
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 9, SEPTEMBER 2011 1193

Localized Multiple Kernel Learning for Realistic
Human Action Recognition in Videos

Yan Song, Yan-Tao Zheng, Sheng Tang, Xiangdong Zhou, Yongdong Zhang, Shouxun Lin, and Tat-Seng Chua

Abstract—Realistic human action recognition in videos has
been a useful yet challenging task. Video shots of same actions
may present huge intra-class variations in terms of visual appear-
ance, kinetic patterns, video shooting, and editing styles. Hetero-
geneous feature representations of videos pose another challenge
on how to effectively handle the redundancy, complementariness
and disagreement in these features. This paper proposes a local-
ized multiple kernel learning (L-MKL) algorithm to tackle the
issues above. L-MKL integrates the localized classifier ensemble
learning and multiple kernel learning in a unified framework
to leverage the strengths of both. The basis of L-MKL is to
build multiple kernel classifiers on diverse features at subspace
localities of heterogeneous representations. L-MKL integrates the
discriminability of complementary features locally and enables
localized MKL classifiers to deliver better performance in its
own region of expertise. Specifically, L-MKL develops a locality
gating model to partition the input space of heterogeneous
representations to a set of localities of simpler data structure.
Each locality then learns its localized optimal combination of
Mercer kernels of heterogeneous features. Finally, the gating
model coordinates the localized multiple kernel classifiers globally
to perform action recognition. Experiments on two datasets show
that the proposed approach delivers promising performance.

Index Terms—Action recognition, localized classifier, multiple
kernel learning.

I. Introduction

R ECOGNITION of human actions, like kissing, fighting,
and so on, in videos has become an increasingly popular

research topic, due to its wide applications in many vision
tasks, such as event detection in surveillance, sports videos and
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movies, and so on. Though previous research efforts [1]–[3]
have achieved promising performance in constrained videos,
recognition accuracy remains unsatisfactory in unconstrained
videos, such as movies and web videos. This is so because con-
strained videos tend to have clean background with predictable
human actions, while unconstrained videos are real-life videos
with large variations in visual contents.

This paper focuses on realistic human action recognition in
unconstrained movie and web videos. The difficulties of real-
istic action recognition lie mainly in two facts. First, uncon-
strained videos possess huge variations in visual appearance,
kinetic patterns, camera shooting and video editing styles,
and so on. As shown in Fig. 1, this diversity renders video
shots of the same human action to have varying motion and
visual patterns. Consequently, the resulting huge intra-class
variation hinders the performance of most statistical learning
approaches. Second, different from images, video is a dynamic
media carrier that possesses heterogeneous information from
multiple channels, such as visual, audio, motion, and so on.
The information from these channels can be regarded as
different representations or views of the same action semantic.
How to effectively handle the redundancy, complementariness
and disagreement in heterogeneous feature representations
poses another challenge to the recognition system.

To address the issues above, we propose a localized multiple
kernel learning (L-MKL) method to integrate the localized
classifier ensemble learning and multiple kernel learning in a
unified framework. As shown in Fig. 2, the main idea is first
to transform the global non-linear multi-representation input
space into a set of localities with simpler data structure, and
then build localized multiple kernel classifiers at subspaces of
heterogeneous representations. The proposed L-MKL brings in
two advantages. First, in the subspace of simpler complexity,
the localized classifier is expected to deliver better accuracy
in its own region of expertise; and the aggregation of these
classifiers shall deliver superior performance to better tackle
the issue of huge visual and motion variations in videos.
Recent studies have demonstrated, both theoretically [4] and
empirically [5], [6], that a good ensemble of localized classi-
fiers can outperform a single classifier learned over the entire
dataset. Second, the multiple kernel learning (MKL) [34]–[37]
enables our L-MKL method to integrate the discriminability
of complementary features locally, so as to better leverage
heterogeneous feature representations of videos. Moreover, the
formulation of a semi-definite programming task or sequential
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TABLE I

Description of Symbols in Problem Formulation

Symbol Description Parameter Estimating Step
K The number of localized classifiers –
M The number of kernels –
�k (x) The gating function of x to the kth locality Learning locality gating model
πk The kth locality of input space Learning locality gating model

βk
m The mth kernel weight of the kth localized classifier Learning multiple kernel classifier

ωk
m The weight coefficient of the mth kernel of the kth localized classifier –

bk The coefficient of the kth localized classifier Learning multiple kernel classifier
�m(x) The mapping function related to the mth kernel –

αk The Lagrange multiplier of the kth localized classifier learning multiple kernel classifier

Fig. 1. Examples of intra-class diversity of human action in movies.

minimal optimization and so on [9], [10] enables the multiple
kernel learning to converge fast.

In particular, the proposed L-MKL method first borrows the
idea of multi-view clustering [18] to develop a locality gating
model, which partitions the input space of heterogeneous rep-
resentations to a set of localities of simpler data structure. The
locality gating model exploits the expectation maximization
(EM) algorithm to achieve maximal agreement between inde-
pendent hypotheses of different representations. Then, based
on the locality definition from previous step, the proposed
approach learns localized classifiers with optimal combination
of Mercer kernels of heterogeneous feature representations.
Finally, it performs recognition by a global coordination of
localized MKL classifiers.

The main contribution of this paper is that we propose a
localized multiple kernel learning scheme for human action
recognition in unconstrained real-life videos. The proposed
approach integrates the localized classifier ensemble learning
and multiple kernel learning in a unified framework. Testing
on Hollywood-2 [7] and YouTube [8] datasets shows that the
proposed approach achieves promising results and outperforms
existing approaches with considerable margin.

TABLE II

Algorithm 1

Learning locality gating model via mixture of Gaussians EM

Input: {x(v)
i , yi ∈ {±1}|i = 1, 2, . . . N; v = 1, 2, . . . V }, K

Output: {πk}k=1,...,K, {�k}k=1,...,K

1.Use positive training set {xi|yi = +1, i = 1, 2, . . . , N} to do multi-view EM:

a. Randomly select K samples to be the centers and run k-means
algorithm to obtain the initial γ (1,0) for v = 1, n = 0

b. Do the following loop until the stopping criterion is met:
For v = 2, . . . , V, 1, 2, . . . :
i) n = n + 1
ii) M-step: Compute model parameter 	(v,n) by (4), (5), (6)
iii) E-step: Update the hidden variable γ (v,n) by (7)

end

2. Obtain the localities of the input space {πk}k=1,...,K by (11)
3. Obtain the gating functions {�k(xt)}k=1,...,K by (12)

The rest of this paper is organized as follows. We first re-
view the related work in Section II and elaborate on the details
of the proposed L-MKL method in Section III. Analysis on
L-MKL is presented in Section IV. Experiments are described
in Section V. Finally, we present conclusive remarks along
with discussion for future work in Section VI.

II. Related Work

Earlier methods on human action recognition in videos
mainly adopted holistic features like silhouette or shape [27],
and human body model [28]. Unfortunately, holistic features
based methods depend highly on the performance of segmen-
tation and tracking, which may not deliver satisfactory results
in realistic videos due to occlusion and cluttered background.
These years, researchers tend to see videos as volumes instead
of sequences of frames which induce methods from volumetric
view [42], [43]. Particularly, the success of local features, like
SIFT [22], in object recognition has thrusted the development
of action recognition based on local spatial temporal (ST)
features for action recognition [3], [13], [29]–[31]. To encode
structure information, Kovashka and Grauman [32] proposed a
hierarchy of discriminative space-time neighborhood features.
Bregonzio et al. [33] used clouds of ST interest points to
recognize actions which exploited the global ST distribution of
interest points. Liu et al. [7], [12] combined static and motion
features to recognize realistic action in web videos. Niebles
et al. [1] proposed an unsupervised learning method by
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Fig. 2. Proposed L-MKL is to build localized classifiers on multiple features at local subspaces of heterogeneous representations.

TABLE III

Algorithm 2

Localized multiple kernel learning

Input: {x(v)
i , yi ∈ {±1}|i = 1, 2, . . . N; v = 1, 2, . . . V }, K

Output: F (xt)

1. Run algorithm 1 to obtain the localities {πk}k=1,...,K and the gating
functions {�k}k=1,...,K

2. For k = 1, 2, . . . K, learn decision function fk(x) on locality πk :
a. Set βm = 1/M for m = 1, . . . , M

b. Repeat:
Compute J(β) by an SVM solver
Compute ∂J/∂βm, the largest component β∗ and descent direction D

While J(β∗) < J(β)
Do{descent direction update}
Update D∗, β∗

Compute J(β∗) by an SVM solver
End While

Until stopping criterion is met
c. Line search along D to update β.

End for

3. Obtain the discriminant function F (xt) by (3).

probabilistic latent semantic analysis model and latent Dirich-
let allocation model for human action recognition. Hu et al.
[14] focused on classification model by devising a multiple
instance learning method for action detection in surveillance
videos. For action recognition in real movie videos, Ivan et
al. [11] explored text information while Marcin et al. [8]
utilized scene classification to help recognize actions. Gilbert
et al. [44] proposed a hierarchical compound feature for action
recognition. Different from the aforementioned methods, this
paper focuses on the issues of huge intra-class variation of
human actions and multiple feature representations of videos.
It attempts to tackle these two issues simultaneously by
integrating ensemble learning and multiple kernel learning in
a unified framework.

MKL [10], [16], [20], [23] has been recently used in many
applications to fuse features from multiple modalities, such as
genomic data fusion [15], object classification [34], [35], [37],
and object detection [36]. Varma and Ray [34] combined het-
erogeneous local descriptors to seek optimal tradeoff between

representation discrimination and invariance. Nakajima et al.
[35] adopted a recently developed non-sparse MKL for com-
bining information from various image descriptors for object
classification task. Kembhavi et al. [37] proposed an incremen-
tal multiple kernel learning method for object recognition. In
this paper, MKL is used to fuse heterogeneous features. How-
ever, in contrast to the existing MKL approaches, the proposed
L-MKL fuses heterogeneous features at local subspaces of var-
ious video representations, in the spirit of ensemble learning.

An ensemble is a scheme to combine many weak learners
to produce a strong learner. Ensemble learning methods build
a set of classifiers and predict the test data by coordinating the
results of the ensemble of classifiers for better performance.
Empirically, ensemble methods tend to yield better results
when there is a significant diversity among the constituent
classifiers [45]. Existing methods of constructing ensembles
include Bayesian voting, manipulation on the training exam-
ple and input features, and so on [39]. Jacobs et al. [38]
proposed an adaptive mixture of local experts which are
separate networks. Bagging and boosting schemes [17], [24],
[25] combined weak classifiers to generate a strong one. In
our framework, L-MKL adopts a set of localized classifiers
trained on localities of input space to perform ensemble
learning. Tang et al. proposed a latent Dirichlet allocation-
support vector machine (LDA-SVM) by using LDA to cluster
samples into topics and train the data in each topic [41]. In
the context of kernel methods, localized classifier learning was
performed by assigning different weights to kernels in different
regions of the input space [16], [40]. However, different from
ensemble learning methods, these localized-classifier methods
only learn a single classifier in nature by adapting the kernel
combinations with data space locality.

III. Algorithm

A. Preliminaries and Problem Formulation

In the task of human action recognition, a video shot is
processed to detect the existence of a set of human mo-
tion or gestures, like “jumping,” “kissing,” and so on. To
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represent a video shot, several feature representations are
available, such as static visual features extracted from shot
key frames [22] and dynamic local ST features extracted from
video sequence [3]. Let {x(v)jx(v) ∈ RDv, v = 1, 2, . . .,V }
represent V heterogeneous feature representations (or views)
for a video shot x, where Dv represents the dimensionality
of feature v. For each action class, we have a training set
X = {x(v)

i |x(v)
i ∈ RDv, v = 1, 2, . . . , V, i = 1, 2, . . . , N} with

label Y = {yi ∈ {±1}, i = 1, 2, . . . N}, where N is the number
of training samples. Human action recognition can then be
naturally formulated as a classification task.

Here, we adopt the binary classification formulation in the
framework of support vector machine (SVM). We aim to
learn a classifier with a discriminant function F (xt) for a test
sample xt

F (xt) =
K∑

k=1

ψk(xt)

(
M∑

m=1

βk
m

〈
ωk

m, �m(xt)
〉

+ bk

)

βk
m ≥ 0

M∑
m=1

βk
m = 1 ∀k. (1)

The discriminant function (or action classifier) F (xt) is an
ensemble of K localized classifiers that are built in multi-
representation local subspaces of V heterogeneous features.

By solving the primal SVM problem, we can obtain ωm as
follows:

ωm =
N∑
i=1

αiyi�m(xi). (2)

By plugging in ωm, (1) can be rewritten as

F (xt) =
K∑

k=1

ψk(xt)

(
M∑

m=1

βk
m

∑
i∈πk

αk
i yi 〈�m(xt), �m(xi)〉 + bk

)

βk
m ≥ 0

M∑
m=1

βk
m = 1 ∀k. (3)

Learning action classifier, namely (3), can be decomposed
into two steps: 1) estimating locality gating model, and
2) computing multiple kernel classifier parameters in multi-
representation data space localities. In the first step, estimating
the locality gating model includes obtaining the localities
{πk}k=1,...,K of multi-representation data space and the gating
functions {�k}k=1,...,K. The localities {πk}k=1,...,K determine
the subspaces of the input space and the gating functions
{�k(xt)}k=1,...,K determine the weights of localized classifiers
for a test sample xt . In the second step, multiple kernel clas-
sifier parameters {{βk

m}, {ak
i }, {bk}} are inferred to characterize

the local classifier at each locality. For reference ease, the
variables in the L-MKL model are listed in Table I, together
with their descriptions.

B. Learning Locality Gating Model

The main task of learning locality gating model is to
partition the positive training set of multiple representations by
maximizing the agreement between independent hypotheses
of different representations. The local consensus between
multiple feature representations enables the resulting localities

to be of simpler complexities, and thus, facilitates better local-
ized classifier learning. In the spirit of multi-view clustering
[18], the model adopts the expectation-maximization (EM)
algorithm to achieve the consensus of different hypotheses, and
furthermore, to infer the gating functions for test samples. The
premise here is that the disagreement between two independent
hypotheses is an upper bound on the error risk of either
hypothesis [19]. The spirit of multi-view EM algorithm is
that different representations exchange the expected values
for hidden variables in each iteration step of EM process, on
which they find the locality model parameters that maximize
the likelihood.

Here, we assume that a sample x is generated by a
mixture of K Gaussian distributions [21] with parameters
	 = {ρk, μk, 
k}k=1,...,K in each representation space, where
ρ is the mixing weights, μ is the mean, and 
 is the variance.
Let γ(i, k) denote the probability that the ith sample xi is
generated by the kth Gaussian. We can therefore obtain our
multi-representation mixture of Gaussian EM algorithm. In
the nth M-step with representation v, the parameters 	 of
Gaussian models are estimated by the expectation value of
hidden variable γ (v−1,n−1) obtained in the (n − 1)th E-step
computed in representation v − 1, as defined by (4)–(6)

μ
(v,n)
k =

1∑N
i=1 γ (v−1,n−1)(i, k)

N∑
i=1

γ (v−1,n−1)(i, k)x(v)
i (4)



(v,n)
k =

∑N
i=1 γ (v−1,n−1)(i, k)(x(v)

i − μ
(v,n)
k )(x(v)

i − μ
(v,n)
k )T∑N

i=1 γ (v−1,n−1)(i, k)
(5)

ρ
(v,n)
k =

1

N

N∑
i=1

γ (v−1,n−1)(i, k). (6)

In the nth E-step, the expectation value of hidden variable
γ is updated by the parameters computed in the nth M-step
in representation v as follows:

γ (v,n)(i, k) =
ρ

(v,n)
k p(x(v)

i ;μ(v,n)
k , 


(v,n)
k )∑K

k′=1 ρ
(v,n)
k′ p(x(v)

i ;μ(v,n)
k′ , 


(v,n)
k′ )

(7)

p(x;μ, 
) =
1

(2π)d/2 det(
)1/2
exp{−1

2
(x − μ)T 
−1(x − μ)}.

(8)
Then M step in view v + 1 is executed with γ (v,n). In this way,
expected values for hidden variables are interchanged among
different views.

The iteration is terminated when the convergence criterion
is met. Convergence of the algorithm can be determined
by observing the change of log-likelihood of data in each
representation

log P(X(v)|	(v)) =
N∑
i=1

log

(
K∑

k=1

γ(i, k)p(x(v)
i ; μ(v)

k , 

(v)
k )

)
.

(9)
When the iteration is terminated, we adopt the final value of
hidden variable γ to define the partition {π+

k }k=1,...,K of the
positive training set as

π+
k = {xi : k = arg max

k′
(

V∑
v=1

γ (v)(i, k′))}. (10)
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TABLE IV

Optimal Value of K for Action Categories in Hollywood-2 Dataset

ActionCategory Answer Drive Fight Hand Hug Kiss SitDown Stand Eat Run GetOutCar SitUp
Phone Car Shake Up

Optimal K 2 5 4 3 4 4 3 5 5 4 3 5

Then the kth locality πk of the input space is defined as

πk = π+
k

⋃
{xi|yi = −1, i = 1, 2, ...N}. (11)

We determine the gating function �k(xt) for a test sample
xt in (1) and (2) by the final GMM parameters as

�k(xt) =
p(k|xt)

K∑
k′=1

p(k′|xt)

p(k|xt) =
V∑

v=1

ρ
(v)
k p(x(v)

t ; μ(v)
k , 


(v)
k )

K∑
k′=1

ρ
(v)
k′ p(x(v)

t ; μ(v)
k′ , 


(v)
k′ )

. (12)

Intuitively, the gating function �k(xt) determines the mem-
bership of sample xt in each locality with consensus of
multiple feature representations.

The algorithm for learning the locality gating model via the
mixture of Gaussian EM is summarized in Algorithm 1.

C. Learning Multiple Kernel Classifier

After learning the locality gating model that defines the
locality of the input space, we learn the multiple kernel
classifier parameters {{βk

m}, {αk
i }, {bk}} for localized classifier

in each locality. Specifically, the learning procedure is to
obtain a decision function in (13) for each locality (the locality
index k is omitted in the following)

f (x) =
∑

i

αiyiK(x, xi) + b (13)

K(x, xi) =
M∑

m=1

βmKm(x, xi) βm ≥ 0
M∑

m=1

βm = 1 (14)

where Km is a positive definite kernel. A weighted 2-norm
regularization [20] is explored to solve the problem above.
The optimization problem then becomes

min(J(β)) = min
{f },b,ξ

1

2

∑
m

1

βm

||fm||Hm

2 + C
∑

i

ξi

s.t. yi

∑
m

fm(xi) + yib ≥ 1 − ξi

ξi ≥ 0 ∀i βm ≥ 0
M∑

m=1

βm = 1 (15)

where fm belongs to a reproducing kernel Hilbert space
associated with a kernel Km. Assuming that each gram matrix
Km(xi, xj) is positive definite, the optimization function J
is convex and differentiable. The approach used to solve

this optimization problem is a reduced gradient method. The
reduced gradient of J(β) is

∇Jt =
∂J

∂βt

− ∂J

∂βs

, t 
= s

∇Js =
∑
t 
=s

(
∂J

∂βs

− ∂J

∂βt

) (16)

where s is chosen as the index of the largest component of
β. Algorithm 2 summarizes the overall flow of the proposed
L-MKL algorithm, with emphasis on the part of multiple
kernel classifier learning.

With a set of local multiple-kernel classifiers, the prediction
on a testing sample is decided by the discriminant function
F (xt) in (1), which is effectively a weighted average of
decision scores of individual local classifiers. The weights
are determined by the gating functions of each locality, as
introduced in Part A, Section III. Fig. 3 illustrates the training
and testing processes of our algorithm.

IV. Analysis of L-MKL

A. Parameterized Coordination of Local Models

The proposed L-MKL method can be regarded as a global
coordination of locally linear discriminant models. It regu-
lates the coordination with a global parameterization on the
agreement of hypothesis of different data representations. This
parameterization is solved by the expectation-maximization
algorithm in a multi-view clustering approach. The coordi-
nation regulates the local multiple-kernel classifiers in two
aspects: 1) it defines how the data samples are grouped into
localities to train a localized MKL classifier, and 2) it governs
how the predictions of localized MKL classifiers on a testing
sample are combined. The global parameterization on multiple
data representation furnishes the proposed L-MKL with two
desirable properties that distinguish it from most traditional
localized model learning and multiple kernel learning schemes.
First, the partitioning of input space takes into account the
heterogeneity and disagreement of multiple representations,
which builds the basis for localized multiple kernel learning
at the later stage. Second, the approach allows multiple kernel
learning to be performed in a distributed fashion. This property
is favorable, especially when the efficiency in multiple kernel
learning is critical on large-scale dataset.

B. Computational Complexity

The computational complexity of L-MKL lies in two parts:
locality gating model learning and multiple kernel parameter
learning. For locality gating model learning, the complexity
of EM algorithm is O(K × Nk), where K is the number
of localities, and Nk is the number of data samples at the
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Fig. 3. Flowchart of the L-MKL algorithm.

current locality k and it can be approximated to be N/K.
To learn the localized MKL classifier, each locality needs
to solve the 2-norm regularization problem in SVM with
combined kernel and calculate the gradient J(β) for a few
iterations. Compared to the complexity of solving a 2-norm
regularization, the calculation of gradient J(β) is trivial. At
each iteration, determining gradient descent update requires
additional optimization. The number of iterations l depends on
the training data and gradient parameter. Therefore, the com-
plexity of multiple kernel parameter learning at each locality
depends mainly on SVM optimization O(N2

k ). Consequently,
the complexity of the whole multiple kernel parameter learning
process is l × K × O(N2

k ) = l × O(N2/K). As K << N, the
computational complexity of the L-MKL algorithm is then
l × O(N2/K).

C. Conditional Independence of Feature Representations

One issue remains open in the proposed algorithm. The
locality gating model learning implicitly assumes that different
feature representations are conditionally independent, given
their class label, namely p(x1

i , . . . , x
v
i , . . . , x

V
i |yi) = �p(xv

i |yi).
The problem now is how practical this independence as-
sumption is. Given the fact that it is, in general, infea-
sible to infer the joint density of different representations
p(x1

i , . . . , x
v
i , . . . , x

V
i |yi) from marginal densities, our con-

cern becomes how this conditional independence assumption
affects the final recognition performance. Our experimental
result shows that the proposed algorithm delivers promising
performance and outperforms other existing approaches with
considerable margins. We therefore conjecture that the con-
ditional independence assumption simplifies the model and
permits better generalization.

V. Experiments

A. Datasets and Experimental Setup

1) Datasets and Evaluation Criterion: We test our algo-
rithm on two datasets: Hollywood-2 [8] and YouTube dataset
[7]. The Hollywood-2 dataset consists of 12 action categories,
such as “answer phone,” “drive car,” and so on, and 2571

Fig. 4. (a) Examples of the key frames in the Hollywood-2 datasets. (b)
Examples of the key frames in the YouTube datasets.

real-life movie videos in total. Fig. 4(a) shows some key
frames of videos in the dataset. For benchmark purpose, we
follow the setup of [8] to utilize 1707 video clips (823 for
training and 884 for testing). We adopt average precision (AP)
for each class and average AP (AAP) on all classes as the
evaluation criterion. The YouTube dataset contains 1168 video
clips of 11 categories, such as basketball shooting, volleyball
spiking, trampoline jumping, and so on, as shown in Fig. 4(b).
Each category is divided into 25 relatively independent groups.
YouTube dataset is reported to be one of the most extensive
realistic action dataset of web videos [7]. For YouTube dataset,
we adopt recognition accuracy as evaluation criterion as [7]
and extend our algorithm for multi-class classification in a
one-versus-all setting.

2) Features and Kernels: Two types of features are em-
ployed. The first feature is a static feature that encodes the
appearance information. The second feature is a dynamic
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feature that encodes the motion information of the actions.
For static appearance features, we exploit the bag-of-words
representation, based on scale invariant feature transform
(SIFT) descriptors [22], as it has been reported to deliver
good practical performance. SIFT regions are extracted by
difference of Gaussian detector. The SIFT feature in a video
is represented by a histogram.

For the dynamic feature, we exploit the bag-of-words repre-
sentation of local ST feature [3], which is a recently proposed
feature for action recognition. Local ST features represent
videos in a compact but discriminative manner by describing
local cuboids at the most informative ST locations. The
response function is R = [I∗g∗

σhev]2 + [I∗g∗
σhod]2, where gσ is

Gaussian filter applied on spatial dimensions, hev and hod are a
quadrature pair of Gabor filters applied on temporal dimension.
The parameters σ and τ are the spatial and temporal scales
of the detector. Local 3-D cuboids of interest points are
characterized by brightness gradient. PCA is used to reduce
the dimension of feature of cuboids. The ST feature in a video
is also represented by a histogram.

The distance measure for both features is χ2 distance which
is computed as

D(hi, hj) =
1

2

H∑
bin=1

[hi(bin) − hj(bin)]2

hi(bin) + hj(bin)
(17)

where hi and hj are histograms of sample i and j, and H is
the number of bins in the histogram.

For localized multiple kernel learning, we adopt polynomial
(homogeneous), polynomial (inhomogeneous), Gaussian radial
basis function (RBF) as kernels for each feature.

3) Parameter Setting: The spatial and temporal scales
(σ and τ) are both set to 1.5 in our experiment. The dimension
of cuboids feature is reduced to 100 by PCA. We apply
k-means clustering to generate the codebooks of both features
with cardinality equal to 500. The degree parameter d in
polynomial kernel is set to 2. The parameter r in Gaussian
RBF kernel Kernel(xi, xj) = exp[−(1/r)∗D(xi, xj)] is set
to the mean distance of all training samples as [11]. The
regularization parameter C for MKL is set to 1000. For the
number of localities K, we adopt the leave-one-out cross
validation scheme.

B. The Hollywood-2 Dataset

1) Locality Gating Model Learning: Here, we test the
effectiveness of the proposed locality gating model learning for
multiple-representations input space partitioning. We perform
locality gating model learning via Gaussian mixture EM to
partition the input space into K localities. For efficiency
purpose, we adopt PCA to reduce the feature dimensionality
to 50 in the EM process. For each category, we set K from
2 to 6 and record K for the best performance in the cross
validation. Table IV illustrates the value of K with optimal
recognition performance. The value of optimal K ranging from
2 to 5 reveals the intra-class diversity, from the perspective of
classification.

To test effectiveness of the proposed locality gating model,
we compare the recognition performance of the following runs:

TABLE V

Average APs of 4 Runs for Hollywood-2 Dataset

Run Run-1 Run-2 Run-3 Run-4
Average AP 0.3923 0.4020 0.4125 0.4314

1) run-1: random partitioning of the input space;
2) run-2: EM-based partitioning based on a single static

feature;
3) run-3: EM-based partitioning based on a single dynamic

feature;
4) run-4: proposed locality gating model based on multiple-

feature representation.

For run-1, we randomly partition the input space into K
localities (K is set to the number chosen in the cross validation
step) and conduct our localized MKL method. For run-2
and run-3, similar gating model learning is applied, but on
single static or dynamic feature only. Run-4 incorporates both
the static and dynamic features in L-MKL as proposed in
Section III. The AAP of all the runs are shown in Table V. The
proposed gating model achieves the highest AAP of 0.4314,
which outperforms run-1 by 10%, run-2 by 7.3%, and run-3 by
4.6% relatively. This demonstrates that a proper partitioning
of multi-representation data space plays an important role in
the performance of localized classifiers. By maximizing the
agreement between independent hypotheses of different repre-
sentations, the proposed locality gating model learning method
enables the localized classifiers to leverage the discrimination
of complementary features locally.

2) L-MKL Classifier: Next, we verify the effectiveness
of the proposed L-MKL classifier. Specifically, we compare
the performance of proposed L-MKL with a global MKL
classifier [20] and two classical ensemble learning methods,
i.e., Adaboost [24] and Bootstrap aggregating (Bagging) [25].

The global MKL classifier is trained over the entire dataset.
Fig. 5 elaborates the APs of each category by L-MKL and
global MKL. Overall, L-MKL achieves an AAP of 0.4314,
which is 11.73% relatively higher than that of the global MKL
classifier. Specifically, category “Run” has the largest AP im-
provement by 16.6% relatively. We attribute this improvement
to the conjecture that this category might possess better salient
sub-group locality structures. As each locality has simpler
data structure, the localized MKL classifier tends to deliver
more superior results. However, we also observe that for the
“AnswerPhone” and “SitUp” categories, the proposed L-MKL
method shows little improvement over the global classifier.
Our postulation is that the sub-group locality distribution is
not obvious in these groups, which renders locality learning
ineffective.

Moreover, we compare the performance of our method
with Adaboost [24] and Bootstrap aggregating (Bagging) [25].
Adaboost and Bagging are widely used ensemble learning
methods that combine a set of local classifiers for final
classification. Taking C4.5 [17] as weak classifier, Adaboost
and Bagging are trained on each of static and motion feature,
respectively. Table VI summarizes the AAP of Adaboost and
Bagging on single feature. Fig. 5 illustrates the detailed AP
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TABLE VI

Benchmark of Existing Methods on Hollywood-2 Dataset

Method Proposed Global Han et al. Wang et al. Adaboost on Bagging on Adaboost on Static Bagging on Static
L-MKL MKL [26] [13] Motion Feature Motion Feature Feature Feature

AAP 0.4314 0.3861 0.4212 0.45 0.2557 0.2602 0.1771 0.1724

Fig. 5. Comparison of AP of the proposed L-MKL with the global MKL,
Adaboost, and Bagging for all categories of Hollywood-2 dataset.

TABLE VII

Average APs of 4 Runs for YouTube Dataset

Run Run-1 Run-2 Run-3 Run-4
Average accuracy 75.03% 75.86% 76.13% 77.91%

comparison on each category. As shown, the proposed L-MKL
outperforms Adaboost and Bagging with considerable margins
of 0.1712 and 0.259, respectively. We attribute this substantial
improvement to the fact that the local classifiers in L-MKL
are built on multiple features, while the classifiers in Adaboost
and Bagging are on single feature only. In other words, the
multiple kernel learning on heterogeneous features in L-MKL
makes the ensemble learning more effective.

3) Benchmark: We also benchmark our method with the
state-of-the-art methods [26] and [13] (we choose the result
of the same dynamic feature as ours) in Table VI. As shown,
our proposed method delivers better or comparable results.

C. The YouTube Dataset

1) Locality Gating Model Learning: Similar to the
Hollywood-2 dataset, we first verify the effectiveness of the
proposed locality learning on multiple representations, by
performing the four runs listed in Section V-B. The average
accuracies of the four runs are shown in Table VII, from which
we obtain similar observation as in Hollywood-2 dataset.
The proposed L-MKL method that uses all features achieves
the best performance with an accuracy of 77.91%, which
outperforms the other three runs.

2) L-MKL Classifier: Next, we compare the proposed
localized MKL method with the global MKL scheme [20]
and two ensemble learning methods, i.e., Adaboost [24] and
Bagging [25] on YouTube dataset. The accuracies of the
11 categories are shown in Fig. 6. The average accuracy
of the proposed method is 77.91%, which outperforms the
global MKL by 5.37% relatively. Similarly, the proposed

Fig. 6. Comparison of accuracies of the proposed L-MKL with the global
MKL, Adaboost, and Bagging for all categories of the YouTube dataset.

Fig. 7. Confusion matrix for the proposed L-MKL method on YouTube
dataset.

L-MKL method also outperforms Adaboost and Bagging by
considerable margins.

To further analyze the difference between the global MKL
and L-MKL classifier, we examine the accuracies of each
category. As observed, the proposed L-MKL method outper-
forms the global MKL method on 9 out of 11 categories by a
margin ranging from 2% to 7.96%. But two categories have the
global MKL classifier outperforming the L-MKL, which are
“diving” and “tennis swinging.” After careful examination on
videos of these two categories, we observe that the intra-class
diversity of “diving” is mild, which renders the global classifier
more effective. Moreover, the “tennis swinging” category is
observed to share similar motion patterns with “swinging” and
“sjuggling” categories. This low inter-class distance hinders
the performance of localized classifiers, as data samples are
more easily confused with ones of other classes at a locality.
Fig. 7 shows the confusion matrix of the classification by
the proposed L-MKL. The most confusing category pairs
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TABLE VIII

Benchmark of Existing Methods on Youtube Dataset

Method Proposed Global MKL Liu et al. [7] Adaboost on Bagging on Adaboost on Bagging on
L-MKL Motion Feature Motion Feature Static Feature Static Feature

Average accuracy 77.91% 73.94% 71.21% 54.28% 54.36% 45.54% 44.49%

are “soccer−juggling (sjuggling)” and “walking,” and “tennis
swinging (tswinging)” and “soccer−juggling (sjuggling).”

3) Benchmark: Overall, the proposed L-MKL algorithm
achieves an average accuracy of 77.91%, which is 6.7% higher
than the average accuracy of [7] at 71.21%. The benchmark
of YouTube dataset is shown in Table VIII.

VI. Conclusion

Recognizing human actions, like fighting, biking, and so
on, in videos has been a popular research topic, due to its
significance to many vision and multimedia applications. Two
issues, however, encumber effective action recognition, which
are: huge intra-class variations of human actions and multiple
heterogeneous feature representations of videos. In this paper,
we proposed a L-MKL algorithm to tackle these two issues.
The proposed algorithm integrates the localized classifier
ensemble learning and multiple kernel learning in a unified
framework. In the algorithm, multiple kernel classifiers are
built locally on heterogeneous features at multi-representation
data subspaces. By adapting kernel combinations to data space
locality, L-MKL integrates the discriminability of complemen-
tary features locally, and enables localized MKL classifiers
to deliver better performance in its own region of expertise.
Specifically, in the spirits of the multi-view clustering, the
proposed method develops a locality gating model to partition
the input space of multiple feature representations into a set
of localities based on EM algorithm. Each locality of input
space then learns a localized optimal combination of kernels
of heterogeneous features. Finally, the locality gating model
coordinates the localized MKL classifiers globally to perform
action recognition. Testing on Hollywood-2 and YouTube
datasets showed that the proposed algorithm delivers state-
of-the-art results and outperforms existing approaches with
considerable margin. Future work includes how to incorporate
the inter-relation among action classes in the recognition frame
work, such as the motion tempo relation of “running” and
“walking” categories.
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