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ABSTRACT

Visual attention deployment mechanisms allow the Human Visual System to cope with an overwhelming amount
of visual data by dedicating most of the processing power to objects of interest. The ability to automatically
detect areas of the visual scene that will be attended to by humans is of interest for a large number of applications,
from video coding, video quality assessment to scene understanding. Due to this fact, visual saliency (bottom-up
attention) models have generated significant scientific interest in recent years. Most recent work in this area
deals with dynamic models of attention that deal with moving stimuli (videos) instead of traditionally used still
images.

Visual saliency models are usually evaluated against ground-truth eye-tracking data collected from human
subjects. However, there are precious few recently published approaches that try to learn saliency from eye-
tracking data and, to the best of our knowledge, no approaches that try to do so when dynamic saliency is
concerned. The paper attempts to fill this gap and describes an approach to data-driven dynamic saliency model
learning. A framework is proposed that enables the use of eye-tracking data to train an arbitrary machine
learning algorithm, using arbitrary features derived from the scene. We evaluate the methodology using features
from a state-of-the art dynamic saliency model and show how simple machine learning algorithms can be trained
to distinguish between visually salient and non-salient parts of the scene.
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1. INTRODUCTION

When faced with visual stimuli the human vision system (HVS) does not process the whole scene in parallel.
Part of the visual information sensed by the eyes is discarded in a systematic manner to attend to objects of
interest. The most important function of selective visual attention is to direct our gaze rapidly towards objects
of interest in our visual environment!.? This results in a series of eye (in)voluntary movements (saccades), which
can be recorded using eye-tracking devices.

The data obtained in such experiments is fundamental in verification of the various models of visual attention,
as it represents the ground truth for such studies. While this data could potentially also be used in conjunction
with machine learning techniques® to learn the models of attention, this venue has not been explored by the
researchers. There are several probable reasons for this. First, the visual stimulus is an image or a video in
case of dynamic attention and the goal of a attention model is to predict whether a pixel of an image or a
frame is of interest or not. This means that for a standard resolution video (720 x 540), one has to deal with
environ 9 million points per second. State of the art machine learning algorithms are unable to handle such large
amounts of data. Second, the eye-tracking data is usually fairly imprecise due to the acquisition process and
unsuitable for determining the level of interest on a per-pixel level. Finally, the eye-tracks of subjects viewing
the same scene vary to a great extent. This is usually solved through aggregation, when using it to verify an
attention model. However, in the case when one is trying to learn the attention model directly from the data
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using machine learning, a more appropriate approach would be to let the machine learning algorithm generalize
across the different subjects.

In this paper we explore the possibility of learning the dynamic attention model from eye-tracking data. We
propose to solve the discussed problems using a novel data sampling methodology, which allows us to create a
representative training and testing data set from a database of 24 videos, for which the eye-tracks of 13 users have
been collected. The data is then used to train a machine learning algorithm to discern between interesting and
points that are not of interest. The resulting visual attention model is then verified using standard methodology.

The rest of the paper is organized as follows: Section 2 provides an overview of the related published work.
Section 3 describes the data we learn from. Section 4 is dedicated to the description of the proposed methodology.
The results achieved can be found in Section 5. Finally, Section 6 contains the discussion and our conclusions.

2. RELATED WORK

It is not possible for the HVS to process an image entirely in parallel. Instead, our brain has the ability to
prioritize the order the potentially most important points are attended to when presented with in a new scene.
The result is that much of the visual information our eyes sense is discarded. Despite, we are able to quickly
gain remarkable insight into a scene.

This type of attention is referred to as attention for perception: the selection of a subset of sensory information

for further processing by another part of the information processing system®.?

The most important function of selective visual attention is to direct our gaze rapidly towards objects of
interest in our visual environment.! This ability to orientate rapidly towards salient objects in a cluttered visual
scene has evolutionary significance because it allows the organism to detect quickly possible prey, mates or
predators in the visual world.

Current research considers attentional deployment as a two-component mechanism.! Subjects selectively

direct attention to objects in a scene using both bottom-up, image-based saliency cues and top-down, task-
dependent cues; an idea that dates back to 19*" century work of William James.®

Bottom-up processing is driven by the stimulus presented.® Some stimuli are intrinsically conspicuous or
salient in a given context. For example, a red dinner jacket among black tuxedos at a sombre state affair, a
flickering light in an otherwise static scene or a street sign against gray pavement, automatically and involuntarily
attract attention. Saliency is independent of the nature of the particular task, operates very rapidly and is
primarily determined in a bottom-up manner. If a stimulus is sufficiently salient, it will pop out of a visual
scene. This suggests that saliency is computed in a pre-attentive manner across the entire visual field, most
probably in terms of hierarchical centre-surround mechanisms. Similar goes for the moving stimuli; they are
perceived to be moving only if they are undergoing motion different from their wider surround.? The speed
of saliency-based (bottom-up) form of attention is on the order of 25 to 50 ms per item.! The second form of
attention is a more deliberate affair and depends on the task at hand, memories and even past experience.® Such
intentional deployment of attention has a price, because the amount of time that it takes (200 ms or more), rivals
that needed to move the eyes. Thus, certain features in the visual world automatically attract attention and are
experienced as “visually salient”. Directing attention to other locations or objects requires voluntary “effort”.
Both mechanisms can operate in parallel.

While bottom-up factors that influence attention are well understood,” the integration of top-down knowledge
into these models remains an open problem. Because of this, the fact that bottom-up components of a scene
influence our attention before top-down knowledge does® and that they can hardly be overridden by top-down
goals, applications of visual attention commonly rely on bottom-up models*?1011 12

Significant progress has been made in terms of computational models of bottom-up visual attention (saliency)
when working with still images'31415.16 Motion cues, despite their importance, have until recently been usually
considered as an extension of the static saliency. Dynamic saliency models, operating on videos, are gaining
interest in the scientific community!712.18

The general approach to detecting the salient points is to devise biologically inspired features that are sensitive
to texture, center-surround differences in intensity and color or motion and changes in case of dynamic models.



These features are usually designed to achieve scale invariance of the model. Once the features are extracted for
each point in an image or a video frames, various ways are used to distinguish between salient and non-salient
points.

Zhang et al.'® proposed a Bayesian framework for saliency detection (SUN model). Their approach is
based on the assumption that visual saliency is actually the probability of a target (e.g. food or predators)
at every location given the visual features observed. Bottom-up saliency is considered equal to what is known
in information theory as self-information of the random variable that represents the visual features of point.
Saliency, therefore is dependent solely on the probability distribution of feature values. Zhang et al. estimate
this probability by computing feature response maps on a set of 138 images of natural scenes. The distribution for
each feature is parametrized by fitting a zero-mean generalized Gaussian. The authors did not propose their own
features, but chose to test their model using biologically-plausible Difference-of-Gaussian filters, akin to those
used in the seminal paper of Itti et al.'® In addition, features proposed by Bruce and Tsotsos'* were considered,
which are linear features derived form a set of natural images using Independent Component Analysis (ICA).
In their study Zhang et al. concluded that the performance of their approach is much better when independent
ICA features are used instead of dependent DoG features. Therefore, these form the foundation of the algorithm
tested in this study. It should be noted that the SUN model does not handle motion explicitly and actually
performs static-saliency estimation for each frame.

Seo and Milanfar'® proposed a framework for static and space-time saliency detection (SEO model). Their
saliency model relies solely on center-surround differences between a local (3 x 3 pixel) window centered on a
pixel location (I) and its neighboring windows. To represent image structure in the windows, they proposed the
use of Local Steering Kernels (LSK). These features are canonical kernels fitted to pixel value differences based
on estimated gradients. To take motion into account and achieve space-time (dynamic) saliency detection, Seo
and Milanfar simply extend the pixel location with the time coordinate, thus making their feature sensitive to
changes in pixel value between two consecutive frames, but treating time simply as an extension of space. Similar
to the approach of Zhang et al., they estimate the conditional probability of a point being salient, depending on
the features extracted for both the central window and the surrounding region. However, rather than using a
parametric estimate, Seo and Milanfar estimated this conditional probability using Kernel Density Estimation
(KDE). The saliency, then, is computed as a center value of a normalized adaptive kernel computed for the
center + surround region.

Mancas model'™ uses only dynamic features such as speed and direction. No static cues about colors, gray
levels or orientations are included in the model. The algorithm is based on three main steps: motion feature
extraction, spatio-temporal filtering, and rare motion extraction. The model is inteded to quantify rare and
abnormal motion. As a first step in the Mancas model, features are extracted making use of Farneback’s
algorithm for optical flow.?° The features are then discretized into 4 directions (north, south, west, east) and 5
speeds (very slow, slow, mean, fast, very fast). Next, a spatio-temporal low-pass filter is used to cope with the
discretized feature channels and its purpose is to keep just the consistent spatio-temporal events. Frames are first
spatially low-pass filtered; then, a weighted sum is carried out in time, using a loop and a multiplication factor.
This process tends to provide lower weight to those frames entering the loop several times (the older frames).
After the filtering of each of the 9 feature channels (4 directions, 5 speeds), a histogram with 5 bins is computed
for each resulting image and the self-information of the pixels for a given bin is computed. Self-information is
a pixel saliency index and the different feature channels and then speed and direction maps are fused using the
maximum operator. The final saliency map specifies the rarity of the statistics of a given video volume at two
different scales.

Culibrk et al.'? proposed the use of a multi-scale background modeling and foreground segmentation ap-
proach, as an efficient saliency model driven by both motion and simple static cues, which adheres to the
motion-saliency principles.? The model employs the principles of multi-scale processing, cross-scale motion con-
sistency, outlier detection and temporal coherence. The algorithm employs a multi-scale model of the background
in the form of a Gaussian pyramid. This allows the approach to account for the spatial coherence and cross-scale
consistency of changes due to motion of both camera and objects. Even with a small number of scales (3-5), the
approach is able the achieve good segmentation of interesting moving objects in the scene. Moreover, it is able
to do so consistently over a wide range of the amount of coding artifacts present.
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Figure 1. Salient motion detection approach of Culibrk et al.

The background frames at each level are obtained by infinite impulse response (running average) filtering
commonly used in background subtraction®'.?? This allows the approach to take into account temporal consis-
tency in the frames and to reduce the saliency of static objects as time passes. Rather than attemptig to learn
the distribution of the features, outlier detection®® is used to detect salient changes in the frame. The assumption
is that the salient changes are those that differ significantly from the changes undergone by most of the pixels in
the frame.

A block diagram of the Culibrk et al. approach is shown in Fig. 1. Each frame of the sequence is iteratively
passed to a 2D Gaussian filter and decimated to obtain a pyramid of frame representations at different scales.
The background model is maintained in the form of two (background) frames for each scale of the Gaussian
pyramid, updated in accordance with Eq. 1.

bl(i) = (1 — Oél)bl(i) + Ozlp(i),l S {1, 2} (1)

where: «q; is the learning rate used to filter the I-th background frame, p() is the value of pixel at location 4 in
the current frame, b;(¢) is the value of pixel at location i in the {-th background frame.

In the study presented here, we used the dynamic-saliency approach of Culibrk et al. to extract the features
for each pixel. However, instead of assuming that the salient points are the outliers of the distribution of feature
values for a single frame, we used the extracted features to train a machine learning algorithm to classify between
salient and non-salient points.

To the best of our knowledge such an approach has not been attempted before, when dynamic saliency is
concerned. The closest approach is that of Rajashekar et al.,2* who used eye-tracking data to create a model that
would predict users’ eye-fixations. However, the eye-tracking data was used just to verify that the distribution of
the features they proposed differs in the fixated regions from the rest of the scene and to ponder the contribution
of each feature in the linear expression used to calculate saliency. No machine learning was used in that study.

When static (still image) saliency is concerned Judd and Toralba?® attempted to learn a saliency model based
on a complex set of features, including the low-level features first proposed by Itti,'® horizon, face and person
detection derived features and distance form the center of the image. They used a support vector machine
classifier to learn the saliency. Recently, Carbone and Pirri proposed an approach to static saliency scan path
(sequence of fixations) learning using independent component analysis to create the low-level features from a
database of 'natural’ images and mixtures of Bernoulli distributions to learn the saliency. They validate they
approach by showing that their saliency model outperforms random selections when compared with the eye-
tracking map. Both approaches make no attempt to deal with dynamic stimuli.

3. EYE TRACKING DATA

As the data to learn from, we used the ASCMN database of videos and eye-tracks. The database was created
by recording the position of peoples’ gaze at the videos’ frame rate (30 frames per second), for 24 videos, using
a commercial FaceLab eye tracking system.?5



Table 1. The 5 classes of videos contained into the ASCMN database

Video classes Description Videos Nb.
1) Containing abnor- Some moving blobs have different 2, 4, 16, 18,
mal motion (ABNOR- speed or direction compared to the 20

MAL) main stream: Figure 2 line 1.

2) Video surveillance Classical surveillance camera with 1,3,5,9
style (SURVEIL- no special motion event: Figure 2

LANCE) line 2.

3) Crowd motion Motion of more or less dense crowds: 8, 10, 12, 14,
(CROWD) Figure 2 line 3. 21

4) Videos with moving Videos taken with a moving camera: 6, 19, 22, 24
camera (MOVING) Figure 2 line 4.

5) Motion noise with No motion during several seconds 7, 11, 13, 15,
sudden salient motion followed by sudden important mo- 17, 23

(NOISE)

tion: Figure 2 line 5.

The database contains videos obtained from other databases including: the Itti’s CRCNS database,?” Vascon-
celo’s database?® and a standard complex-background video surveillance database.?! These have been extended
with Internet crowd movies and proprietary videos from a crowd database acquired in Mons. The database is
divided into several classes of movies as described in Table 1. Some sample frames can be seen in Figure 2.

Figure 2. The five classes of videos from the ASCMN database. First line represents ABNORMAL motion in terms of
speed and direction with bikes and cars which are faster than people for example. The second line shows SURVEILLANCE
classical motion with nothing really salient in terms of movement. The third line shows CROWD motion with increasing
density from left to right. Line four shows MOVING camera videos. Line five finally displays videos with long periods of
no activity and NOISE (frames 2 and 4) and sudden salient object (frames 1 and 3).



The eye gaze positions were recorded and superimposed on the initial video for all the viewers as it can be seen
in the first column of Figure 3. This representation does not correspond to the classical saliency maps produced
by most models, which attempt to describe the overall saliency of the points in the frame. To obtain such a
representation the maps need to be low-pass filtered to obtain a heatmap, such as that shown in the middle of
the Figure 3, which represents the saliency aggregated over all viewers. The peaks of the heatmap correspond
to the most salient points. To get a binary mask that would classify the points in the frame between salient and
non-salient, one needs to normalize the heatmap and apply a threshold (6). The final result is illustrated in the
right column of Figure 3.

Figure 3. Left column: aggregated eye tracking results: each red dot is the position of the eye gaze of one viewer. The
middle column contains smoothed gaze location producing ”heatmpas” superimposed to the corresponding frame. Right
column shows a thresholded version of the heatmap.

4. DATA-DRIVEN SALIENCY MODELLING

Figure 4 shows a block diagram of the proposed approach.

The key component of the approach is data sampling methodology. Our input are the eye-fixations and the
original visual stimulus. We deal with videos as a more general case, but the methodology can be easily adapted
to still image saliency.

As discussed in Section 3, the output of the eye-tracker is represented as a set of circular regions which contain
the focus users’ gaze for a certain frame. To create our dataset, that can be used for training and testing of the
machine learning algorithm, features need to be extracted first. Any type of features related to visual saliency
can be used. The features used in our experiments were the dynamic-saliency features proposed by Culibrk et
al.'?

To create the dataset used for classifier training and testing, we randomly sample pixels using both the eye-
tracking binary mask, indicating the focus regions of the viewers and the set of extracted saliency features. For
each sample, a set of pixel coordinates (x;, y;) within a frame is randomly generated. Extracted features for this
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Figure 4. Data-driven saliency modelling

point are stored in the dataset, and a label is attached based on the examination of the eye-tracking result at
those coordinates. If the pixel corresponds to a focus region it is assigned a class label of 1 and 0 otherwise. We
constrain the process to create a balanced dataset, as this benefits most learning algorithms,? so the process is
repeated until we have a predefined and equal number of samples of each class.

Unfortunately, due to the rather large diameter of regions marked in the eye-tracking maps, the values of
saliency features extracted for large numbers of pixels within these regions were equal to zero. Since such data
samples would not benefit the learning algorithm, these points have been discarded, and our methodology mod-
ified to create a dataset containing equal number of non-salient and salient features, with the latter constrained
to points where at least one feature had a value largen than zero.

Once the dataset was created we can apply an arbitrary machine learning algorithm. We used a grafted
decision tree algorithm available within the data-mining and machine learning tool Wakaito Environment for
Knowledge Analysis (WEKA).> WEKA is an open-source tool that contains implementations of a large number
of machine learning algorithms and allows one to test their performance easily. We opted for a decision tree
algorithm, as the final classifier is fairly simple and easy to implement. WEKA is able to generate Java code
for the trained decision tree, which we translated to C++, as the used feature extraction code is written in
this programming language. The decision tree is represented as a series of conditional clauses and has a low
computational cost. This is important, as the approach we are attempting to extend is designed for real-time
performance, which we would not like to affect.

The decision tree learning algorithm used in our experiments is the WEKA implementation of Quinlan’s
C4.5 methodology,?® with the grafting as proposed by Webb.3Y The dataset used in our experiments (in
WEKA format) and the binaries of the implemented saliency detection can be obtained from http://wuw.
dubravkoculibrk.org/ddsaliency. We selected 10 salient and 10 non-salient points from each frame of the
videos in the ASCMN database. First 10 frames were discarded to ensure that the saliency features are stable.
The final dataset contains environ 198,000 samples.

Figure 5 (c,f) shows saliency detection results for sample frames of sequences 7 and 19.



Figure 5. Sample frames for sequences 7 and 19 and the proposed approach: a,d-original frames, b,e-features (sum),
c,f-detection result

5. EXPERIMENTS AND RESULTS

The basic performance statistics achieved by the proposed decision tree machine learning algorithm for the
dataset created can be obtained directly from WEKA. To collect them, the default model validation procedure,
10-fold cross-validation is used.® The procedure involves holding out 10% of the data in the set for testing and
using the rest for model building. The 10% are selected randomly and the procedure is iterated 10 times. The
final performance statistics are the average values achieved for all iterations.

The overall accuracy of the proposed approach achieved is 84%. The salient points were accurately detected
in 95% of the cases, but the non-salient points were detected accurately in just 73% of the cases. This is probably
due to the fact that the database used cannot separate the bottom-up and top-down attention, while the features
used are just stimulus driven (bottom-up). This causes the approach to erroneously classify larger part of the
non-salient points as salient, as the feature values are significant but the people are focusing just on a different
subset of such points. E.g. although all moving parts of a person in a video are equally salient in terms of
features, the people tend to focus on the face and hands.

In order to validate the effectiveness of the proposed approach with respect to the state of the art, we compare
the proposed approach (Culibrk model), with the state-of-the-art bottom-up saliency model of Seo et al.'®

The comparison was made using a database of diverse videos, which was recently created for dynamic-saliency
model testing, and for which the eye-tracking data of 13 viewers had been collected.

Several similarity measures have been proposed to compare saliency models with the eye tracking data. Two
widely used measures were selected for the comparisons done within this study, because of their complementary
nature: the Normalized Scanpath Saliency (NSS)3! and the Correlation Coefficients (CC).

The NSS metric is the average of the response values at human eye positions in a model’s saliency map.
The second, CC metric, is a classical comparison method. For the CC and the NSS metric, we used the freely
available Matlab functions implemented by Ali Borji and Laurent Itti.3?

The output the proposed (Culibrk) model was first preprocessed in the same manner, as was done with the
eye-tracking results, to obtain a saliency (heat) map. The saliency maps from the original eye-tracking data, the
proposed and SEO model have been normalized and thresholded to obtain binary masks used for comparison.
The threshold was set to 0.7. Finally, mathematical morphology operations were performed on the two saliency
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Figure 6. Average CC and NSS values obtained for the proposed (Culibrk) and SEO saliency models.

maps to make them have the same object size. The parameters of these operations were selected to maximize
the performance of the approaches.

Figure 6 shows the mean and standard error for the two metrics achieved for the whole dataset. Figure 7
shows the results achieved for each sequence. The proposed methodology is able to surpass the performance of
the SEO model when the whole dataset is concerned. When separate classes of videos are considered, the only
class for which the SEO model achieves better result is the abnormal motion class. This can be attributed to
the fact that these sequences contain a lot small moving objects motion dispersed throughout the frame. Our
model is trained based on a rather coarse map of focus points that is obtained from the eye-tracking software.
Thus the approach generates larger saliency regions than SEQO. Even after the morphology operations the SEO
model is favored for the fact that it generates smaller saliency regions.

6. CONCLUSION

The paper presents a novel approach to saliency detection. Rather than using eye-tracking data just to verify the
effectiveness of the saliency model, as is usually done, a framework is proposed for learning the saliency model
directly from the data.

The key technology is the data sampling methodology that allows for the extraction of a representative set of
pixel saliency-related feature values and their saliency label from a database of videos for which the eye-tracking
data is available. Arbitrary saliency-related features can be used for this purpose and diverse machine learning
algorithms can, subsequently, be trained to achieve saliency detection.

Using features form a simple dynamic saliency model and a decision tree classifier, we compare the perfor-
mance of the proposed approach against that of a state-of-the-art saliency model and show that the approach is
able to surpass the model compared against.
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