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Abstract In recent years, the bag-of-words (BoW) video representations have achieved
promising results in human action recognition in videos. By vector quantizing local spatial
temporal (ST) features, the BoW video representation brings in simplicity and efficiency,
but limitations too. First, the discretization of feature space in BoW inevitably results in
ambiguity and information loss in video representation. Second, there exists no universal
codebook for BoW representation. The codebook needs to be re-built when video corpus is
changed. To tackle these issues, this paper explores a localized, continuous and
probabilistic video representation. Specifically, the proposed representation encodes the
visual and motion information of an ensemble of local ST features of a video into a
distribution estimated by a generative probabilistic model. Furthermore, the probabilistic
video representation naturally gives rise to an information-theoretic distance metric of
videos. This makes the representation readily applicable to most discriminative classifiers,
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such as the nearest neighbor schemes and the kernel based classifiers. Experiments on two
datasets, KTH and UCF sports, show that the proposed approach could deliver promising
results.

Keywords Human action recognition . Probabilistic video representation .

Information-theoretic video matching

1 Introduction

Human action recognition in videos has spurred much research attention, as it has profound
significance in building various multimedia applications, such as the unusual event
detection in surveillance video and event detection in sports videos and movies, and so on.
To date, human action recognition remains a challenging task, due to the huge variations in
kinetic patterns of human movement, and photometric/geometric changes in subject
appearance.

Inspired by the relative success of local features in image related applications [23],
researchers recently shifted their focus to the local spatial temporal (ST) features for human
action recognition [7, 17, 24, 28]. Local ST features represent videos in a compact but
discriminative manner by describing local cuboids at the most informative spatial temporal
locations. As shown in Fig. 1, spatial temporal interest points are detected in intensively
moving locations. Despite of its good performance, the use of local ST features has
limitations. The video representation is usually an ensemble of ST feature vectors. Thereby
most discriminative classifiers cannot be used directly as most similarity metrics cannot be
applied on variable length data (videos with different numbers of ST features).

One common solution is the vector quantization of local features, namely the bag of
words (BoW) representation [7, 17, 28]. BoW representation in computer vision stems from
the idea in the natural language processing domain that represents a document by the key
words whose orders are ignored. In computer vision, an image or a video can be considered
as a document and the features extracted from it are treated as “words”. Specifically, it
constructs a vocabulary by vector-quantizing the feature space and characterizing a video
with the occurrences of each word in the vocabulary. A vocabulary is a prototype set in
which each element is a representative of ST features. Then each video is represented by a
histogram (BoW) of the vocabulary elements. Though BoW representation has shown good
performance, it suffers from the following drawbacks. First, BoW scheme partitions the
local feature space into discrete parts, in which each part corresponds to a visual word.
Unlike textual document comprising discrete words, visual information is continuous in
nature. The discrete partition inevitably brings in ambiguity, uncertainty and information
loss in video representation. Second, the vocabulary is usually built on a subset of existing
data. This makes the representation biased towards the videos whose features are involved
in the vocabulary generation. A new vocabulary needs to be re-trained when it is applied on
a new database or a new category is added to the existing database. However, adding new
categories is common when the dataset is open for augmentation and the set of categories is
not fixed beforehand.

Facing the limitations of the BoW representation, this paper explores a continuous,
probabilistic and localized video representation scheme, based on and by expanding our
previous work [30]. This representation models the visual and motion information
embedded in the set of ST features of a video in an efficient and compact manner. We
model each video as a distribution of localized ST features which is estimated by a
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generative probabilistic model, such as the Gaussian Mixture Model (GMM) [2]. This
probabilistic video representation naturally gives rise to information-theoretic distance
metrics of videos. The distance measure of two videos with any lengths becomes the
distance measure of two probabilistic distributions. The proposed probabilistic representa-
tion has several appealing properties. First, it takes into account the fact that human motion
pattern is continuously distributed. In contrast to the BoW approach, it avoids the
uncertainty caused in vector quantization of local ST features. Second, unlike BoW
representing the set of ST features into a histogram, the proposed representation attempts to
reveal the probabilistic structures of local ST features, as it takes full advantage of
probabilistic generative models. More importantly, the proposed localized representation
does not require any universal vocabulary. It considers a video as a probabilistic distribution
in the ST feature space by estimating the probabilistic model parameters based on the set of
ST features in the video. The representation is solely built on the ST features of individual
videos independently. Compared to the BoW representation, it has more scalability by
enabling existing action recognition systems to be readily applied on new video databases.
Based on the probabilistic video representation and distance metric, most discriminative
classifiers, such as the nearest neighbor schemes and the kernel based classifiers, are readily
applicable for human action recognition.

Fig. 1 Examples of local ST interest points detected in video sequence. The color of interest point indicates
its temporal order
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In summary, the main contribution of this paper is that we explore a localized,
continuous and probabilistic video representation that encodes the visual and motion
information of an ensemble of local features. Testing on two datasets, i.e., KTH and UCF
sports, shows that the proposed approach delivers promising results and outperforms the
BoW approach with considerable margin.

The rest of the paper is organized as follows. In Section 2, related works about human
action recognition and probabilistic representation are discussed. In Section 3, details of the
distribution representation method and distance measure are represented. In Section 4, we
demonstrate experiment results on two public datasets and Section 5 concludes the paper.

2 Related work

In early years, the main research efforts in human action recognition focused on the
tracking of human subject and the extraction of holistic features like shape of gesture in
each frame [4, 32]. Veeraraghavan et al. [32] adopted a statistical shape representation [13]
method to describe the shape of human body. They described human body silhouette as a k-
dimensional complex vector where k is the number of landmarks on the shape. Davis and
Bobick [4] proposed a temporal template based representation which is a static vector
image with each point setting by the value of a function of the motion properties at the
corresponding spatial location. It was based on the assumption that the motion of the object
can be separated. Despite of the simplicity, these methods suffer from two drawbacks: (1)
the performance relies highly on tracking and segmentation, which are still open research
problems; and (2) they are sensitive to occlusion and cluttered background.

Motivated by the development of local features in image classification and object
categorization [23], researchers shifted their attention to local ST feature based models for
human action recognition [7, 14, 16, 17, 29, 35]. Doll’ar et al. [7] applied filters on spatial
and temporal domains and extracted cuboids at locations of maximum response. Gradients
of each pixel in a cuboid are concatenated into a vector to describe the cuboid. Kl¨aserv et
al. [14] proposed a 3D extension of the famous SIFT descriptor [23]. It generated
histograms of 3D gradient orientation base on integral video representation. Similarly,
Scovanner et al. also developed a 3D SIFT alike feature [29]. Laptev and Lindeberg
extended the Harris detector [16]. The histograms of spatial gradient and optical flow were
computed to generate HOG/HOF descriptor [17]. Willems et al. developed an extended
version of Hessian saliency measure to locate ST interest points [35].

Based on the aforementioned local ST features, many human action recognition methods
have been explored. Researchers explored some improvements for the vocabulary
generation for the BoW representation. Liu and Shah [21] proposed to automatically
discover the optimal size of vocabulary by utilizing the principle of maximization of mutual
information (MMI). Ballen et al. [1] adopted a radius-based clustering method and a soft
assignment to construct a codebook. In addition, Niebles et al. [24] proposed an
unsupervised learning method by learning the probability distributions of ST words and
the intermediate topics corresponding to human action categories via probabilistic Latent
Semantic Analysis (pLSA) [12] and Latent Dirichlet Allocation (LDA) [3]. Laptev et al.
[17] addressed the importance of human action recognition in realistic videos. They
presented a method combining and extending several ideas including local ST features, ST
pyramids and multi-channel non-linear SVM classifiers. Liu et al. [22] proposed an
approach for generic visual vocabulary. They adopted diffusion maps to learn a semantic
visual vocabulary on quantized midlevel features which was represented by the vector of
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mutual information. The idea was to embed the midlevel feature into a semantic lower-
dimensional space to construct a semantic visual vocabulary. All the aforementioned
approaches share one commonality: a discrete BoW scheme is used as video representation.
Facing the ambiguity and information loss in BoW, we argue that a probabilistic and
continuous representation is more suited for modeling human motion.

Probabilistic representation of data has been widely used in various disciplines, such as
speaker identification in audio signal processing domain [38] [37], and so on. In computer
vision community, image or video was represented by probabilistic distribution of pixel [8,
9] or sub-window features [31]. One important aspect of probabilistic data representation is
distance metric. Kullback–Leibler (KL) measure [15] has been applied in image matching
task, together with Gaussian Mixture model [8]. Do and Vetterli [6] adopted generalized
Gaussian Density and KL-distance for texture retrieval. Vasconcelos and Moreno [31]
investigated the advantage of KL-kernel to combine discriminant recognition with
representation for visual recognition. Cao et al. [18] employed a GMM to represent
universal background distribution and an adaptation GMM for action model. Our proposed
representation is similar to the approaches above; in the way they all summarize
information in a probabilistic process. However, different from the above distribution-
based audio, image and video modeling methods, our work views action videos as a 3D
volume represented by an ensemble of local ST features which encodes the most
informative parts for action recognition. Moreover, the proposed representation tackles
information localization too. Namely, the probabilistic representation needs to preserve the
robustness to clutter and occlusions in local ST features.

In this aspect, our method is similar to the work by Zhou et al. [39] in part. The approach
described the bag of SIFT features in the video frames by a specialized GMM adapted from
a global GMM. However, our method is different from it in three-fold. First, our method
adopts local ST feature which has been proved effective in many previous works [7, 24, 28]
due to its property of encoding not only static but also motion information in videos which
is crucial to action recognition. Zhou et al. [39] adopted SIFT feature [23] for video
representation to analyze event. Second, our GMM based representation avoids dependence
on any global information. One of the most important characteristics of our approach is that
it is a localized representation for videos, which means each video is independently
represented. Zhou et al. [39] firstly estimated a global GMM from the whole dataset and
then adapted a specialized GMM for each video. Third, our approach exploits the Minimum
Description Length (MDL) criterion to determine number of GMM components
automatically. This ensures that our probabilistic description of each video is data-driven
without any prior knowledge and assumption. Our previous work proposed a distribution
based representation of videos for human action recognition [30]. This work extends the
distance metrics and algorithms of our previous work in two-fold. First, we explore the
information-theoretic distance metrics for distributions to test the sensitivity of the proposed
representation against different distance metrics. Second, we conduct more extensive
experiments to verify the effectiveness of the proposed method from different angles and
add the benchmark with several state-of-the-art methods.

3 Algorithm

Figure 2 shows the overall framework of our system. As shown, the approach first extracts
ST features from videos and learn the probabilistic video representation from ST features
via a generative probabilistic model. Information-theoretic distance metrics are then
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exploited as similarity measure. Finally, a discriminative classifier is applied to perform
action recognition. For clarity, we list notations of variables used in the method in Table 1.

3.1 Local ST Feature extraction

Motivated by the promising result and the denseness of interest points [24] [22], we
generate ST features by adopting the method proposed by Doll’ar et al. [7]. The procedure
of feature extraction includes four steps.

Firstly, a video is considered as a 3D volume I(x, y, t) that a Gaussian filter and two
Gabor filters are applied on the spatial and temporal domains respectively. The response
function of the filters is defined as:

Rðx; y; tÞ ¼ ½I»gsðx; yÞ»hevðtÞ�2 þ ½I»gsðx; yÞ»hodðtÞ�2; ð1Þ

Fig. 2 Flowchart of the proposed system

Table 1 Notation of symbols

Symbol Description

gσ (x,y) 2D Gaussian filter

hev (t)/hod (t) A quadrature pair of Gabor filters

R Response function

σ Parameter in Gaussian filter

τ Parameter in Gabor filters

Δ Size of cuboid

K The number of components in a GMM

αk The weight of the kth Gaussian component

μk The mean of the kth Gaussian component

Σk Covariance matrix of the kth Gaussian component

F ST feature set

+(n)(i,k) The probability that a local ST feauture fi is generated by the kth

Gaussian component in the nth iteration

N The number of features

M The dimension of the feature vector

KLD(G1||G2) KL divergence of distributions G1 and G2

KLD(G1, G2) Symmetric KL divergence of distributions G1 and G2

JSD(G1|| G2) JS divergence of distributions G1 and G2

H(P) Shannon entropy of the distribution P

KLDvar(G1, G2) Variational lower bound approximation of KL divergence of distributions G1 and G2

JSDvar(G1, G2) Variational lower bound approximation of JS divergence of distributions G1 and G2
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where gσ (x,y) is the 2D Gaussian filter applied on spatial dimension xy, and hev (t) and hod
(t) are a quadrature pair of Gabor filters applied on temporal dimension t. The Gabor filters
are defined as hev(t;τ,ω) = −cos(2πtω)exp(−t2/τ2) and hod(t;τ,ω) = −sin(2πtω)exp(−t2/τ2)
with ω=4/τ. The parameters σ and τ can be considered as spatial and temporal detector
scales respectively.

Secondly, interest points are located at the local maximums of the response R.
Intensive spatial-temporal changes occur at these locations. Specifically, the local
maximums correspond to locations with significant spatial characteristics and complex
motion.

Thirdly, local 3D cuboid of the interest point (x,y,t) is extracted with the size of Δx(σ)
*Δy(σ)*Δt(τ), where Δx(σ) = Δy(σ) = 2*ceil(3σ) + 1 and Δt(τ) = 2*ceil(3τ) + 1. A cuboid
contains windowed neighbor pixels of the interest point.

At last, each cuboid is characterized by vectors concatenated by brightness gradients
of pixels in them. The feature dimension is reduced by principal component analysis
(PCA).

3.2 Probabilistic and localized representation of videos

In human action videos, local ST interest points are located at the most intensively changing
parts and extracted features characterize the corresponding local motion patterns. We model
a video as a distribution of localized ST features. There exist several generative
probabilistic models that can learn the distributions, like GMM and Hidden Markov
Models (HMM) [25]. HMM models a system as a Markov process which is a random
process. A random process amounts to a sequence of random variables known as a temporal
or spatial series. ST interest points extracted from a video distribute in a 3-D space and they
cannot be directly ordered one by one as a time series. Thereby we cannot directly utilize
HMM in this situation. Here, we choose GMM due to its simplicity and good practical
performance [6, 8, 9, 31, 37, 38]. Let F = {fi| i=1, 2,…, N} denotes the local ST feature set
extracted from a video as described in Section 3.1, where N denotes the number of ST
features in this video. Parameters of a GMM are denoted as {K, θ} and θ={αk, μk, Σk| k=1,
2…, K}, where K denotes the number of components, αk, μk and Σk denote the weight,
mean and covariance matrix respectively. The log likelihood of local ST feature set in a
video is given by:

log pðFjK; qÞ ¼
XN
i¼1

logð
XK
k¼1

akpðfijk; qÞÞ: ð2Þ

The probability +(i,k) that a local ST feauture fi is generated by the kth Gaussian
component is computed by:

gði; kÞ ¼ akpð fi;mk ; ΣkÞPK
k 0¼1 ak 0pð fi;mk 0 ; Σk 0 Þ

; ð3Þ

pðf ;m;ΣÞ ¼ 1

ð2pÞd=2 det ðΣÞ1=2
expf� 1

2
ðf � mÞTΣ�1ðf � mÞg: ð4Þ

We estimate GMM by Expectation-Maximization (EM) algorithm. In the nth iteration of
EM algorithm, parameters of the kth Gaussian model and the mixture weight are computed
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by the expectation value of hidden variable γ obtained in the (n−1)th iteration, as defined by
Eqs. 5, 6 and 7 below:

aðnÞ
k ¼ 1

N

XN

i¼1
gðn�1Þði; kÞ; ð5Þ

mðnÞ
k ¼ 1PN

i¼1 g
ðn�1Þði; kÞ

XN

i¼1
gðn�1Þði; kÞfi; ð6Þ

ΣðnÞ
k ¼ 1PN

i¼1 g
ðn�1Þði; kÞ

XN

i¼1
gðn�1Þði; kÞðfi � mðnÞ

k Þðfi � mðnÞ
k ÞT : ð7Þ

Then the expectation value of hidden variable γ is updated by the parameters of the
Gaussian model and the mixture weight in the nth iteration:

gðnÞði; kÞ ¼ aðnÞ
k pðfi;mðnÞ

k ;ΣðnÞ
k ÞPK

k 0¼1 a
ðnÞ
k 0 pðfi;mðnÞ

k 0 ;Σ
ðnÞ
k 0 Þ

: ð8Þ

The iteration is terminated when the convergence criterion is met. Convergence of the
algorithm can be determined by observing the change of log-likelihood of the data.

After modeling an action video by a GMM, the video is represented by the parameters of
a GMM {K, θ}. In another view, we can cluster the ST features in a video corresponding to
different Gaussian components. Thereby, the GMM based method represents the local
feature set by comprehensively characterizing several clusters in a distribution manner. We
give some visualization examples of the clustering effect by GMM modeling in the
experiment section.

There is a parameter in the probabilistic representation that should be decided before EM
algorithm which is the number of components in GMM. However, in human action
recognition, the number of Gaussian mixtures should be determined without any prior
knowledge. As we know, MDL criterion is a widely used method in model selection. Here,
we utilize the MDL criterion to choose the optimal number of components in our
probabilistic representation for action videos. The MDL criterion adds a penalty term to the
log likelihood to prevent over-fitting by implementing a tradeoff between the complexity of
the hypothesis and the complexity of the data given the hypothesis. The MDL criterion is to
minimize the following function:

MDLðK; qÞ ¼ � log pðf jK; qÞ þ 1

2
L logðNMÞ; ð9Þ

where N is the number of features, and M is the dimension of the feature vector. L is given
by:

L ¼Kð1þM þ ðM þ 1ÞM
2

Þ � 1 ð10Þ

Although we have the object function, we cannot obtain the optimal solution directly.
Here, we initialize K by a large number and decrease it one by one. For each K, the penalty
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term is fixed so that we only need to apply EM iteration to minimize MDL. To decrease K,
we merge the nearest two mixtures by the following equations:

aða;bÞ ¼ aa þ ab; ð11Þ

mða;bÞ ¼
aama þ abmb

ma þ mb
; ð12Þ

Σða;bÞ ¼
aaðΣa þ ðma � mða;bÞÞðma � mða;bÞÞtÞ

ma þ mb

þ abðΣb þ ðmb � mða;bÞÞðmb � mða;bÞÞtÞ
ma þ mb

: ð13Þ

Once we obtain the parameters of the new merged mixture, they are set to be the initial
parameters of the new EM iteration for K−1. After an EM iteration for a K, we can compute
the MDL by Eq. 9. We choose the K with the minimum MDL to be the optimal number of
mixtures in the GMM.

Now we can model a local ST feature set by a GMM with an automatically chosen
number of components for each action video.

3.3 Information-theoretic distance metrics of videos

In our framework, a video is represented by an ensemble of local ST features, which is
further modeled by a probability distribution. The problem of distance metric of videos then
becomes the issue of distance metric between probability density functions (PDF).

Existing distance measures for multiple probability distributions, such as the KL
measure and the Jensen-Shannon (JS) divergence [19], have been used as distance and
kernel in some applications [5, 33]. Here we adopt and compare these two divergences. The
KL divergence is commonly defined as:

KLDðG1jjG2Þ ¼
Z

g1ðxÞ log g1ðxÞg2ðxÞdx: ð14Þ

We adopt symmetric KL divergence by adding two terms:

KLDðG1;G2Þ ¼ KLDðG1jjG2Þ þ KLDðG2jjG1Þ

¼
Z

g1ðxÞ log g1ðxÞg2ðxÞdxþ
Z

g2ðxÞ log g2ðxÞg1ðxÞdx: ð15Þ

The JS divergence of n probability distributions {Pi| i=1,2,…n} is defined as:

JSDðP1;P2; :::;PnÞ ¼ Hð
Xn
i¼1

piPiÞ �
Xn
i¼1

piHðPiÞ; ð16Þ

where π={π1, π2,…, πn|πi>0, ∑πi =1} are the weights of distributions {Pi| i=1,2,…n} and
H(P) is the Shannon entropy of the distribution P formulated as:

HðPÞ ¼ �
Z

Ω

pðxÞ log pðxÞdx: ð17Þ
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For two distributions case described above, the JS divergence is:

JSDðG1jjG2Þ ¼ H ½wg1ðxÞ þ ð1� wÞg2ðxÞ� � wH ½g1ðxÞ� � ð1� wÞH ½g2ðxÞ�: ð18Þ
By substituting for H and setting w=1/2, JSD is a symmetrized and smoothed version of

the KL divergence KLD (G1||G2) by:

JSDðG1jjG2Þ ¼ 1

2
KLDðG1jjSÞ þ 1

2
KLDðG2jjSÞ; ð19Þ

sðxÞ ¼ 1

2
g1ðxÞ þ 1

2
g2ðxÞ; ð20Þ

Unfortunately, there is no closed form expression for the KL divergence between twoGMMs
and it is usually done by Monte-Carlo simulations. To compute Monte-Carlo simulation, we
need to draw samples from PDF in order to get the expectation of log (G1/G2). Due to the high
computation complexity for processing video data, we adopt the variational lower bound [11]
to compute an approximation of KL divergence of two GMMs G1 and G2 by:

KLDvarðG1jjG2Þ ¼
X
a

aa log

P
a0 aa0e�KLDðG1ajjG1a0 ÞP
b abe�KLDðG1ajjG2bÞ ; ð21Þ

where KLDvar(G1||G2) is the variational lower bound approximation of KL divergence; KLD
(G1a||G1a’) denotes the KL divergence between two Gaussian components of GMM G1; and
KLD(G1a||G2b) denotes the KL divergence between one Gaussian component of GMM G1 and
one Gaussian component of GMM G2. The symmetric KL divergence of two GMMs is
approximated as:

KLDvarðG1;G2Þ ¼
X
a

aa log

P
a0 aa0e�KLDðG1ajjG1a0 ÞP
b abe�KLDðG1ajjG2bÞ

þ
X
b

ab log

P
b0 ab0e�KLDðG2bjjG2b0 ÞP
a aae�KLDðG2bjjG1aÞ : ð22Þ

And the JS divergence of two distributions G1 and G2 is approximated as:

JSDvarðG1jjG2Þ ¼ 1

2

X
a

aa log

P
a0 aa0e�KLDðG1ajjG1a0 Þ

1
2

P
a0 aa0e�KLDðG1ajjG1a0 Þ þ 1

2

P
b abe�KLDðG1ajjG2bÞ

þ 1

2

X
b

ab log

P
b0 ab0e�KLDðG2bjjG2b0 Þ

1
2

P
b0 ab0e�KLDðG2bjjG2b0 Þ þ 1

2

P
a aae�KLDðG2bjjG1aÞ : ð23Þ

The KL divergence of two single Gaussians a and b is formulated as:

KLDðajjbÞ ¼ 1

2
½log jΣbj

jΣaj þ trðΣb
�1ΣaÞ � d þ ðma � mbÞtΣb

�1ðma � mbÞ�: ð24Þ

3.4 Analysis

Here we discuss the properties of the proposed probabilistic video representation in various
aspects and compare it with BoW approach to demonstrate that the probabilistic video
representation is more suitable for human action recognition task.
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3.4.1 Continuous encoding of visual-motion information

The proposed probabilistic representation characterizes the visual and motion information
in a localized and continuous manner. This appealing property makes it intrinsically fit for
the encoding of local ST-features, as local ST-features are continuous-valued variables, in a
statistical perspective. On the other hand, the bag-of-words approach is a lossy data
encoding scheme based on the principle of block coding. The vector quantization in bag-of-
words approach divides the feature space into discrete partitions. For example, the feature
space is partitioned into k subspace which is decided by the cluster centers by adopting k-
means clustering. This discrete partitioning of continuous feature space inevitably brings in
information loss, and further, ambiguity and uncertainty in video representation. For
example, the local features in a cluster/partition do not necessarily carry similar visual-
motion information, as vector quantization is always a local optimum that assigns feature
spaces to different partitions in a tradeoff manner.

3.4.2 No codebook is required

The proposed probabilistic video representation requires no codebook to generate
beforehand. The encoding of visual motion information relies solely on the local ST
features in a video. This not only provides better efficiency, but also enables the
representation to generalize to different datasets and tasks better.

In contrast, the bag-of-words approach has a visual-motion codebook built on the existing
training data. This makes the representation biased towards the videos whose features are
involved in the vocabulary generation. A new vocabulary has to be re-trained when it is applied
on a new database or a new category is added to the existing database. For example, if a new
action category is added to the dataset after a vocabulary has been generated on the existing
training set, the vocabulary may not suffice to represent the features appear in the new category.
Adding new categories is common when the database is open for augmentation and the set of
categories is not fixed beforehand. In this aspect, the proposed probabilistic representation
method is better than the BoW method in extensibility and flexibility.

3.4.3 Minimum parameter tuning in video representation

The construction of the proposed video representation requires minimum parameter tuning.
The number of mixture components in the representation is automatically determined by
MDL criterion, in the formulation of model selection. In contrast, the number of video-
words in bag-of-words approach is always an open question. To determine how coarsely or
finely to quantize the local feature, researchers have to set the number of video-words
empirically.

3.4.4 Distance metric

A distance metric function should obey three properties: isolation, symmetry and triangular
inequality. KL divergence is not symmetric. In this work, we adopt symmetric KL distance
to tackle this issue. Nor does it obey the triangular inequality. Hence, KL divergence is not
a true distance metric. However, it generates a topology on the space of probabilistic
distributions. Compared to KL measure, JS divergence is symmetric, well-defined, always a
finite value and the square root of it is a metric. Both the two divergences are usually
utilized to be the “distance metric” in’ probabilistic distribution space.
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4 Experiments

4.1 Experimental setup

To test the proposed video representation, we employ two public datasets: KTH [28] and
UCF sports datasets [20]. The KTH dataset is one of the most widely used datasets for
human action recognition. It contains 6 action categories (“boxing”, “hand clapping”, “hand
waving”, “jogging”, “running” and “walking”) performed by 25 subjects in four scenes
including “outdoors”, “outdoors with different clothes”, “outdoors with scale variation” and
“indoors”. There are 2,391 videos in the dataset in total; each video clip contains one
person executing one action. The UCF sports dataset contains various sports videos from
broadcast television in ten categories (“diving”, “golf swinging”, “kicking”, “lifting”,
“riding horse”, “running”, “walking”, “swinging angle”, “swing bench” and “skate
boarding”). This collection is in a wide range of scenes in unconstrained environment so
that the intra-class variability is large. Hence, it is more challenging compared with the
KTH dataset. There are 150 videos in the dataset. Figure 3 shows sample frames from these
two datasets.

For the KTH dataset, we follow the original setup [28] to divided the dataset into the
training set (eight people), validation set (eight people) and the test set (nine people). We
use the average of recognition accuracy as the evaluation criteria. For the UCF sports
dataset, we use half the data for training and the rest for testing, and run it ten times to
report the average performance as done by Liu et al. [20] for benchmark purpose.

The scale parameters σ and τ in ST feature extraction are both set to 1.5. Compared with
our previous work [30], we tune the scale parameters in feature extraction to obtain more
dense interest points. The dimension of local ST feature is reduced to 30 by PCA for
efficiency. We adopt two classifiers on both datasets including K-Nearest Neighbors (KNN)
and Support Vector Machine (SVM). The regularization parameter C is set to 1000 in SVM.
In the case of multi-class classification we adopt the one-against-all scheme. As SVM is
kernel based classifier, we adopt the Gaussian kernel defined by:

KðX1;X2Þ ¼ expð� 1

A
DðX1;X2ÞÞ; ð25Þ

where D(X1,X2) is the distance measure between two representations which is the JS
divergence or the KL divergence for the proposed representation. A is a scaling parameter
set to the mean value of the distances between all training samples [31].

Fig. 3 Sample keyframes from two datasets: a KTH, and b UCF sports
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4.2 Experimental results

To demonstrate the effect of the probabilistic representation of videos, we visualize the
distribution of GMM modeling of local spatial temporal interest points in 2D and 3D
spaces. As shown in Fig. 4, different colors indicate different components of GMM which
interest points belong to. Column (a) shows all of the interest points in the video stacked in

Fig. 4 Visualization of GMM modeling of local ST points in action videos. Column a shows all of the
interest points in the video stacked in one frame. Column b shows the interest points in the original 3D space
(x,y,t). Columns c and d are the stereo images in column b projecting on xt and yt planes
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one frame. Column (b) shows the interest points in the original 3D space (x,y,t). Columns
(c) and (d) are the stereo images in column (b) projecting on xt and yt planes. We notice that
interest points belonging to the same component tend to gather around certain part of
human body and correspond to certain direction of the action.

To assess the effectiveness of the proposed video representation, we evaluate three
representations with same experimental setting as follows:

Rep-1: the BoW representation;
Rep-2: the fixed GMM representation with fixed number of Gaussian components;
Rep-3: the proposed video representation.

For the BoW representation, we sample a subset of 100 k features from all the features
extracted from the training videos and obtain k (codebook size) feature prototypes by k-
means clustering. χ2 distance is adopted for distance metric:

Dðhisi; hisjÞ ¼ 1

2

XB
b¼1

½hisiðbÞ � hisjðbÞ�2
hisiðbÞ þ hisjðbÞ ð26Þ

where hisi and hisj are histograms of sample i and j and B is the number of bins in the
histogram. For both GMM based representations, JS divergence (JSD) or KL divergence
(KLD) is adopted for distance metric as introduced in Section 3.3

4.2.1 The KTH dataset

Firstly, we test the impact of some parameters to the system and compare the average
recognition accuracies of three representations by 1-NN classifier on the KTH dataset. We
tune the codebook size of the BoW representation from 100 to 1,000. As shown in Fig. 5a,
it achieves the highest accuracy when codebook size is 500. The recognition accuracy is in
the range from 81% to 84.5%. For both GMM based representations, i.e. Rep-2 and -3, we
adopt JS divergence and KL divergence as distance metric. We tune the number of fixed

Fig. 5 a Average recognition accuracies by the proposed representation and the BoW representation with
different codebook size on the KTH dataset with 1-NN classifier. b Average recognition accuracies by the
proposed representation and the fixed GMM representation with different number of components of GMM
on the KTH dataset with 1-NN classifier
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GMM from one to five. As shown in Fig. 5b, the result of the fixed GMM representation
with JSD is slightly better than that with KLD. It achieves the highest accuracy when the
number of components is set to two. The recognition accuracy of the fixed GMM
representation with JSD is in the range from 70.6% to 85.5%. The performance decreases
fast when the number of components is larger than two. We conjecture the reason is that the
actions as well as the shooting environment in the KTH dataset are relatively simple. Too
many Gaussian components may bring in the problem of over-fitting. The proposed
representation with JSD achieves the average accuracy of 90% which is better than the best
performances of the other two representations. This manifests two points: (1) by encoding
visual-motion information in a continuous and probabilistic manner, the proposed video
representation can deliver better performance than the BoW approach; and (2) the number
of mixture components in GMM plays an important role and our proposed MDL criterion
based model selection gives good performance.

Then we test the performance of the three representations with different classifiers. For
the first two representations, we choose the fixed GMM representation with two
components in each GMM and set the codebook size to 500 for the BoW representation.
This parameter setting has been verified to be the optimal for these two representations in
the previous experiment. We adopt K-NN classifier with parameter K set from one to eight.
We also adopt both JS divergence and KL divergence for the two distribution based
representations. The results are shown in Fig. 6. For both representations (Rep-2 and -3), JS
divergence performs a little better than the KL divergence. Compared with the first two
representations, parameter variation in K-NN classifier has little effect on the performance
of the proposed representation. The proposed representation performs best with the 6-NN
classifier. It is noticed that the recognition accuracy of the proposed representation always
outperforms the other two representations with considerable margin. The improvement

Fig. 6 Average recognition accuracies with different values of parameter K in the K-NN classifier for the
fixed GMM representation, BoW representation and proposed representation on the KTH dataset
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achieves to about 8% on average. We also notice that the proposed representation performs
well with both the distance metrics.

We further examine the recognition performance of individual action categories. We
adopt the SVM classifier. As JS divergence is observed to show a little advantage over KL
divergence, we only use JS divergence as the distance metric for the distribution based
representations in this experiment. Figure 7 shows the experiment results of recognition
accuracies on all action categories in detail on the KTH dataset. For most categories the
proposed representation performs best. Especially, the proposed representation surpasses
the fixed GMM representation on “jogging” category by almost 10% and surpasses the
BoW representation on “boxing” category by almost 13%. The average accuracies of the
proposed representation, the fixed GMM representation and the BoW representation are
89.5%, 82.83% and 83.17% respectively. We notice that the advantage of the proposed
representation is evident no matter which classifier is adopted.

Benchmark We also benchmark our approach with state-of-the-art methods [3–5, 9. 19, 20,
25] reported by other researchers. Kl¨aser et al. focused on a new spatial-temporal feature
extraction which was based on histogram of oriented 3D gradients [14]. Laptev et al.
adopted local ST feature combined with space-time pyramids and multi-channel SVMs to
obtain the optimal descriptor and grid [17]. Ballan et al. proposed a 3D gradient descriptor
and a radius-based clustering method to generate codebook [1]. Although these methods

Fig. 7 Recognition accuracies of all action categories by the fixed GMM representation, the BoW
representation and the proposed representation with SVM classifier on the KTH dataset

Table 2 Benchmark on the KTH dataset

Method Schuldt et al. [28] Doll’ar et al. [7] Niebles et al. [24] Wong et al. [36]

Accuracy 0.717 0.817 0.833 0.866

Method Kl¨aser et al. [14] Laptev et al. [17] Ballan et al. [1] Our best

Accuracy 0.914 0.918 0.926 0.918
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adopted different local ST features extraction approaches and different recognition schemes,
most of them were based on BoW representation. As shown in Table 2, our approach
outperforms most of the existing works and is comparable to the best. We notice the method
based on radius-based clustering [1] is appreciably better than ours. The good performance
is partially because of the combination of the histogram concatenation of sub-region
computed from 3D gradient and the histogram of optic flow. However, the focus of our
work is not ST feature combination. Actually, their accuracy by only the 3D gradient is
90.38% [1]. We attribute the improvement of our representation over BoW representation to
the continuous coding of local ST features, as the information loss is less than the discrete
one of BoW.

4.2.2 The UCF sports dataset

To further validate the effectiveness of our approach, we perform similar experiments with
the three representations on the UCF sports dataset. Firstly, we adopt 1-NN classifier and

Fig. 8 a Average recognition accuracies by the proposed representation and the BoW representation with
different codebook size on the UCF sports dataset with 1-NN classifier. b Average recognition accuracies by
the proposed representation and the fixed GMM representation with different number of components of
GMM on the UCF sports dataset with 1-NN classifier

Fig. 9 Recognition accuracies of all action categories by the fixed GMM representation, the BoW
representation and the proposed representation with SVM classifier on the UCF sports dataset
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observe the impact of some parameters of the first two representations (Rep-1 and -2). We
tune the codebook size of the BoW representation from 100 to 1,000. It achieves the highest
accuracy when codebook size is 800 as shown in Fig. 8a. The accuracy is in the range from
68.2% to 72.8%. For both GMM based representations, we adopt JS and KL divergence as
distance metric. We also tune the number of the fixed GMM from one to five. It achieves
the highest accuracy when the number of components is set to three as shown in Fig. 8b.
The accuracy of the fixed GMM representation with JSD varies from 61.6% to 71.3%. The
average accuracy of our proposed representation is 77.3% with JSD and 76% with KLD.
Similar to the KTH dataset, our representation gives consistently better results than the
other two representations.

Then we also test the performance of three representations with SVM classifier. For the
first two representations (Rep-1 and -2), we choose the fixed GMM representation with
three components in each GMM and set the codebook size to 800 for the BoW
representation. Here, we adopt JSD for both the distribution based representations. As
shown in Fig. 9, the proposed representation performs best on average accuracy with
76.9%, which outperforms the fixed GMM representation and the BoW representation by
5.9% and 4.8% respectively. The proposed representation outperforms the other two
representations on most categories. As the UCF sports dataset is comprised of real action
videos and is more complex, we argue that the proposed representation is effective and
robust in real video situation. We draw similar conclusion with the experiments on the KTH
dataset that the proposed representation for videos is very suitable in describing the actions
and it can give promising performance in human action recognition application.

Table 3 summarizes the overall accuracy of our method in comparison with those
reported by Rodriguez et al. [27], Liu et al. [20] and Wang et al. [34]. Wang et al. adopted
several kinds of local ST detectors and descriptors [34]. Here, we only choose the same
detector and descriptor as ours for comparison. Liu et al. utilized multi-kernel classifier for

Table 3 Benchmark on the UCF sports

Rodriguez et al. [27] Liu et al. [20] Wang et al. [34] Ours Ours with ROI

Accuracy (%) 69.2 79.6 76.6 77.3 81.1

Fig. 10 Classification confusion matrixes on a KTH and b UCF sports
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combining static and motion features [20]. Also, we only compare the performance of
motion feature with ours.

As the UCF dataset is comprised of realistic videos containing more noises from moving
backgrounds, Liu et al. [20] adopted a feature filtering method by region of interest (ROI)
to remove some features in background. We also adopt the ROI selection method of type A
by Liu et al. [20] (since we focus on motion features based action recognition in this work).
Since the experiment setup is not exactly the same, we cannot compare directly with [20].
However, this experiment demonstrates that our method can deliver good performance with
some preprocessing steps for complex realistic videos.

Figure 10 shows the confusion matrixes of the proposed method with JSD on the two
datasets. The most confusing category pairs in the KTH dataset include “handclapping” and
“boxing”, “running” and “jogging”. The most confusing category pairs in the UCF sports
dataset include “ridinghorse” and “running”, “walking” and “skateBoarding”, “diving” and
“running”. It is to be expected because they share similar motion patterns.

5 Conclusion

We explored a localized, continuous and probabilistic video representation for human
action recognition. The proposed representation exploited the probabilistic distribution to
encode the visual-motion information of an ensemble of local ST features in a continuous
and localized manner. Furthermore, based on this probabilistic video representation, the
distance of videos was measured in an information-theoretic formulation. This makes the
representation compatible with most discriminative classifiers, such as the nearest neighbor
schemes and the kernel classifiers. The testing on the KTH and the UCF sports datasets
showed that the proposed approach could deliver promising results.

Several issues are worthy of further investigation. First, employing multiple features for
video representation in a probabilistic manner could benefit the recognition system, as
multiple features provide information redundancy and complementariness. Second, how to
encode position information of local features in our representation scheme is our another
future research direction.
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