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Abstract—Outlier detection is commonly defined as the process
of finding unusual, rare observations in a large data set, without
prior knowledge of which objects to look for. Trend detection is
the task of finding some unexpected change in some quantity, such
as the occurrence of certain topics in a textual data stream. Many
established outlier detection methods are designed to search for
low-density objects in a static data set of vectors in Euclidean
space. For trend detection, high volume events are of interest
and the data set is constantly changing. These two problems
appear to be very different at first. However, they also have
obvious similarities. For example, trends and outliers likewise are
supposed to be rare occurrences. In this paper, we discuss the
close relationship of these tasks. We call to action to investigate
this further, to carry over insights, ideas, and algorithms from
one domain to the other.

Keywords-outlier detection; trend detection; stream outlier;
event detection; textual outliers

I. INTRODUCTION

Outliers are hard to define mathematically because we
cannot expect them to follow a model or distribution known
beforehand. Instead, most attempts at defining outliers focus
on them being a rare observation, markedly different from the
remainder of the data, such as, e.g., the well-known definition
by Barnett and Lewis [15] of outliers as being “an observation
(or subset of observations) which appears to be inconsistent
with the remainder of that set of data”. Yet, the notions
of “inconsistence” and “remainder” remain vague. Various
algorithms have been proposed that try to detect outliers in
a way consistent with our intuition. Notable outlier detection
algorithms include DB-Outlier [33]], which reports the objects
of lowest density as outliers and local outlier factor (LOF) [|16]]
which uses a local neighborhood as “remainder” of the data
set, instead of comparing to the complete data set every time.

Schubert et al. [66] propose a generalized framework for
outlier detection that is applicable beyond the domain of vector
spaces and show the applicability to graph and video data. In
this article, we want to expand this generalized model to also
cover what is known as trend detection and emerging topic
detection in text mining. Here, the task is to detect changes
in the distribution of a data stream that indicate the beginning
of an event. The words used are slightly different, e.g. trend,
emerging topic, bursty keyword. But essentially they refer to
unusual, extreme topics: outliers in text streams.

The remainder of this paper is organized as follows. In
Section [[I} we survey traditional outlier detection methods as
well as adaptations to streaming data. In Section we point
out why the research questions guiding the design of outlier
detection methods might be misleading in some cases and why
traditional outlier detection might also benefit from insights
in trend detection. In Section we discuss some methods
for trend detection and their relationship to a generalized
view of traditional outlier detection. Finally, in Section [Yl, we
summarize and identify challenges for future research.

II. TRADITIONAL OUTLIER DETECTION
A. Outlier Detection in Euclidean Space

Knorr and Ng [33] proposed a distance-based notion of
outliers. This model is motivated by the intuition of statis-
tical parametric approaches. It is aiming, however, not on
a refinement of the statistical modelling of outliers but at
designing efficient database-oriented approaches. This algo-
rithm triggered the data mining community to develop many
different approaches that have a less statistically oriented but
a more spatially oriented notion to model outliers. The k-
NN-outlier model [60] ranks the objects according to their
distances to their k-th nearest neighbor. As a variant, the
k-NN-weight model [12] uses the sum of distances to all
objects within the set of k£ nearest neighbors (called the weight)
as an outlier degree. While these models actually only use
distances, the intuition is typically discussed with Euclidean
data space in mind. In these distance-based approaches, for
each object, a property (outlier model) [60] is learned based on
a local neighborhood (radius €, k nearest neighbors). However,
the objects are eventually ranked according to this property
(“outlier score”) in a global way. For example, the object with
the largest k-NN distance overall would be the most prominent
outlier. Thus, these methods are best suited to identify global
outliers. Recent global approaches base the decision not on
Euclidean distances but on angle-variance (such as ABOD
[40] and an efficient variant using random projections [57]]),
an intuition that is clearly also connected to a Euclidean data
space.

Identifying local outliers (i.e., comparing local models with
a local reference set [60]]) started with the method LOF (local
outlier factor) [16]]. The basic idea is to assign a local density
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estimate (local reachability density, Ird) to each object of
the database. Then, LOF considers ratios between the [rd of
an object and the Irds of its neighboring objects. Thus, the
resulting outlier score is based on a local comparison rather
than on a global comparison. Again, this notion of outlierness
is a natural intuition for the Euclidean data space. Several
extensions and refinements of the basic LOF model have been
proposed, e.g. a connectivity-based outlier factor (COF) [74],
or using the concept of micro-clusters to efficiently mine the
top-n density-based local outliers in large databases (i.e., those
n objects having the highest LOF value) [30]. A similar algo-
rithm, named INFLO [29], for an extension of the LOF model
is using also the reverse nearest neighbors additionally to the
nearest neighbors and considering a symmetric relationship
between both values as a measure of outlierness. The local
distance-based outlier detection (LDOF) approach [81]] merges
the notion of local outlierness with the distance-based notion
of outliers. LoOP [36]] uses a density estimation based on the
distance distribution of all nearest neighbors and formulates
the local outlier score as a probability. COP [39] aims at
detecting outliers in the presence of local correlations in the
data set by measuring the deviation from the local model.

More or less explicitly, all these methods basically aim at
providing rather simple approximations of statistical density
estimates around data points in Euclidean space. Consequently,
a recent evaluation study [17], discussing several of these
methods, also focuses on numeric data.

B. Specialized Outlier Detection

Some approaches designed for high-dimensional data try to
account for a local feature relevance and search outliers in
subspaces of the data space [22f, [31], [37]], [50]1-[54], [56],
see the survey of Zimek et al. [85]. In the area of spatial
data mining [61f], the topic of spatial outliers has triggered
several specialized methods [13]], [20], [21], [34], [46], [47],
[68], [[71]. These approaches discern between spatial attributes
(relevant for defining a neighborhood) and other attributes
(usually only one additional attribute) where outliers deviate
considerably from the corresponding attribute value of their
spatial neighbors. How to derive spatial neighborhood and
how to define “considerable deviation”, however, differs from
approach to approach. Other specialized approaches tackle for
example outliers in time series [28]], [[73]], outliers in graphs
(e.g., in social networks or in DBLP) [5]-[7], [24], outlying
trajectories [44], outliers in categorical or ordinal data [J]],
[80], or in uncertain data [4]. Aggarwal [3] provides more
examples. Again, although they are not always operating in
Euclidean space, all these methods aim eventually at some
approximate descriptors of outlierness for the objects that
ultimately should relate to statistical density estimates.

C. Outlier Detection in Data Streams

Recently, Sadik and Gruenwald [|62]] gave an overview on
research issues for outlier detection in data streams. They
follow the categorization of the well-known survey on outlier
detection by Chandola et al. [19], where type II outliers,

as opposed to type I outliers, are outliers with respect to
some context, such as time or location. In database research,
the concept of outliers w.r.t. some particular context is also
known as a “local” outlier [16]], [66]] and is not restricted to
special data types, although the concept of “locality” might
be of paramount interest in such data types with special
requirements for the outlier model [65]], [66]. Consequently,
Sadik and Gruenwald [62]] are interested in streaming data and
time series data without distinction, while we see time series as
a special data type but consider here the scenario of streaming
data as a more general scenario, that has been tackled in many
studies with Euclidean data space in mind [11]], [14], [26],
[35], [41], 591, [70]], [[77]. There are two main categories of
tackling dynamic data. First, the dynamic aspect of the data
is tackled using an incremental approach, i.e., old data remain
available while new data are coming in and the preliminary
models are refined over time. The second possibility is to truly
address the aspect of potential infinity of data, i.e., the fact
that the complete data stream might not fit into the available
memory or might actually never be completely available. In
this case, the typical approach is a sliding “time window” that
is oblivious of old data. The adapted approach therefore builds
a model based only on the data within the time frame of the
window.

D. Generalization of Outlier Detection

In a certain sense, the combination of different outlier
detectors into an ensemble [25]], [38], [43], [45], [55], [64],
[[82]-[|84]] can be seen as a generalization because, under cer-
tain conditions [38], [64], it becomes meaningful to combine
even different methods that follow different intuitions about
outlierness. But still, such combinations can only combine
the available methods, that have been typically designed for
Euclidean data space or for some particular use case. There
is a recent line of reasoning, though, on truly generalizing
the classic, abstract outlier methods to new use cases and
data scenarios. Schubert et al. [66] modularized many existing
outlier detection methods, demonstrating that there is a large
conceptual overlap in these methods. Based on this modu-
larized structure, they demonstrate how to modify existing
methods to work on other data types such as geostatistical
data, video streams, and graph data.

III. LIMITATIONS OF TRADITIONAL OUTLIER DETECTION

Most outlier detection methods were designed with the
intuition of low-density outliers in mind. In the following
examples, we want to discuss some scenarios where data
do not adhere to the intuition of low-density, and traditional
outlier detection methods then do not work reliably.

A. Example: KDD Cup ’99

On the popular KDD Cup ’99 data set, one may argue
that outliers are not at all rare instances. Depending on the
exact version of this data set, 80% — 94% of the instances are
attacks. As such, the legitimate connections may be considered
the anomalies here. While this data set has been repeatedly



used for evaluating outlier detection methods [[1]], [38], [42],
[43], [45], 1550, [64]l, [77], [78], the results of such analyses
should be taken with a grain of salt[] The data set has
many (=~ 75 — 78% [75]]) duplicates and many established
methods are not prepared for handling too many duplicates.
Thus, unless the outlier methods are carefully implemented
and parametrized, outlier scores may become undefined, and
evaluation may be biased. For example, methods such as
isolation forests [45]] that work on random samples of the data
set might then appear to perform better because they are less
susceptible to the problem of duplicates. Because the data set
contains categorical attributes, binary attributes, and integer
valued attributes (including e.g., num_compromised), it is
highly sensitive to preprocessing such as feature selection and
data normalization. Furthermore, any intuition of density and
distance, based on Euclidean space, is probably inappropriate
for this data set.

B. Example: United States Census Data

In spatial outlier detection [2f], observations consist of two
kinds of data: a geographical location—which may be a point
(a position) or an area (a polygon)—as well as a univariate
or multivariate measurement. The US census data, for exam-
ple, include statistics such as household size and population
demographics at different spatial resolution such as census
counting districts and county level. For some districts, sparsity
of population causes artifacts: census counting districts include
areas such as airports, graveyards, and ghost towns with a
low population. Popular attributes such as relative ethnicity
may be undefined for uninhabited districts, or show unusually
extreme values for tiny populations. Therefore, popular outlier
detection algorithms such as LOF cannot be meaningfully used
on such data without modifications [66]. However, the methods
can be easily generalized in a way to use a spatial context
to determine the neighborhood and the non-spatial attributes
for analysis and yield results competitive to those of existing
geostatistics [|66]. To make full use of this data set, the methods
should be further customized to take uncertainty into account,
in particularly those arising from a small population, which
makes numbers such as ethnicity averages incomparable.

C. Example: Traffic Accidents

Schubert et al. [|65] analyzed the density of traffic accidents
in the UK, based on open government data. Again, results
obtained by traditional outlier detection methods are not help-
ful: they will report accidents in low populated areas such as
northern Scotland as low-density outliers. The data set contains
19% duplicated coordinates, probably due to measurement
precision and reoccurring accident sites. Information available
may include involvement of pedestrians, visibility conditions,
severity, casualties, road numbers, authority IDs etc. that may
also be missing or estimated. For their analysis, Schubert et al.
only used the coordinates, and customized their approach for

ISee the discussion by McHugh [49] and by Tavallaee et al. [75] and
kdnuggets n18 2007, “KDD Cup ’99 dataset (Network Intrusion) considered
harmful”: http://www.kdnuggets.com/news/2007/n18/41.html

this data set by searching for areas with higher traffic accident
density than expected, in order to find accident hotspots.

D. Observations

Above examples demonstrate how we might have been
asking the wrong question in outlier detection research. By
working primarily with data consisting of vectors in Euclidean
space, and the intuition of low-density outliers, we designed
our algorithms for this particular use case. This can be seen
as a kind of “overfitting” at algorithm design time. (Similar
observations have been made in other fields of data mining,
e.g., clustering [23]] and pattern mining [87].)

On the other hand, we have also been using our existing
outlier detection tools the wrong way. Both on KDD Cup *99
and on the traffic accidents example our entities of interest are
not the individual data samples. Instead, our potential outliers
are some aggregation of the data: we need to aggregate the
KDD Cup ’99 data to hosts instead of processing individual
connections if we want to detect attackers; Schubert et al. [65]
implicitly used local maxima in density as aggregations of
traffic accidents (which yields black spot crossroads, not
“outlier car accidents”). On the U.S. Census data, the data were
already aggregated by the Census Bureau. When analyzing
trends in text, we are interested in fopics, not messages. This
also holds for first story detection (FSD), where the output
is not the topic, but the first message of each topic. This
is related to what has been termed “type III outliers” [19]]
with the distinction that we claim that the particular type of
aggregation is typically not a priori given with the data but
is a matter of an adequate inferpretation of the given plain
data. One may argue that this can be solved by improving
feature extraction or preprocessing (e.g. converting textual data
to numerical vectors, aggregated at the desired level) before
analyzing with an outlier detection method and should be
done in the preprocessing phase: convert your textual data
to appropriate numerical vectors, aggregate and transform
the numeric data to the desired level (i.e. topics, instead of
messages), and then analyze the aggregated and transformed
data with some (Euclidean space) outlier detection method. In
practice, as we will see next, this does not work that easily:
on data streams, preprocessing and transformation cannot be
completely decoupled, and if we want to be able to explain the
resulting outliers, we need to be able to return to the original
data representation. Last but not least, because of efficiency
considerations, it may be necessary to integrate outlier/trend
detection much earlier in the analysis process, instead of first
transforming all data objects.

IV. OUTLIERS IN TEXTUAL STREAMS
A. Some Methods for Trend Detection

Guzman and Poblete [27] discuss burst detection as anomaly
detection in Twitter streams. Their objective is to detect
keywords that occur in the stream at an unusually high rate,
similar to TwitterMonitor [48]. Both approaches use a rather
simple model of burstiness: TwitterMonitor [48] seems to track
high frequency terms, whereas Guzman and Poblete [27] use
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the second derivative of the term frequency. enBlogue [10]]
detects trends that increase most over their moving average.
The UMass system [9] generates a vector space representation
(such as the term-frequency) for each incoming document. A
nearest-neighbor search is then applied for each document-
vector to identify outliers with a sufficiently large distance
to the most similar one. Kleinberg [32] uses an infinite-state
automaton to keep track of term frequencies of incoming doc-
uments (emails in particular). Frequency bursts are modeled as
transitions within the automaton. The hierarchical structure of
email-document topics is preserved by the state transitions. In
Blogosphere [58]], Kleinberg’s approach was used to discover
bursty terms with their correlations for extracted titles of blog
posts. Bursty terms are outliers, that show a radical frequency
increase within a short period of time compared to a long
period. A distance metric based on Euclidean space was then
used to discover potential correlations between terms. Another
use of Kleinberg’s algorithm was adapted by Takahashi et
al. [72] to model the frequencies of topics determined by
a dynamic topic model (DTM). Further work to determine
trending terms are made using biology-inspired processes to
model life cycles of terms [18] or wavelet-based analysis
using signal processing measures [76]]. A recent advancement,
Signi-Trend [63]], uses a heavy-hitters style algorithm to track
both the average frequency and the moving standard deviation
of any popular term combination. Closely related to trend
detection is the problem of first story detection often referred
to as ‘detection of events’. Yang et al. [79] applied document
clustering in their on-line event detection system. Events,
which can be seen as outliers of the document stream, are
identified by obtaining significant vocabulary shifts and rapid
changes within the term frequency distribution. To distinguish
events further, they also take the time gap between them into
account, as discussed topics with large temporal differences
are usually related to different events (e.g., different earth-
quakes).

By looking at all these studies, a common important com-
ponent of trend detection is the definition of the properties
(like frequency or density) with their expected normal range
to determine outliers within the document space.

B. On the Relationship between Trends and Outliers

Where trend detection is interested in outliers in textual
streams, these outliers are not individual instances—messages,
news items, tweets—but rather ropics. If we attempt to run
traditional outlier detection methods on such a stream, we will
get plenty of uninteresting outliers due to misspellings and rare
words. By a classic notion of outlierness, such instances will
most correctly appear as outliers. However, in most cases we
probably do not want our algorithms to degenerate to counting
the number of rare words per message and find the text with
the most unusual vocabulary in the corpus.

Most trend detection methods—e.g. TwitterMonitor [48]],
Burst Detection [27], enBlogue [10], and SigniTrend [[63]—
perform some kind of aggregation. Often, a sliding window
approach is used for aggregation of individual instances. With
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Fig. 1: Model used by SigniTrend: frequency (thick line),
mean (thin line) and standard deviations (shaded areas) for
the keyword “Selfie” on Twitter. The yellow bar highlights the
outlier event. Screenshot from http://signi-trend.appspot.com/

this technique, each such window corresponds to a point in
time, and the aggregation yields one such time series for
every word (or n-gram) in the data set. Outliers are those time
series that show an unusual change in activity in the current
time window. When interpreting these example algorithms for
trend detection on the time series of a single term, we can
roughly summarize their model as follows: TwitterMonitor
uses the increase in term activity compared to the previous
time window, Burst Detection uses the second derivative (the
increase in the current time window, compared to the previous
increase), enBlogue uses the relative increase in frequency
over a moving average. SigniTrend uses the most complex
model, consisting of exponentially weighted moving average
and standard deviation, and it thus can also capture variance.
All of these are fairly simple statistical models and in itself not
spectacular. Much of the challenge in trend detection comes
from scale: these values must be tracked and analyzed for
every word (or n-gram) in the data set simultaneously, for
millions of words. The main contributions of above articles are
on scalability, not the statistical models used: enBlogue tracks
only those word pairs where at least one word is considered
a seed tag. SigniTrend uses a hashing-based approach, which
is lossy on rare terms but accurate with high probability on
frequent terms and uses a constant amount of memory.

In the general framework of Schubert et al. [66], all these
methods can be seen as first-order outlier detection methods
on time series. The earlier frequencies of a term are used
to construct a model (frequency, moving average, moving
average with standard deviation) and the new frequency is
compared to the previous value. Figure [I] visualizes the model
used by SigniTrend: from the observed frequency a moving
average as well as a moving standard deviation are computed.
The famous “Oscar Selfie” achieved 11 standard deviations
over the previous average. We can also see that, after this
selfie, the average volume substantially increased (note that
the axis does not start at 0), but the model adapted quickly
to this higher average volume. If we consider the standard
deviation as used by SigniTrend to be a derived value from
the mean, then this method can be seen as second-order. We
have not yet, however, observed “locality” [66] in the sense
of LOF [16]: each time series object is evaluated on its own,
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the significance is not compared to other time series. This
calls for future work, as this will eventually allow to detect
trends in smaller communities, that otherwise are masked by
globally popular trends. On the other hand, several related
terms (e.g. boston, marathon, explosion) may trend together,
and the comparison of the series may help identifying the most
explaining term combination. Judging the significance of a
trend based on the scores of related terms can thus be expected
to yield better results. This way, lessons learned for traditional
outlier detection, reconsidering the notion of “locality” [66],
could be transferred and boost research progress also in trend
or event detection.

V. CONCLUSION

This article is intended as a call to action. Outlier detection
research has been very much focused on Euclidean space,
and the community has become detached from the actual data
problems we want to solve. This manifests itself in a lack of
good evaluation data, and in often incremental variations of the
general theme [17]]. Data diversity is a leading theme of data
science: much of our data at hand cannot be squeezed into the
rigid structure of a finite R? vector space. If we want to obtain
meaningful descriptions of outliers, we first need to work
on meaningful data. Outlier detection, while meant to be an
unsupervised task, is not—and cannot be—entirely free from
assumptions on the characteristics of outliers. Every existing
method embodies some implicit concept of outlierness. And
while the methods do not use dedicated training data, they
are still “trained” by the intuition of the method designer of
what constitutes normal or abnormal. We suggest to formalize
this notion, make it explicit, and design methods that allow
customized notions of outlierness. Eventually, this will also
lead to better explanation and description of outliers.

In this article, we focused on the peculiarities of textual
data, which often comes streaming and in a high volume. We
interpret existing trend detection methods as simple outlier
detectors over time series. Many of the abstract problems
become visible in this context, such as the difference between
instances (e.g., messages) and outliers (i.e., trends or events)
in this domain. Reflecting traditional outlier detection, we
observe a similar pattern in density-based outlier detection: as
much as we are seeking outlier instances, we are also seeking
regions of low density. In summary, we suggest the following
research issues:

« Improved statistical models need to be developed and
used, to obtain meaningful conclusions and provide ro-
bustness against spam.

o Low latency is required for practical use for trend de-
tection, which collides with the desire to use larger time
windows to obtain more reliable statistics. This may be
resolved by using an appropriate combination of models
(82]].

o Aggregation of results is important, e.g., merging overlap-
ping trending topics, to avoid overloading the user with

noisy and redundant results

Scalability to a large number of instances, to a large
number of aggregations, and to a fast data stream is re-
quired. This will usually require the use of approximation
and indexing techniques, and will limit the complexity of
models usable [67].

Artifacts and domain-specific anomalies are omnipresent
in real data, and it should be possible to customize and
modify methods to handle these. On text data, stop words
and spam constitute such artifacts. On census data areas
with few inhabitants cause such anomalies. In traffic data,
accidents attributed to the nearest milepost may mislead
an algorithm.

Bridge the gap! Outlier models should be developed that
are applicable to Euclidean vector spaces, time series,
text, and other data types in the same way. This will
make it easier for one research domain to benefit from
advances in the other.
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