      

   |  )
 

 

Equation (11) gives an upper bound of MDD. Maximizing 
the upper bound would guarantee a high probability to 
maximize the related MDD. It is easy to prove 

  |  
      

   |     |  
    

 |            

where   
    

     and         is the variance of   . 
Since the original data points are shifted by subtracting Vpp, 
the change in all original projections is the same, thus 

                       

where    . From Principal Components Analysis [8], we 
know that when data points are projected to the eigenvector 
of Covariance Matrix with the largest eigenvalue, the 
variance of the distribution of projections will be largest. 
Thus   can be obtained by solving the following equation: 

              (14) 

where S is the Covariance Matrix of  . The direction vector 
of eigenvector of S with largest eigenvalue is selected as  , 
and PP, as shown in Fig. 4, is: 

    ̅                    (15) 

where  ̅ is the mean vector of   and L is a scalar. In order 
for PP to be far from  , L should be large enough. In our 
following experiment, L is set to  ‖ ̅‖ . 

Larger improvement can be obtained by using 
multi-pivots. We can use the eigenvector with the second 
largest eigenvalue to get another pivot. In Section IV, our 
experiment shows that by using multi-pivots, the query 
improvement is higher. 

 

 

C. Pivot-Based Filtering Algorithm 

After constructing LSH index, for each bucket, invoke 
UpdateIndex to get PP and compute the distance between 
PP and each data point. Algorithm UpdateIndex is illustrated 
in Algorithm 1. 

 

 
Invoke algorithm QueryFiltering to process a query. It 

is illustrated in Algorithm 2. For Range query, the similarity 

threshold is similar radius; for (Approximate) Nearest 

Neighbor query, the threshold is the distance between q and 

the nearest neighbor encountered so far. 

 

 

 In the following section, we conduct a series of 
experiments to test our algorithm, and these experiments 
illustrate the effectiveness of our algorithm. 

IV. EXPERIMENT RESULT 

In practical applications, the most common similarity 
search problems are Range query and (Approximate) Nearest 
Neighbor query. In this section, we conduct a series of 
experiments to test our algorithm. Our objective is to verify 
the speedup of filtering process of Euclidean LSH obtained by 
our algorithm. The experiments are done on a PC with a 32-bit 
2.6GHz CPU and 4GB RAM. 

A. Range Query 

The benchmark dataset we used is the Audio Data in [9]. 
The search set contains 54,387 192-dimensional data points, 
and we randomly choose 1,000 points from query set as our 
query set. Since each hash table in LSH is independent, the 
effectiveness of speedup can be observed just by one hash 
table, thus we use one hash table and set the dimension of 
hash value K=6. For each query point q, we record the number 
of points skipped (the actual distance of these points to q is not 
calculated) when searching data point p in the dataset that 
        , where r is the similar radius, and calculate the 
speedup of filtering process. We increase r gradually and set 
W=4r to get best performance. With different Pivot Point 

   
 

ALGORITHM 1: UpdateIndex 
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  ̅   ̅  

    ̅      

Input: a data bucket, the dataset in it is X 

1. Calculate the Covariance Matrix: 

where N is the number of points,      and  ̅ is the 

mean vector of X. Choose the eigenvector with the largest 

eigenvalue as  . 

2. Set 

3. Compute the distance between PP and each data point. 

Output: an updated data bucket 

ALGORITHM 2: QueryFiltering 

Input: a query q 

1. Hash q to the corresponding bucket in each hash table. 

2. For each data point p in the bucket, first calculate: 

       |               | 
3. If    exceeds the similarity threshold, skip p and go to 2 

for the next data point. 

4. Else calculate        to determine whether p is similar 

with q. Go to 2 for the next data point. 

Output: Query result 

Fig. 4.   An example illustrates the relationship between Pivot Point, 

 ̅ and  . 
  

 ̅ 

   
  



selection, the speedup is averaged among 1000 queries. As 
shown in Fig. 5, by using our algorithm, the filtering process 
is significantly accelerated: the speedup of filtering process 
obtained by data-based pivot is about 200%, higher than 
randomly selected pivot (about 140%). While using 
multi-pivots (2 pivots), the speedup is even higher, almost 
300%. 

B. Approximate Nearest Neighbor Query 

The benchmark dataset [10] used to illustrate the 
effectiveness for ANN query is the INRIA Holidays dataset, 
consisting of 128-dimensional SIFT descriptors. We 
randomly choose 100,000 data points from the search set as 
our search set and 1,000 data points from the query set as our 
query set, and all these data points are normalized by dividing 
each dimension by the largest norm in search set. We set the 
dimension of hash value K=5 and use one hash table. For 
each query point q, the number of points skipped when 
searching the nearest neighbor p in search set is recorded. We 
only use one data-based pivot and the speedup is averaged 
among 1000 queries under different W. As shown in Fig. 6, 
the speedup of ANN query is almost 500%, which means the 
exact distance computation is significantly reduced. 

Another important similarity search problem is 
k-Approximate Nearest Neighbor query (k-ANN), which is 
an important variant of ANN query. Our method is able to 
speed up ANN query, leading to the potential to speed up 
k-ANN query. 

 

 

From Fig. 5 and Fig. 6, we can conclude that by using 
our algorithm, the query process of LSH is almost 5 times 
faster for ANN query and 2-3 times faster for Range query. 
When the dataset is large-scale and high-dimensional, the 
exact similarity computation reduced is significant while the 
memory enlargement compared with the original memory 
occupation is negligible, e.g. when using E2LSH with 8-d 
hash value and 20 hash tables to query a 128-d SIFT dataset 
containing 1,000,000 data points, the original memory 
occupation is at least 4×(128+8×20)×1,000,000 bytes while 
the enlargement is 4×20×1,000,000 bytes, only 6.9% of the 
original memory occupation. 

V. CONCLUSION 

In this paper, we analyze the phenomenon “Non-Uniform” 
that degrades the query performance of Euclidean LSH. 
“Non-Uniform” will cause exhaustive computation in the 
filtering process of LSH and significantly degrade the query 
performance, especially when the dataset is large-scale. We 
propose a pivot-based algorithm to accelerate the filtering 
process and also provide a method to get optimal pivot. Our 
algorithm is simple, and experiments show that by using our 
algorithm, with little memory enlargement, the filtering 
process is almost 5 times faster for ANN query and 2-3 times 
faster for Range query, which means the cost of computation 
is significantly reduced. Moreover, since we make no 
assumption about the dataset, our method can be applied to 
most Euclidean LSH-based index structures [4], [5]. 
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Fig. 5.   Speedup of filtering process obtained by our algorithm for Range 

query with different pivot selection. The horizontal ordinate is similar 

radius and the vertical ordinate is percentage of speedup. The data-based 
pivot is effective than randomly selected pivot, while multi-pivots is more 

effective. 
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Fig. 6.   Speedup of filtering process obtained for Approximate Nearest 

Neighbor query by using one data-based pivot. The horizontal ordinate is 

W, the vertical ordinate is percentage of speedup. The speedup is almost 
500% which means the exact distance computation reduced is significant. 
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