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Abstract—Location-tagged social media have an increasingly
important role in shaping behavior of individuals. With the
help of location recommendations, users are able to learn
about events, products or places of interest that are relevant
to their preferences. User locations and movement patterns
are available from geosocial networks such as Foursquare,
mass transit logs or traffic monitoring systems. However,
disclosing movement data raises serious privacy concerns, as
the history of visited locations can reveal sensitive details
about an individual’s health status, alternative lifestyle, etc.
In this paper, we investigate mechanisms to sanitize location
data used in recommendations with the help of differential
privacy. We also identify the main factors that must be taken
into account to improve accuracy. Extensive experimental
results on real-world datasets show that a careful choice of
differential privacy technique leads to satisfactory location
recommendation results.

I. INTRODUCTION

Latest-generation mobile devices allow users to participate
in location-based social networks (LBSNs) and other appli-
cations with a significant component of geo-tagged media.
One important area that is gaining increasing attention is that
of location recommendations. There are many factors that
determine a user’s interest profile, such as age, gender, ed-
ucation level [1]. Apart from such factors, users’ movement
patterns become increasingly important in recommendations,
as geographical relationship to events or to other users is an
important decision factor.

Location recommendations can be performed at various
levels of granularity. For instance, a location recommenda-
tion system may take into account exact coordinates of users
as provided by a GPS system, or just coarser-grained areas,
such as a city block, or a zipcode area. Another important
aspect in achieving good-quality recommendations is the
length of movement history. Some earlier work [2], [3], [4],
[5] considers that the current user position is sufficient to
determine a good recommendation. However, this may be an
over-simplifying approach, as the user’s previous trajectory
and timeframe are also important.

Providing good-quality recommendations requires looking
at large amounts of trajectory data from a diverse set of
users. Such trajectory repositories are increasingly available,
thanks to trajectory traces collected by various location-
based applications, e.g., the check-in history of a LBSN,
the logs of a mass-transit operator that uses magnetic access
tokens, or a traffic monitoring system. However, making
such datasets directly available to recommender systems

may lead to serious privacy breaches. Previous research [6],
[7], [8], [9] showed that disclosing trajectory data can reveal
sensitive details about an individual’s health status, political
affiliations or alternative lifestyle.

Several existing techniques address location privacy
threats. The cryptographic approach in [10] is appropriate
when one needs to privately retrieve a specific item from
a dataset, e.g., nearest-neighbor queries. However, location
recommendations require a broader set of operations to
determine movement patterns. Furthermore, cryptographic
methods are very expensive computationally. Other tech-
niques use ad-hoc definition of protection: in the case of
K-anonymity [6], [7], [8], each published location must be
indistinguishable among other K − 1 locations. This type
of transformation is fast and simple, but it has been shown
recently [11], [12] that it does not provide protection in the
presence of background knowledge.

Differential privacy [11], [12] provides formal protection
guarantees against adversaries with background knowledge.
Differential privacy allows only statistical queries on the
data, and adds noise to each answer to achieve protection. An
adversary cannot learn with significant probability whether
a certain individual is included in the dataset or not. In
the context of location data, this translates into withholding
information about whether a particular trajectory can be
found in the dataset. However, it is still possible to learn
aggregate information about trajectories, which may be
sufficient for tasks such as travel pattern mining.

We study location recommendations using datasets sani-
tized according to differential privacy. Our focus is on rec-
ommendations that take into account several consecutive ob-
servations across users’ movement history, as this approach
provides superior accuracy. We study two approaches: the
first represents movement history as a point in the multi-
dimensional Cartesian product space of individual snapshots,
whereas the second indexes and sanitizes directly sequences
of locations in a hierarchical structure.

We evaluate experimentally the impact of history length,
privacy budget and data density on recommendation accu-
racy. Results show that it is possible to provide good-quality
recommendations by carefully sanitizing datasets. To the
best of our knowledge, this is the first study showing the
feasibility of applying differential privacy in the context of
location recommendations.

In summary, our contributions are: (i) We study for the



first time the problem of location recommendations using
trajectory datasets protected with differential privacy; (ii) We
consider two alternative techniques for differentially-private
location recommendations, which provide interesting trade-
offs with respect to history length, data density and data
skew; (iii) We perform an extensive experimental evaluation
that shows the feasibility of applying differential privacy for
location recommendations, and highlights the relative trade-
offs between the two considered alternative approaches.

Section II introduces background information. Section III
presents the studied mechanisms for private location rec-
ommendations. Section IV contains experimental evaluation
results, followed by a review of related work in Section V.
Section VI concludes with directions for future research.

II. BACKGROUND

Our work brings together concepts and techniques from
two distinct domains, namely location recommendations
and differential privacy. We review background information
about location recommendations in Section II-A, followed
by a brief primer on differential privacy in Section II-B.

A. Location Recommendations

Location-based social networks (LBSNs) such as
Foursquare, Gowalla and Facebook Places, attracted millions
of users. LBSNs enable users to share their experiences
in visiting specific locations of interest, e.g., restaurants,
museums, etc. Upon visiting a location, a user performs a
virtual check-in operation to let others know about his or
her current location. Additional features may be provided
based on check-ins, such as determining a user’s social
status and/or rewarding customers based on the count and
frequency of their visits to a specific location. To fur-
ther enhance user experience and social interaction [13],
[14], such systems provide the functionality of location
recommendations, whereby users receive suggestions about
which places to visit, based on the (positive) experiences of
other users when visiting those locations. This functionality
is performed by recording and consulting user check-in
histories. Based on the fact that human movement exhibits
sequential patterns [15], the recent studies by [2], [3], [4], [5]
proposed techniques for location recommendations based on
the first-order Markov chain derived from trajectories. First-
order Markov chains are used to represent “memoryless”
processes, and model the sequential patterns from check-
in location sequences as transition probabilities from one
location to another.

Definition 1 (Location sequence): A location sequence
of a user is a set of check-in locations of that user increas-
ingly ordered by their check-in time. A location sequence
is denoted by s = ⟨l1, l2, . . . , ln⟩. s′ = ⟨li, li+1 . . . , li+j⟩
(1 ≤ i ≤ i+ j ≤ n) is called a subsequence of s.

Definition 2 (First-order Markov chain): Given a user’s
location sequence s = ⟨l1, l2, . . . , ln⟩, the first-order Markov

chain assumes the probability of the user visiting next
location ln+1 depends only on last visited location ln:

p(ln+1|s) = p(ln+1|ln) =
N(⟨ln, ln+1⟩)

N(⟨ln⟩)
, (1)

where N(⟨·⟩) is the number of occurrences of subsequence
⟨·⟩ in the collection of location sequences of all users.

To improve the quality of location recommendations, we
generalize the first-order Markov chain to the higher order
Markov chain in the context of location recommendations.

Definition 3 (mth-order Markov chain): Given a user’s
visited location sequence s = ⟨l1, l2, . . . , ln⟩, the mth-order
Markov chain estimates the probability of the user visiting
the next location ln+1 based on the latest m visited locations
ln, . . . , ln−m+1. Formally,

p(ln+1|s) = p(ln+1|ln, . . . , ln−m+1) =

=
N(⟨ln−m+1, . . . , ln+1⟩)
N(⟨ln−m+1, . . . , ln⟩)

. (2)

To provide location recommendations, a recommender
system will return the top-k locations ln+1 with the highest
probability, i.e., p(ln+1|s) according to Eq. (2). In Eq. (2),
the essential task is to compute the number of times that
a certain subsequence occurs in the collection of location
sequences of all users. As we will discuss next in Sec-
tion II-B, providing an interface for privately answering
count queries is the objective of differential privacy, which
makes the latter an ideal candidate for privacy-preserving
location recommendations.

B. Differential Privacy

Differential privacy was introduced [16] to address the
limitation of syntactic models which are vulnerable against
background knowledge attacks. It is a semantic model,
which argues that one should minimize the risk of disclosure
that arises from an individual’s participation in a dataset.
Differential privacy is formulated in the context of statistical
databases, and allows only aggregate queries to be asked.
In the context of spatial databases [12], this boils down to
answering range count queries such as “find the number
of locations enclosed in a region”. Although in theory
there is no restriction on the range query shape, in practice
rectangular queries are typical.

The interaction between a user and the database is ex-
pressed as a transcript. Formally,

Definition 4 (Transcript): Let Q = {Q1, . . . , Qq} be a
set of COUNT queries, and denote by QT

i (1≤i≤q) the result
of answering query Qi on dataset T . A transcript

T RT
Q = {(Q1, Q

T
1 ), . . . , (Qq, Q

T
q )}

is the response to the query set Q on dataset T .
A transcript satisfies ϵ-differential privacy if the ϵ-

indistinguishability condition [11] is fulfilled, where ϵ is a
parameter that quantifies the amount of desired privacy:



Definition 5 (ϵ-indistinguishability): Consider a statisti-
cal database that produces the transcript U on the set
of queries Q = {Q1, . . . , Qq}, and let ϵ > 0 be an
arbitrarily-small real constant. Transcript U satisfies ϵ-
indistinguishability if for every pair of datasets T1, T2 such
that |T1| = |T2| and T1, T2 differ in only one record∣∣∣∣∣ln Pr[T RT1

Q = U ]
Pr[T RT2

Q = U ]

∣∣∣∣∣ ≤ ϵ

In other words, an attacker is not able to learn, with
significant probability, whether the transcript was obtained
by answering the query set Q on T1, or on T2. To achieve in-
distinguishability, differential privacy requires random noise
to be added to each query result. The magnitude of the noise
depends on the privacy parameter ϵ, and the sensitivity of
the query set Q, defined as follows:

Definition 6 (L1-sensitivity [11]): Given any two
datasets T1, T2 such that |T1| = |T2| and T1,
T2 differ in only one record, the L1-sensitivity
of query set Q = {Q1, . . . , Qq} is measured as

SL1(Q) = max∀T1,T2

q∑
i=1

|QT1
i −QT2

i |.

The following theorem gives a sufficient condition for a
data release to satisfy ϵ-differential privacy [11]:

Theorem 1: Let Q be a set of queries answered by a
statistical database, and denote by SL1(Q) the L1-sensitivity
of Q. Then, differential privacy with parameter ϵ can be
achieved by adding to each query result random noise
X , i.e., QT

i ← QT
i + X , where X is a random, i.i.d.

variable drawn from a Laplace distribution with mean 0 and
magnitude λ ≥ SL1(Q)/ϵ.

An essential operation in enforcing differential privacy is
determining the sensitivity SL1(Q). It is shown in [11] that
SL1(Q) is independent of the data set T , and can be deter-
mined based on the query setQ alone. However, for arbitrary
query sets, it is shown in [17] that computing sensitivity is
NP-hard. Nevertheless, sensitivity (or its approximation) for
sets of COUNT queries can be efficiently computed:

1) If all queries in Q have disjoint ranges, SL1(Q) = 2.
2) If queries in Q have overlapping ranges, then a 2-

approximation of SL1(Q) is given by the maximum
number of queries that overlap the same point in the
data space.

III. PRIVATE LOCATION RECOMMENDATIONS

Location data that may be generated from a variety of
sources, such as LBSN user check-ins, logs of traffic mon-
itoring systems, geo-tagged media, etc. Figure 1 illustrates
the envisioned architecture, where trajectory data is gathered
at a trusted repository and sanitized according to differential
privacy. The adversary may access a set of recommendations
from the system, with the purpose of exposing the check-in

Figure 1. Architecture for Private Location Recommendation Systems

patterns of an individual. The presence of the sanitization
layer prevents such attacks.

We consider two approaches for sanitization. First (Sec-
tion III-A) we represent each sequence as a point in a multi-
dimensional space, and apply private spatial decomposition
[12] techniques for sanitization. Next (Section III-B) we
investigate the use of n-gram sanitization techniques which
can directly deal with sequential data [18]. The rationale for
this duality is that the former technique is likely to perform
well for short check-in histories, whereas the latter is more
suitable for longer histories.

A. Cartesian Product Check-In History Representation

We represent each location sequence as a multi-
dimensional point in the space given by the Cartesian prod-
uct of the set of all check-in locations. Check-in locations are
represented as discrete objects with unique labels, such as
“Starbucks on Broadway and 31st”. Assume that there are in
total eight possible check-in locations, L = {l1, l2, . . . , l8},
and three check-in sequences of users: < l1, l4 >, < l2, l5 >,
< l6, l4 > and < l7, l3 >. Figure 2 shows how the sequences
are represented in space L × L. In this case, for ease of
illustration, we considered that each sequence has at most
two locations. In general, the representation space is Lm,
where m is the maximum sequence length.

The Cartesian product representation allows us to apply
sanitization techniques specifically designed for private spa-
tial decompositions (PSD), introduced in [12]. PSD builds
noisy spatial tree index structures on top of the dataset,
and publishes the contents of these indexes. Either space-
partitioning or data-partitioning indexes can be used. The
indexes are built entirely based on the noisy COUNT queries
received from the differentially private interface. The dataset
is recursively split, and the minimum bounding rectangles
(MBRs) of nodes at all levels of the tree are published
together with their noisy counts.

One essential aspect is privacy budget allocation. Tree
indexes have multiple levels, and the spatial extent of a
node covers the span of extents of its siblings. Therefore,
there exists overlap among published counts. According to
the sensitivity properties discussed in Section II-B, overlap
requires more noise to be added to each query answer. To
minimize overlap, PSD decompositions allow only index
structures that do not cause overlap within the same tree
level, but only across different levels. It results that each



point in the dataspace is covered by exactly h nodes, or
equivalently, h queries, where h is the tree index height.
With the overlap amount bounded by the tree height, the
sensitivity of the set of queries employed in the PSD
construction equals 2h, according to Section II-B.

If ϵi is the budget at level i, then

ϵ =
h∑

i=0

ϵi,

However, not all levels must be granted an equal portion of
privacy budget. Given a global privacy budget constraint ϵ,
one challenge is how to choose ϵi, i = 0 . . . h to minimize
the accuracy error when answering queries. The allocation
choice is dependent on the type of structure used. Further-
more, the accuracy is influenced by the tree height, as more
levels will compete for the same budget amount. Therefore,
it is important to decide the split stopping condition, i.e., at
which height to stop extending the tree.

According to [12], given a random rectangular query
Q over the dataspace domain, a closed-form, average-case
scenario can be formulated for the number of index nodes
n(Q) that intersect query Q. Also, denote by ni(Q) the
corresponding number of nodes at level i that maximally
contribute their counts to the query result (i.e., their extents
are completely enclosed by the query range Q). Therefore,

n(Q) =
h∑

i=0

ni

For the quadtree index type [19], it is shown in [12] that

ni ≤ 8 · 2h−i

and by summation over the entire height of the tree

n(Q) ≤ 8(2h+1 − 1) = O(4h/2)

Similarly, for kd-trees [19], another popular index structure,
n(Q) = O(2h/2). Solving a constraint optimization problem
that minimizes the expected query answering error subject
to the available maximum budget ϵ, the choice of geometric
budget allocation over tree levels proves the best alternative.
Namely the budget allocated to tree level i should be set to:

ϵi = 2(h−i)/3ϵ
21/3 − 1

2(h+1)/3 − 1

Data-Independent Decompositions: Quad-trees.
For data-independent decompositions, the structure of the

index does not depend on the dataset. For instance, in the
case of quad-trees [19], each split is performed recursively
on the middle coordinate of the current partition. Partitions
are always square, and all the nodes in the tree at the
same depth correspond to a dataspace partition of the same
dimensions (and consequently, the same area or volume).
Therefore, no information about the data is disclosed by
the structure of the published tree structure, since it is

Figure 2. Cartesian product check-in history representation

completely independent of the data. Quad-trees result in
partitions that are non-overlapping. If one perceives each
index partition, say a leaf node, as one of the elements that
are part of the query set Q, then all elements at the same
level at the tree are non-overlapping, leading to constant
sensitivity with low value 2. This is clearly a desirable
property of such an index.

In a d-dimensional space, quad-trees are constructed by
recursively dividing the space into two sub-spaces using
(d − 1)-dimensional hyperplanes. In two dimensions, each
step corresponds to selecting a line and partitioning the space
based on this line until certain requirements are met. In
three dimensions, instead of lines, planes are used to split
the space. The heuristic method for selecting the splitting
hyperplanes depends on the application area, as does the
stopping condition.

Each split occurs on an axis-orthogonal hyperplane. The
axis is chosen based on the depth of the tree node which is
being split. Specifically, if the depth of node n is denoted
Depth(n), the splitting hyperplane is orthogonal to axis
Depth(n)%d+1 and splits the space into two equal halves.

Let Qh be a query for the entire quad-tree index on some
dataset T . Since partition extents are built based on attribute
domains only, Qh is equivalent to a set of 2h count queries,
one for each leaf node’s extent. Notice that regardless of h
and the distribution of T , the query regions will be disjoint.
Therefore, the sensitivity of Qh is 2 at each level of the tree.

Data-Dependent Decompositions: kd-trees.
For data-dependent indexes, the procedure to obtain a

differentially-private version of a spatial dataset is more
complex, because not only the individual counters in each
index node must be protected, but also the structure of the
tree. Additional measures such as protecting the result of
each index split decision are necessary.

In the case of kd-trees [19], the split algorithm recursively
divides the space on the median value across one of the
space dimensions. Instead of computing the actual median, a
version of “noisy” median is determined using the exponen-
tial mechanism [20] of differential privacy. Specifically, each
element in the dataset is assigned a merit score according to
the distance it has from the actual median, and a randomized
algorithm that picks an element according to these merit
scores is used to select a noisy pseudo-median.

Another important change in comparison to the case



Figure 3. Trajectory Database and Resulting Prefix Tree

of data-independent indexes is that the budget must be
split between the Laplace mechanism and the exponential
mechanism. An inherent trade-off develops: on the one hand,
the more budget is allocated to the exponential mechanism,
the index structure will be more balanced, and accuracy
improved. But on the other hand, there is less remaining
budget to be used for releasing index node counts.

B. Location Sequence Indexing

The Cartesian product may serve well when location
recommendation is done on a short check-in history, but
when m increases, the dimensionality becomes too large for
spatial indexing techniques to be effective. In this section,
we turn our attention to techniques for trajectory sanitization,
such as [18], [21]. These techniques are easy to adopt into
our framework for differentially private location recommen-
dations, due to the similarity of the data model used.

Differentially private publication of trajectories was first
tackled in [18]. Location data are discretized, which matches
well the setting of a public transportation network, where
each snapshot in a user trajectory can be identified with a
bus or train stop. This model also works well for histories
of user check-ins. Differential privacy is applied directly on
trajectories, i.e., the dataset T from the Definition 4 is a set
of location sequences T = {s1, s2, . . .}. Each sequence is
an ordered set from a location universe L = {l1, l2, . . .}. It
is assumed that there is at most one trajectory per individual,
and the goal is to release a sanitized database of trajectories,
such that an adversary is not able to tell if a particular
individual’s trajectory is included in the release or not.

A prefix tree is proposed in [18] that has a virtual root
node corresponding to a special “start-of-trajectory” marker
(which is not an actual location in L). Starting from that
node, a path in the tree is created for each individual
trajectory. Trajectories that share an exact prefix will have
identical beginning sub-paths in the tree.

Figure 3 shows a trajectory prefix tree, corresponding to
the set of four trajectories in the table. The counters shown
in parentheses represent the number of trajectories that share
that particular prefix (i.e., the prefix starting from the virtual
root and ending in the respective node). Note that, the prefix
tree is constructed using a deterministic procedure from the
dataset, so the structure must be sanitized before release.

Figure 4. Differentially Private Prefix Tree

There are two types of disclosure that need to be pre-
vented. First, the actual counters in the prefix tree need to be
perturbed. This can be done using the Laplace mechanism.
Second, the actual structure of the prefix tree gives informa-
tion about what particular trajectories exist and do not exist
in the dataset. For instance, inspecting the tree in Figure 3,
one can assert with certainty that there is no trajectory that
starts at location l3. Similarly, there is no trajectory that has
as prefix l1, l4. To address this latter concern, it is necessary
to alter the structure of the prefix tree and create fake nodes.

Figure 4 shows the tree after sanitization, where both
counters and structure are perturbed. After sanitization, some
nodes may have their count reduced to zero, so they are
removed from publication, even though there are some
trajectories in the original dataset represented by that path in
the tree. Conversely, some nodes that do not correspond to
any existing trajectory prefix are created. These fake nodes
are necessary to comply with differential privacy.

In this example, the former leaf nodes l4 (i.e., all on the
left half of the initial subtree) have had their counters added
with random negative noise (−1), so as a result their noisy
counter is zero, and they are removed from the tree (their
perimeters are shown with discontinued line in the diagram
for illustration purposes, but they do not appear at all in
the published version). In contrast, for every possible child
of a node - not only those in the initial prefix tree, but for
all possible trajectories, a virtual node is created. This node
has initial counter zero, but following addition of noise, they
could be promoted to actual nodes. This is the case of node
l3, shown in shaded texture, which has been added as a child
of the root node. Note however, that fake nodes can be added
in any part of the tree, not just under the root node.

The method from [18] has a limitation: in order for
an edge in the prefix tree to have a count larger than 1,
it is necessary for multiple trajectories to share the exact
same prefix up to that edge. In practice, there may be sub-
paths (i.e., location sequences) that are common, even if
there is no trajectory that starts with that sequence. For
instance, there are many people that first go to a specific
restaurant and then to the cinema within the same mall
complex, so this sequence appears a lot in the check-in
history. However, their trajectories may have started at their
workplaces earlier, which are heterogeneous. Therefore, all



paths will be considered completely distinct, and their nodes
appear with a count of 1. As a result, the noise added by
differential privacy will be large compared to the actual
counter value of 1, leading to large errors.

To address this issue, the work in [21] indexes partial
trajectories, regardless of their start point. This allows com-
mon trajectory segments that occur frequently in the dataset
to have their counts added up together before noise added
by differential privacy. The method uses a concept that is
common in text mining, namely that of n-grams, which are
sequences of up to nmax locations that appear frequently
(nmax is a system parameter). The idea behind [21] is to
extend the concept of prefix tree to n-gram tree.

There are two important parameters in the n-gram
method: the maximum length of considered n-grams, and
the maximum allowable length of an entire trajectory. The
former one is basically parameter nmax. The height of the
released tree is important, as the budget ϵ gets redistributed
among distinct tree levels. A larger tree height leads to less
accurate information at each level.

In our context, the n-gram tree consists of sequences
of check-ins, and the height depends on the length of the
history, i.e., the length of the mth-order Markov chain from
Section II-A. Consequently, in our adaptation of the method,
we set nmax = m + 1, corresponding to a history of m
previously visited locations plus the next visited location
(i.e., the recommended one). The maximum allowable length
of a trajectory determines the overall sensitivity. In the worst
case, a single trajectory could affect a number of counters
in the n-gram tree equal to that trajectory’s path length.
The sensitivity is the maximum trajectory length, denoted
by lmax. We follow the setting in [21] which specifies a
guideline of lmax = 20 for trajectory datasets.

IV. EXPERIMENTAL EVALUATION

We present the experimental setup, dataset description and
performance metrics in Section IV-A. In Section IV-B we
provide experimental results and a discussion of our findings.

A. Experimental Settings
Dataset. We use a publicly available large-scale real

check-in history dataset corresponding to the users of the
Gowalla location-based social network [15]. The character-
istics of the data set are summarized in Table I.

We split the dataset into the training set and the testing
set, each with 50% of the data. The training set is used to
learn the recommendation models for each of the evaluated
techniques described below. We perform partitioning based
on the check-in times in the data, rather than using a random
allocation of data points to partitions. The rationale behind
this choice is that in practice, we can only utilize the past
check-in data to predict future check-in events.

Evaluated Techniques. In our evaluation, we consider
four different techniques for location recommendation. Their
description and the labels used are as follows:

Table I
GOWALLA DATASET STATISTICS

Parameter Value
Number of users 196,591
Number of locations 1,280,969
Number of check-ins 6,442,890
Average visited POIs per user 37.18
Average check-ins per location 3.11

• m-OMC (mth-order Markov chain): This benchmark
does not provide any privacy, and performs recom-
mendations based on revealed data. It implements the
location recommendation technique based on inspecting
past check-ins with a maximum look-back count of
m. In other words, the previous sequence of m check-
ins is used to determine the next visited location. The
following methods also use a history of m check-ins,
but they work on the sanitized datasets.

• NGrams: This method is the differentially private n-
gram publication method from Section III-B. Due to
its design, the method is expected to perform better for
larger values of history lookup (i.e., larger m).

• QuadTree: This method implements data-independent
partitioning using quad-trees (Section III-A). It is ex-
pected to perform well for relatively low values of m,
and for uniform spatial distribution of check-ins.

• KDTree: This method implements the data-dependent
spatial partitioning method using kd-trees (Sec-
tion III-A). It is expected to perform well for relatively
low values of m, and to handle well skewed spatial
distribution of check-ins.

Performance Metrics. Given a target user, recommenda-
tion techniques compute a score for each candidate item (i.e.,
next location), and return as results the locations with the
top-k highest scores. In our experiments, we choose k = 10.

To evaluate the quality of location recommendations, it is
important to find out how many locations that are being
recommended are actually visited by the target user in
the testing data set. Also, it is important to know how
many of the locations actually visited were recommended
by the evaluated technique. The former aspect is captured
by precision and the latter by recall [22], [23]. We define a
discovered location as a location that is both recommended
and actually visited by the target user. Formally,

• Precision defines the ratio of the number of discovered
locations to the total number k of recommended loca-
tions, i.e.,

precision =
number of discovered locations

k
.

• Recall defines the ratio of the number of discovered
locations to the total number of locations actually
visited by the target user in the testing set, i.e.,

recall =
number of discovered locations

number of visited locations
.
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Figure 5. Precision, 5km× 5km grid, geometric tree budget
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Figure 6. Recall, 5km× 5km grid, geometric tree budget

Parameter Settings.

• Grid Size: The granularity of locations considered in
the recommendation process may vary based on the
application and the type of query. We superimpose a
regular grid on top of the dataset of locations, and we
consider two different grid sizes: 5 × 5 km and 10 ×
10 km. For fairness, all considered methods are used
in conjunction with the same grid size.

• ε: The privacy budget ϵ is an essential parameter for
differential privacy. We consider a broad range of values
which are typical in the literature on differential privacy,
with values from 0.1 to 1.0 in increments of 0.1. A
lower ϵ value signifies a tighter privacy requirement.

• lmax and nmax: These parameters are specific to the
NGrams technique. lmax is used to decrease the
sensitivity of a trajectory dataset, and it specifies the
maximum number of check-ins in any single individual
history. nmax is the maximum length of n-grams ex-

tracted from the dataset. In our case, we set lmax = 20
which is the setting recommended by the proponents
of the technique in [18]. The value of nmax is set to
m+1, where m is the length of the Markov chain. Note
that, since all the queries on the trajectory dataset will
have at most length m+1 (the history of m check-ins
plus the next visited location), it does not make sense
to extract n-grams of longer length than m+ 1.

B. Experiment Results

Figure 5(a)-(d) shows the precision measurements for the
5km×5km grid setting, in increasing order of Markov chain
order m. The geometric budget allocation is used for the
PSD methods. As a first observation, note how increasing
the check-in history length helps improving recommendation
precision (all y-axes are set to the same range in order to
better illustrate this effect). This motivates the need to use
trajectory data in location recommendation, as opposed to
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Figure 7. Precision, 10km× 10km grid, geometric tree budget
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Figure 8. Recall, 10km× 10km grid, geometric tree budget

a last-known location, and it also reinforces the need for
effective solutions to the challenging differentially private
sanitization of trajectories (which is a considerably more
difficult problem that sanitization of individual snapshots).

As expected, a lower privacy budget results to less ac-
curacy. The KDTree technique performs the best, due
to a relatively low density of the locations in the grid.
Furthermore, a finer granularity also creates more skew-
ness, which disadvantages the data-independent QuadTree
method. Note an important trend: as the length of the check-
in history increases, the NGrams method catches up with
the partitioning methods in terms of precision.

For m = 4 and the higher end of the privacy budget
range, the precision of NGrams is somewhere in between
the precision of the partitioning methods, with KDTree
being the best. In terms of absolute precision value, the
performance of the best private method is not far below that
of the non-private method: for the larger budget range, the
precision of KDTree is 5% lower than that of 4−OMC.

Figure 6(a)-(d) shows the recall measurements for the

same setting. The same trends can be observed for recall.
The NGrams method does not overtake the QuadTree
method under any setting for recall, but it does equal its
performance for higher privacy budget when m = 4. We
repeated the experiment with uniform budget allocation,
and obtained very similar precision and recall (we omit the
graphs for brevity).

In the next experiment, we use a coarser grid granularity,
10km× 10km. The effect of this change is to increase data
density, and at the same time reduce the amount of skewness,
as all locations that fall in the same grid cell are considered
to be uniformly distributed within that cell’s span. As
shown in the previous measurements, the type of budget
used for the tree methods does not significantly influence
recommendation quality, so for the sake of brevity we only
present the geometric budget allocation results (similar re-
sults were obtained for uniform allocation). Figures 7 and 8
(a)-(d) show the obtained precision and recall for various m
settings. The same earlier trend is observed, whereby the in-
crease in check-in history length improves absolute accuracy,



and also favors the NGrams method, whose performance
improves in relative terms compared with KDTree and
QuadTree as m increases. Note, however, that the relative
performance of KDTree and QuadTree has inverted for
the denser dataspace. QuadTree outperforms now, due to
the fact that its data-independent nature is favored by the
increased density and decreased skewness of the dataset.
The effect of the budget quota spent by KDTree to create
a balanced structure no longer offsets the lower accuracy
when querying tree nodes, and for this grid granularity the
resulting precision and recall are worse than competitors.

Our results show that differential privacy can lead to
reasonably accurate solutions for location recommendations.
As the history length grows, the precision and recall im-
prove. The NGrams method tends to perform better than
QuadTree and KDTree when history size grows. Among
space partitioning techniques, data density and skew are
decisive factors for accuracy. When data density is low
and skew is high, the accuracy is worse. Data-dependent
techniques like KDTree outperform data-independent tech-
niques in such cases. Conversely, for denser datasets with
less skew the QuadTree is the method of choice.

V. RELATED WORK

Location Recommendations. With the rapid growth of
location-based social networks like Foursquare, Gowalla,
and Facebook Places, location recommendations became
an essential functionality. There are three main categories
of location recommendation techniques. (1) GPS trajectory
based: Some studies provide location recommendations us-
ing GPS trajectory data [24], [25]. However, such data is
relatively difficult to obtain. The other two categories focus
on using the check-in data extracted from LBSNs. (2) Topic-
based: the works of [26], [27] explicitly model profiles of
locations and users as a mixture of topics, and then derive
the likelihood of a user visiting a location based on their
profiles. (3) Collaborative filtering: most current studies
[28], [22], [29], [30], [23], [13] employ conventional filtering
techniques which aim at looking for patterns of agreement
among users’ ratings for locations derived from check-in
data. The intuition behind collaborative filtering is that if
a user has agreed with her neighbors in the past, she will
continue to do so for future locations. In particular, the works
of [2], [3], [4], [5] extract sequential patterns from location
sequences as a location-location transition probability matrix
and generate location recommendations using the first-order
Markov chain on the transition probability matrix. These
research results have shown the potential of sequential
patterns for personalized recommendations. However, none
of these studies provide any privacy features.

Location Privacy has been extensively studied over the
past decade. A significant amount of research focused on
the problem of private location-based queries, where users
send their coordinates to obtain points of interest in their

proximity. Some of the earlier work attempted to protect
locations of real users by generating fake locations. For
instance, in [31] the querying user sends to the server k− 1
fake locations to reduce the likelihood of identifying the
actual user position.

A new direction of research started by [6] and contin-
ued by [32], [33], [8] relies on the concept of Cloaking
Regions (CRs). CR-based solutions implement the spatial k-
anonymity (SKA) [33] paradigm. For each query, a trusted
anonymizer service generates CRs that contain at least k real
user locations. If the resulting CRs are reciprocal [33], SKA
guarantees privacy for snapshots of user locations. However,
supporting continuous queries [34] requires generating large-
sized CRs. The problem with CR-based methods is that
the underlying k-anonymity paradigm is vulnerable to back-
ground knowledge attacks. This is particularly a problem in
the case of moving users, since trajectory information can
be used to derive the identities behind reported locations. In
our work, we employ differential privacy [11], a provably
secure model for semantic privacy that is currently the de-
facto standard for privacy-preserving data publication.

VI. CONCLUSION

We investigated the application of differential privacy
techniques to the process of location recommendations. We
considered two categories of techniques, based on indexing
in multi-dimensional spaces and n-gram trees. Experimental
results show that the two approaches offer reasonable accu-
racy, and provide interesting tradeoffs relative to the check-in
history length, data density and data skew. In future work, we
plan to customize sanitization techniques to take into account
specific characteristics of location recommendation query
workloads. This will result in custom budget allocation
strategies that will further increase accuracy.
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