S

Reliable Distributed Computing for
Decision Support Systems

Taha Osman, Andrzej Bargiela
Department of Computing, The Nottingham Trent University

Introduction

It iswidely accepted that the realisation
of complex monitoring and control sys-
tems, in general, and industrial decision
support systems, in particular, is best ac-
complished using distributed comput-
ing resources.

Real-time decision support typically re-
quires that several tasks such as on-line
monitoring, simulation, prediction, state
estimation, and real-time control arerun
concurrently. Thisisimplemented most
effectively in a true distributed system
rather than in atime-shared uni-proces-
sor environment. Moreover, the physi-
cal size of many decision-support
systems such as water distribution net-
works, involving hundreds or even
thousands of pipes and network nodes
spread over a large geographical area,
cals for a control of computational
complexity of the constituent decision
support tasks. This is usually achieved
by topological decomposition of sys-
tems and parallelisation of the respec-
tive algorithms®®. The parallel tasks
can then be executed on networked
workstations which provide a powerful
and flexible (upgradable according to
specific requirements) computing envi-
ronment. The performance of such sys-
tems has been recently significantly
enhanced by the use of high-speed com-
munications links such as FDDI, ATM,
Gigabit Ethernet etc 2.

However the use of distributed comput-
ing in real-time decision support faces a
considerable chalenge of providing a
reliable service. The ‘hot-standby’ tech-
nique of enhancing the fault tolerance of
uni-processor systems is quite inappro-
priate (expensive) when dealing with
distributed computing systems. Moreo-
ver, the cumulative effect of individual
computing node failures makes any dis-

tributed system inherently less robust
than a uni-processor equivalent.

Conseguently it appears that the prereg-
uisite of any distributed computer based
Decision Support System is the availa-
bility of asoftware layer that can isolate
applications from the hardware faults
and ensure that the failure of individual
computing nodes does not result in total
system failure but only in some degra-
dation of its performance.

The fault-tolerant distributed comput-
ing environment (FADI)3*6, outlined in
this paper, was developed at the Not-
tingham Trent University in order to
harness the computational power of in-
terconnected workstations and to pro-
vide a fault-tolerant parallel computing
platform that meets the practical re-
quirements of advanced decision sup-
port systems. FADI supports the
automatic (user-transparent) detection
of faulty hardware, recovery of thetasks
that have been interrupted by the hard-
ware failure, and the re-distribution of
application tasks on the currently avail-
able computing nodes.

Distributed Systems Reliability

Due to the interdependency of their
components, distributed systems are
particularly vulnerable to hardware
faults. If appropriate fault management
measures are not taken, a failure of a
single computing node could cause the
crash of the whole distributed comput-
ing system and consequently the failure
of the decision support systemitis serv-
icing.

Addressing the reliability issues of dis-
tributed systems involves tackling two
problems: error detection and process
recovery. Error detection is concerned
with permanent (such as computer
crashes caused by power failure) and

transient (such as temporary memory
faults caused by electro-magnetic inter-
ference) computer hardware faults as
well as faults in the software modules
and the communication links3,

Fault-tolerance methods for distributed
systems have devel oped in two streams:
checkpointing/rollback recovery and
process-replication mechanisms. With
process replication techniques, each
process is copied and executed on sev-
eral computers so that the probability
that all replicaswould fail is acceptably
small®. A distributed computation
should proceed correctly as long as
there exists one living replica of each
process. These techniquesincur asmall-
e degradation in performance when
compared to checkpointing mecha
nisms, but the main hindrance to their
wide adoption in industry is the cost of
the redundant hardware that is needed
for the execution of the replicas.

In contrast with process replication
mechanisms, checkpointing/rollback
techniques do not require the duplica
tion of the underlying hardware or the
replication of the application processes.
Instead, each process periodicaly
recordsits current state and/or some his-
tory of the system in stable storage, an
action called checkpointing?®.

The checkpoint contains a complete ex-
ecution state of a process (e.g state of
CPU registers, interrupt handlers, data
and stack segments, etc.).

If a failure occurs, processes return to
the previous checkpoints (rollback) and
resume their execution from the respec-
tive checkpoints. The overhead that this
technique incurs is greater than that of
process replication mechanisms be-
cause checkpoints are taken during fail-
ure-free operation. Nevertheless, this

abb
Sticky Note

overhead is getting smaller as the com-
puters and communication networks be-
come more efficient. Hence, the
degradation in performance caused by
the checkpointing mechanism is quite
acceptable for on-line decision support
systems.

Fault-Tolerant Distributed
Computing Environment

A structural diagram showing the func-
tional decomposition of the fault-toler-
ant environment (FADI) isillustrated in
Figure 1. When execution starts, the
Process Allocation module identifies
the network configuration and passes
the list of active computer nodes (hosts
table) to the user and the component
FADI processes. Upon receipt of the
specifications of the application tasks,
through the user-interface, the Process
Allocation modul e spawns the tasks and
broadcasts the information about the
task-processor mapping to the rest of
FADI modules. When the Checkpoint-
ing Coordinator receives a list of
spawned tasks, it schedulles their
checkpointing at the end of every
checkpointing interval and saves the
checkpointsin a stable storage.

When one of the distributed computing
nodesfailsthe Monitor Host State mod-
ule detects this fact and informs the Re-
cover Failed Tasks module about the
crashed host_ID (host name) so that it
won't try to restart (rollback) failed
tasksoniit.

The failed host_ID is aso sent to the

monitor user tasks module to determine
the IDs of the user-tasks that were run-
ning on the faulty host before it has
crashed.

These IDs are then sent to the Recover
Failed Tasks module so that it can re-
start the failed tasks from their most re-
cent checkpoint. Thefailed task IDs are
also passed to the Checkpointing Coor-
dinator to suspend the initialisation of
their checkpointing.

The Monitor User Tasks module detects
user tasks that have exited prematurely
due to a transient hardware failure and
sends the failed task 1Ds to the Recover
Failed Tasks module. Task IDs of the
successfully recovered tasks are broad-
cast by the Recover Failed Tasks mod-
ule, so that the Monitor User Tasks
module and the Checkpointing Coordi-
nator can resume their monitoring and
checkpointing respectively. It is crucial
that the Monitor User Tasks module
gets the IDs of the recovered tasks be-
cause they are being restarted as new
executables with different task 1Ds.

To minimize the failure-free overhead
of the checkpointing, a novel non-
blocking checkpointing technique has
been deve opede' The technique in-
volves making a copy of the program’s
data space and using an asynchronous
thread of control to perform the check-
pointing routines (reading the process
state and recording it to disk) while the
user process continues the execution of
the program code.

insufficient

resources
USER
INTERFACE
task

PROCESS
ALLOCATION

_o——table

RECOVER
FAILED
TASKS

MONITOR
HOST STATE

recovered
tasks specs

failed task id

crashed host id

recovered host id

checkpointin
intgrval 9

checkpoint

CHECKPOINT.
storage

COORDINATOR

MONITOR
USER
TASKS

Flgure 1 FADI Structural Diagram

Distributed Water System DSS in
FADI Environment

While the FADI enviromnent is largely
application independent, it has been de-
veloped and tested in the context of a
Decision Support System for Water
Distribution Networks. A prototype of
such aDSS system has been devel oped,
over 15 years ago, by one of the authors
and has been ported to a distributed
computing environment. The original,
single-processor shared-memory imple-
mentation of the DSS software” was
re-cast for a cluster of networked UNIX
workstations™!. No changes were made
to the algorithmic computing modules
written in FORTRAN (the FADI appli-
cation programming interface supports
both FORTRAN and C/C++ applica
tions), but the interprocess communica-
tion and synchronisation was re-
structured to adjust to the facilities of
the new environment. The PVM (Paral-
lel Virtual Machinel®) message passing
software was used to facilitate inter-
process communication and synchroni-
sation. A centralised control scheme
was adopted. The central control task
holds the common areas and grants ac-
cess rights through a request-acknowl-
edgment message exchange with the
requesting task schedulled on a FIFO
basis.

The principal task of the DSS systemis
to process redundant, noise-corrupted
telemeasurements so as to elliminate the
‘bad-data’ and to supply areal-time data
base with reliable estimates of the cur-
rent state and structure of the network.
The system consists of anumber of con-
current software modules, including
network simulator, telemetry system
simulator, state estimator(s), optimal
valve control and the operator interface.

The measurements are processed on a
continuous basis (1min scan rate) and
the state estimation module identifies
discrepancies between the mathemati-
cal model of the network and the actual
meter readings. These discrepancies are
then analysed so that the underlying
causes, such as the presence of leakag-
es, closed valves, or erroneous transduc-
er data, are found and remedied®.

There are three main groups of modules
in the package (Figure 2). The modules

of thefirst group simulate the behaviour
of the real network and provide meas-
urement information whichinreal lifeis
acquired through a telemetry system.
This data is effectively the only source
of information for the second group of
modules monitoring the network.

Network o| Telemetry
Simulation Simulation
. Telemeter
- ‘\Data _______
MONITORING
y
| Observability
= Test
Estimation
Bad-Data Graphical
Processing Display
Monitored) = = = = = = =
Data CONTROL

Operator Valve
In’tagrrface 1 control

Figure 2 Water Network Monitoring
and Control software structure

A major role of the monitoring modules
is to validate the information about the
system state before it is used by the hu-
man operator and the control algo-
rithms. Since the telemetered data is
being updated without the intervention
of ahuman intermediary the monitoring
modules are said to be on-line to the
process.

After checking topological observabili-
ty of the system, with respect to the cur-
rent set of valid measurements, the
estimates of the state vector are calcu-
lated. Thisisfollowed by theidentifica-
tion of bad data points which were not
found during the preprocessing stage.
Depending on the state estimation algo-
rithm employed, the monitoring
procedure involves either an iterative
elimination of bad data from the set of
valid measurements and re-computation
of the state vector, or it simply markser-
roneous measurements having rejected

them in the course of the estimation.
The results obtained with the monitor-
ing modules are made available to the
operator in the form of a print-out,
graphical display and data file which is
also used by the control algorithms.

The third group of modules closes the
control loop by devising and imple-
menting control actions. The flow of in-
formation between the modules implies
that algorithmically calculated controls
are off-line to the process since they are
implemented by a human operator.
Such a structure is natural at the initial
stage of the computerised monitoring
and control of awater network. Howev-
er, it must be emphasized that the com-
puter assisted control can be easily
converted into a full on-line control
scheme since the system is monitored
on-line.

The water networks monitoring and
control application isinherently distrib-
uted. Central synchronisation and con-
trol, simulation, telemetry, estimation,
and operator interface tasks need to run
concurrently to keep the distributed
control system on-line. The ‘control-
loop’ structure of the DSS software im-
plies that, the failure of any of the com-
puting nodes executing individua
software modules will affect the entire
system. For example, if the node
processing the state estimation crashes,
the state estimates will rapidly run out-
of-date and gradually become irrel evant
to the real-time valve control module.
Hence the water networks monitoring
and control application has fundamental
requirements for both distribution and
reliability that only fault-tolerant dis-
tributed computing environments such
as FADI can deliver.

The Evaluation

The FADI-based implementation of the
Water System DSS has been tested, us-
ing several Sun SPARC workstations
(two SPARC_IPC, one SPARC_10 and
one SPARC _20), for a medium-size
(92-nodes) water distribution network.
PV M-TCP/IP was used for communica-
tion over a 10 Mbit/sec Ethernet.

The computational |oad associated with
the execution of the congtituent DSS
modules strongly depends on the varia-
tion of the meter readings, that are being

processed, and the presence of measure-
ment errors that need to be filtered-out.
For atypical pattern of water system op-
eration, a sequence of five monitoring
cycles was accomplished in under 2
minutes with an average CPU load of
approximately 30% and a message ex-
change rate between the distributed ap-
plications of 42 messages per second.
This illustrates that the Water System
DSS software represents a significant
chalenge from the computation and
communication load point of view.

In this context the efficiency of the nov-
e non-blocking checkpointing intro-
duced into FADI has been evaluated.
Figure 3 shows the relationshop be-
tween the checkpointing interval and
the application failure-free overhead.

The failure-free overhead at check-
pointing intervals of half a minute ap-
proaches 10% of the application
running time, but for the default meas-
urement scan rate it is below 5%. The
diagram provides a basis for ballancing
the concerns of fault-tollerance and the
efficiency as required by various appli-
cations. The advantage of FADI is that
it enables the customisation of the com-
puting environment.

Overhead (%)
45 N
40
35 \L\‘\‘\‘
30 Sequential
25 A Checkpting
20
15 Non-Block-
10 ing Ckpting
5 + +
Checkpointing
0.5 1 15 2 2.5 Interval (min)

Figure 3 Overhead of the fault-tolerant
execution of the DSS system

Theability to recover from the distribut-
ed system failure was tested by power-
ing-down or disconnecting from the
Ethernet the individual workstations
running the computational modules.
The FADI environment performed the
identification of the hardware faults and
the re-allocation of the affected compu-
tational modulesto the operational com-
puting nodes in a totally user-
transparent way. The average recovery
time for the water distribution networks
application was 8 seconds.

Conclusions

The fault-tolerant environment (FADI)
enables reliable execution of concur-
rent, distributed applications despite
hailures of the underlying computing
hardware. This integrated environment
encompasses al aspects of modern
fault-tolerant distributed computing:
automatic remote process allocation,
detection of hardware errors, and atech-
nique to recover distributed user proc-
esses running under FADI from these
errors.

Water distribution networks DSS exem-
plifies a class of industrial systems
where the FADI environment can be
usefully deployed. The software system
isinherently distributed and it needs to
execute on acontinuous basis. It can tol-
erate a small delay in the operation of
one or more of its tasks (while they are
rolled back and restarted from check-
points backup), but a complete halt of
the system can lead to a critica failure
of the decision-support system. FADI
system, developed at the Nottingham
Trent University, represents a low-cost
and efficient alternative to hardware-re-
dundancy based systems.

The experimenta results confirm that,
due to the non-blocking checkpointing
methodology, FADI imposes low over-
head on the running time of applica-
tions. The efficient failure recovery
under FADI isbound to be amajor asset
in the context of industrial system im-
plementations.

References

1. A. Bargiela, A. Argile, and J. Hartley.
“Parallel Processing for Probabilis-
tic Decision Support in Water Dis-
tribution Systems’, SERC Seminar,
Brunel University, September 1993.

2. M. Hurwicz, “Preparing for the Giga-
bit Ethernet. Byte Special Report on
Extending the Enterprise’, Byte,
Vol. 22 NO. 10, p. 63, October 1997.

3. Taha Osman, and Andrzej Bargiela
“Error Detection For reliable Dis-
tributed Simulations”, In proceed-
ings of the 7th European Simulation
Symposium, p. 385-362, 1995.

4, B. Appel et a. “Implications of Fault
Management and Replica Determin-

ism on the Rea-Time Execution
Scheme of VOTRICS.

5.L. Silvaand G. Silva. “ Global Check-
pointing for Distributed Programs’,
Proc. of the 11th Symposium on Re-
liable Distributed Systems, Huston,
Texas, p. 155-162, Oct. 1992.

6. T. Osman and A. Bargi€ela, “Process
Checkpointing in an Open Distribut-
ed Environment”, In the Proc. of the
11th European Simulation Multi-
Conference, p. 536-541, Turkey,
June 1997.

7. A. Bargiela. “On-Line Monitoring of
Water Distribution Networks”, PhD
Thesis, Faculty of Science, Univer-
sity of Durham, May 1984.

8. A. Bargidla and J. Hartley, “Paralld
Simulation of Large Scae Water
Distribution Systems’, Proceedings
of the 9th European Simulation
Multi-Conference, 1995.

9. A. Bargiela and D. Al-Dabass. “A
Simulated Real-Time Environment
for Verification of Advanced Water
Network Control Algorithms’, Sys-
tems Science Journal, Vol. 14, No.
3, 1988.

10. A. Geistet d. “PVM: Parallel Virtu-
al Machine. A Users’ Guideand Tu-
torial for Networked Parallel
Computing”. The MIT Press, Cam-
bridge, Massachusetts, 1994.

11. M.C.Chen “Distributed processor
implementation of a water system
monitoring and control”, Research
Report, NTU, 1996

