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Abstract

This paper is concerned with transductive learning. Although transduc-
tion appears to be an easier task than induction, there have not been many
provably useful algorithms and bounds for transduction. We present ex-
plicit error bounds for transduction and derive a general technique for
devising bounds within this setting. The technique is applied to derive
error bounds for compression schemes such as (transductive) SVMs and
for transduction algorithms based on clustering.

1 Introduction and Related Work

In contrast to inductive learning, in thetransductive settingthe learner is given both the
training and test sets prior to learning. The goal of the learner is to infer (or “transduce”)
the labels of the test points. The transduction setting was introduced by Vapnik [1, 2] who
proposed basic bounds and an algorithm for this setting. Clearly, inferring the labels of
points in the test set can be done using an inductive scheme. However, as pointed out
in [2], it makes little sense to solve an easier problem by ‘reducing’ it to a much more
difficult one. In particular, the prior knowledge carried by the (unlabeled) test points can
be incorporated into an algorithm, potentially leading to superior performance. Indeed,
a number of papers have demonstrated empirically that transduction can offer substantial
advantage over induction whenever the training set is small or moderate (see e.g. [3, 4,
5, 6]). However, unlike the current state of affairs in induction, the question of what are
provably effective learningprinciplesfor transduction is quite far from being resolved.

In this paper we provide new error bounds and a general technique for transductive learn-
ing. Our technique is based on bounds that can be viewed as an extension of McAllester’s
PAC-Bayesian framework [7, 8] to transductive learning. The main advantage of using this
framework in transduction is that here priors can be selected after observing the unlabeled
data (but before observing the labeled sample). This flexibility allows for the choice of
“compact priors” (with small support) and therefore, for tight bounds. Another simple ob-
servation is that the PAC-Bayesian framework can be operated with polynomially (inm, the
training sample size) many different priors simultaneously. Altogether, this added flexibil-
ity, of usingdata-dependent multiple priorsallows for easy derivation of tight error bounds
for “compression schemes” such as (transductive) SVMs and for clustering algorithms.

We briefly review some previous results. The idea of transduction, and a specific algorithm
for SVM transductive learning, was introduced and studied by Vapnik (e.g. [2]), where an



error bound is also proposed. However, this bound is implicit and rather unwieldy and,
to the best of our knowledge, has not been applied in practical situations. A PAC-Bayes
bound [7] for transduction with Perceptron Decision Trees is given in [9]. The bound is
data-dependent depending on the number of decision nodes, the margins at each node and
the sample size. However, the authors state that the transduction bound is not much tighter
than the induction bound. Empirical tests show that this transduction algorithm performs
slightly better than induction in terms of the test error, however, the advantage is usually
statistically insignificant. Refining the algorithm of [2] a transductive algorithm based on a
SVMs is proposed in [3]. The paper also provides empirical tests indicating that transduc-
tion is advantageous in the text categorization domain. An error bound for transduction,
based on theeffectiveVC Dimension, is given in [10]. More recently Lanckrietet al. [11]
derived a transductive bound for kernel methods based on spectral properties of the kernel
matrix. Blum and Langford [12] recently also established an implicit bound for transduc-
tion, in the spirit of the results in [2].

2 The Transduction Setup

We consider the following setting proposed by Vapnik ([2] Chp. 8), which for simplicity is
described in the context of binary classification (the general case will be discussed in the
full paper). LetH be a set of binary hypotheses consisting of functions from input space
X to {±1} and letXm+u = {x1, . . . , xm+u} be a set of points fromX each of which is
chosen i.i.d. according to some unknown distributionµ(x). We callXm+u thefull sample.
Let Xm = {x1, . . . , xm} andYm = {y1, . . . , ym}, whereXm is drawn uniformly from
Xm+u andyi ∈ {±1}. The setSm = {(x1, y1), . . . , (xm, ym)} is referred to as atraining
sample. In this paper we assume thatyi = φ(xi) for some unknown functionφ. The
remaining subsetXu = Xm+u \Xm is referred to as theunlabeled sample. Based onSm

andXu our goal is to chooseh ∈ H which predicts the labels of points inXu as accurately
as possible. For eachh ∈ H and a setZ = x1, . . . , x|Z| of samples define

Rh(Z) =
1
|Z|

|Z|∑

i=1

`(h(xi), yi), (1)

where in our casè(·, ·) is the zero-one loss function. Our goal in transduction is to learn
anh such thatRh(Xu) is as small as possible. This problem setup is summarized by the
following transduction “protocol” introduced in [2] and referred to asSetting 1:

(i) A full sampleXm+u = {x1, . . . , xm+u} consisting of arbitrarym + u points is
given.1

(ii) We then choose uniformly at random the training sampleXm ⊆ Xm+u and re-
ceive its labelingYm; the resultingtraining set is Sm = (Xm, Ym) and the re-
maining setXu is theunlabeled sample,Xu = Xm+u \Xm;

(iii) Using bothSm andXu we select a classifierh ∈ H whose quality is measured by
Rh(Xu).

Vapnik [2] also considers another formulation of transduction, referred to asSetting 2:

(i) We are given a training setSm = (Xm, Ym) selected i.i.d according toµ(x, y).

(ii) An independent test setSu = (Xu, Yu) of u samples is then selected in the same
manner.

1Theoriginal Setting 1, as proposed by Vapnik, discusses a full sample whose points are chosen
independently at random according to some source distributionµ(x).



(iii) We are required to choose our besth ∈ H based onSm andXu so as to minimize

Rm,u(h) =
∫

1
u

m+u∑

i=m+1

` (h(xi), yi) dµ(x1, y1) · · · dµ(xm+u, ym+u). (2)

Even though Setting 2 may appear more applicable in practical situations than Setting 1, the
derivation of theoretical results can be easier within Setting 1. Nevertheless, as far as the
expected losses are concerned, Vapnik [2] shows that an error bound in Setting 1 implies
an equivalent bound in Setting 2. In view of this result we restrict ourselves in the sequel
to Setting 1.

We make use of the following quantities, which are all instances of (1). The quantity
Rh(Xm+u) is called thefull sample riskof the hypothesish, Rh(Xu) is referred to as
the transduction risk(of h), andRh(Xm) is the training error (of h). Thus,Rh(Xm) is
the standard training error denoted byR̂h(Sm). While our objective in transduction is to
achieve small error over the unlabeled set (i.e. to minimizeRh(Xu)), it turns out that it is
much easier to derive error bounds for the full sample risk. The following simple lemma
translates an error bound onRh(Xm+u), the full sample risk, to an error bound on the
transduction riskRh(Xu).

Lemma 2.1 For anyh ∈ H and anyC

Rh(Xm+u) ≤ R̂h(Sm) + C ⇔ Rh(Xu) ≤ R̂h(Sm) +
m + u

u
· C. (3)

Proof: For anyh

Rh(Xm+u) =
mRh(Xm) + uRh(Xu)

m + u
. (4)

SubstitutingR̂h(Sm) for Rh(Xm) in (4) and then substituting the result for the left-hand
side of (3) we get

Rh(Xm+u) =
mR̂h(Sm) + uRh(Xu)

m + u
≤ R̂h(Sm) + C.

The equivalence (3) is now obtained by isolatingRh(Xu) on the left-hand side. 2

3 General Error Bounds for Transduction

Consider a hypothesis classH and assume for simplicity thatH is countable; in fact, in
the case of transduction it suffices to consider a finite hypothesis class. To see this note
that all m + u points are known in advance. Thus, in the case of binary classification
(for example) it suffices to consider at most2m+u possible dichotomies. Recall that in the
setting considered we select a sub-sample ofm points from the setXm+u of cardinality
m+u. This corresponds to a selection ofm pointswithoutreplacement from a set ofm+u
points, leading to them points beingdependent. A naive utilization of large deviation
bounds would therefore not be directly applicable in this setting. However, Hoeffding
(see Theorem 4 in [13]) pointed out a simple procedure to transform the problem into one
involving independentdata. While this procedure leads to non-trivial bounds, it does not
fully take advantage of the transductive setting and will not be used here. Consider for
simplicity the case of binary classification. In this case we make use of the following
concentration inequality, based on [14].

Theorem 3.1 Let C = {c1, . . . , cN}, ci ∈ {0, 1}, be a finite set of binary numbers, and
set c̄ = (1/N)

∑N
i=1 ci. Let Z1, . . . , Zm, be random variables obtaining their values



by samplingC uniformly at randomwithout replacement. SetZ = (1/m)
∑m

i=1 Zi and
β = m/N . Then, if2 ε ≤ min{1− c̄, c̄(1− β)/β},

Pr {Z −EZ > ε} ≤ exp
{
−mD(c̄ + ε‖c̄)− (N −m) D

(
c̄− βε

1− β

∥∥∥∥ c̄

)
+ 7 log(N + 1)

}
,

whereD(p‖q) = p log(p/q) = (1 − p) log(1 − p)/(1 − q), p, q,∈ [0, 1] is the binary
Kullback-Leibler divergence.

Using this result we obtain the following error bound for transductive classification.

Theorem 3.2 LetXm+u = Xm∪Xu be the full sample and letp = p(Xm+u) be a (prior)
distribution over the class of binary hypothesesH that may depend on the full sample. Let
δ ∈ (0, 1) be given. Then, with probability at least1− δ over choices ofSm (from the full
sample) the following bound holds for anyh ∈ H,

Rh(Xu) ≤ R̂h(Sm) +

√√√√
(

2R̂h(Sm)(m + u)
u

)
log 1

p(h) + ln m
δ + 7 log(m + u + 1)

m− 1

+
2

(
log 1

p(h) + ln m
δ + 7 log(m + u + 1)

)

m− 1
. (5)

Proof: (sketch) In our transduction setting the setXm (and thereforeSm) is obtained by
sampling the full sampleXm+u uniformly at random without replacement. We first claim
that

EΣmR̂h(Sm) = Rh(Xm+u), (6)

whereEΣm(·) is the expectation with respect to a random choice ofSm from Xm+u with-
out replacement. This is shown as follows.

EΣmR̂h(Sm) =
1(

m+u
m

)
∑

Sm

R̂h(Sm) =
1(

m+u
m

)
∑

Xm⊆Xm+n

1
m

∑

x∈Sm

`(h(x), φ(x)).

By symmetry, all pointsx ∈ Xm+u are counted on the right-hand side an equal number of
times; this number is precisely

(
m+u

m

)−(
m+u−1

m

)
=

(
m+u−1

m−1

)
. The equality (6) is obtained

by considering the definition ofRh(Xm+u) and noting that
(
m+u−1

m−1

)
/
(
m+u

m

)
= m

m+u .

The remainder of the proof combines Theorem 3.1 and the techniques presented in [15].
The details will be provided in the full paper. 2

Notice that when̂Rh(Sm) → 0 the square root in (5) vanishes and faster rates are obtained.
An important feature of Theorem 3.2 is that it allows one to use the sampleXm+u in order
to choose the prior distributionp(h). This advantage has already been alluded to in [2], but
does not seem to have been widely used in practice. Additionally, observe that (5) holds
with probability at least1 − δ with respect to the random selection of sub-samples of size
m from the fixed setXm+u. This should be contrasted with the standard inductive setting
results where the probabilities are with respect to a random choice ofm training points
chosen i.i.d. fromµ(x, y).

The next bound we present is analogous to McAllester’s Theorem 1 in [8]. This theorem
concerns Gibbscomposite classifiers, which are distributions over thebase classifiersin
H. For any distributionq overH denote byGq the Gibbs classifier, which classifies an

2The second condition,ε ≤ c̄(1 − β)/β, simply guarantees that the number of ‘ones’ in the
sub-sample does not exceed their number in the original sample.



instance(in Xu) by randomly choosing, according toq, one hypothesish ∈ H. For Gibbs
classifiers we now extend definition (1) as follows. LetZ = x1, . . . , x|Z| be any set of
samples and letGq be a Gibbs classifier overH. The risk ofGq over Z is RGq(Z) =

Eh∼q

{
(1/|Z|) ∑|Z|

i=1 `(h(xi), φ(xi))
}

. As before, whenZ = Xm (the training set) we

use the standard notation̂RGq(Sm) = RGq(Xm). Due to space limitations, the proof of
the following theorem will appear in the full paper.

Theorem 3.3 LetXm+u be the full sample. Letp be a distribution overH that may depend
on Xm+u and letq be a (posterior) distribution overH that may depend on bothSm and
Xu. Letδ ∈ (0, 1) be given. With probability at least1− δ over the choices ofSm for any
distributionq

RGq(Xu) ≤ R̂Gq(Sm) +

√√√√
(

2R̂Gq(Sm)(m + u)
u

)
D(q‖p) + ln m

δ + 7 log(m + u + 1)
m− 1

+
2

(
D(q‖p) + ln m

δ + 7
m log(m + u + 1)

)

m− 1
.

In the context of inductive learning, a major obstacle in generating meaningful and effec-
tive bounds using the PAC-Bayesian framework [8] is the construction of “compact pri-
ors”. Here we discuss two extensions to the PAC-Bayesian scheme, which together allow
for easy choices of compact priors that can yield tight error bounds. The first extension
we offer is the use ofmultiple priors. Instead of a single priorp in the original PAC-
Bayesian framework we observe that one can use all PAC-Bayesian bounds with a number
of priors p1, . . . ,pk and then replace the complexity termln(1/p(h)) (in Theorem 3.2)
by mini ln(1/pi(h)), at a cost of an additionalln k term (see below). Similarly, in The-
orem 3.3 we can replace the KL-divergence term in the bound withmini D(q||pi). The
penalty for usingk priors is logarithmic ink (specifically theln(1/δ) term in the original
bound becomesln(k/δ)). As long ask is sub-exponential inm we still obtain effective
generalization bounds. The second “extension” is simply the feature of our transduction
bounds (Theorems 3.2 and 3.3), which allows for the priors to be dependent on the full
sampleXm+u. The combination of these two simple ideas yields a powerful technique for
deriving error bounds in realistic transductive settings. After stating the extended result we
later use it for deriving tight bounds for known learning algorithms and for deriving new
algorithms. Suppose that instead of a single priorp overH we want to utilizek priors,
p1, . . . ,pk and in retrospect choose the best among thek corresponding PAC-Bayesian
bounds. The following theorem shows that one can use polynomially many priors with
a minor penalty. The proof, which is omitted due to space limitations, utilizes the union
bound in a straightforward manner.

Theorem 3.4 Let the conditions of Theorem 3.2 hold, except that we now havek prior
distributionsp1, . . . ,pk defined overH, each of which may depend onXm+u. Let δ ∈
(0, 1) be given. Then, with probability at least1−δ over random choices of sub-samples of
sizem from the full-sample, for allh ∈ H, (5) holds withp(h) replaced bymin1≤i≤k pi(h)
andlog 1

δ is replaced bylog k
δ .

Remark: A similar result holds for the Gibbs algorithm of Theorem 3.3. Also, as noted by
one of the reviewers, when the supports of thek priors intersect (i.e. there is at least one
pair of priorspi andpj with overlapping support), then one can do better by utilizing the
“super prior”p = 1

k

∑
i pi within the original Theorem 3.2. However, note that when the

supports are disjoint, these two views (of multiple priors and a super prior) are equivalent.
In the applications below we utilize non-intersecting priors.



4 Bounds for Compression Algorithms

Here we propose a technique for bounding the error of “compression” algorithms based on
appropriate construction of prior probabilities. LetA be a learning algorithm. Intuitively,
A is a “compression scheme” if it can generate the same hypothesis using a subset of the
data. More formally, a learning algorithmA (viewed as a function from samples to some
hypothesis class) is a compression scheme with respect to a sampleZ if there is a sub-
sampleZ ′, Z ′ ⊂ Z, such thatA(Z ′) = A(Z). Observe that the SVM approach is a
compression scheme, withZ ′ being determined by the set of support vectors.

Let A be a deterministic compression scheme and consider the full sampleXm+u. For
each integerτ = 1, . . . ,m, consider all subsets ofXm+u of sizeτ , and for each subset
construct all possible dichotomies of that subset (note that we are not proposing this ap-
proach as an algorithm, but rather as a means to derive bounds; in practice one need not
construct all these dichotomies). A deterministic algorithmA uniquely determines at most
one hypothesish ∈ H for each dichotomy.3 For eachτ , let the set of hypotheses generated
by this procedure be denoted byHτ . For the rest of this discussion we assume the worst
case where|Hτ | =

(
m+u

τ

)
(i.e. if Hτ does not contains one hypothesis for each dichotomy

the bounds improve). The priorpτ is then defined to be a uniform distribution overHτ .
In this way we havem priors,p1, . . . ,pm which are constructed using onlyXm+u (and
are independent ofSm). Any hypothesis selected by the learning algorithmA based on
the labeled sampleSm and on the test setXu belongs to∪m

τ=1Hτ . The motivation for this
construction is as follows. Eachτ can be viewed as our “guess” for the maximal number of
compression points that will be utilized by a resulting classifier. For each suchτ the prior
pτ is constructed over all possible classifiers that useτ compression points. By systemati-
cally considering all possible dichotomies ofτ points we can characterize a relatively small
subset ofH without observing labels of the training points. Thus, each priorpτ represents
one such guess. Using Theorem 3.4 we are later allowed to choose in retrospect the bound
corresponding to the best “guess”. The following corollary identifies an upper bound on
the divergence in terms of the observed size of the compression set of the final classifier.

Corollary 4.1 Let the conditions of Theorem 3.4 hold. LetA be a deterministic learning
algorithm leading to a hypothesish ∈ H based on a compression set of sizes. Then
with probability at least1 − δ for all h ∈ H, (5) holds withlog(1/p(h)) replaced by
s log(2e(m + u)/s) andln(m/δ) replaced byln(m2/δ).

Proof: Recall thatHs ⊆ H is the support set ofps and thatps(h) = 1/|Hs| for all
h ∈ Hs, implying thatln(1/ps(h)) = |Hs|. Using the inequality

(
m+u

s

) ≤ (e(m+u)/s)s

we have that|Hs| = 2s
(
m+u

s

) ≤ (2e(m + u)/s)s. Substituting this result in Theorem 3.4
while restricting the minimum overi to be overi ≥ s, leads to the desired result. 2

The bound of Corollary 4.1 can be easily computed once the classifier is trained. If the size
of the compression set happens to be small, we obtain a tight bound. SVM classification is
one of the best studied compression schemes. The compression set for a sampleSm is given
by the subset of support vectors. Thus the bound in Corollary 4.1 immediately applies with
s being the number of observed support vectors (after training). We note that this bound
is similar to a recently derived compression bound for inductive learning (Theorem 5.18 in
[16]). Also, observe that the algorithm itself (inductive SVM) did not use in this case the
unlabeled sample (although the bound does use this sample). Nevertheless, using exactly
the same technique we obtain error bounds for thetransductiveSVM algorithms in [2, 3].4

3It might be that for some dichotomies the algorithm will fail. For example, an SVM in feature
space without soft margin will fail to classify non linearly-separable dichotomies ofXm+u.

4Note however that our bounds are optimized with a “minimum number of support vectors” ap-
proach rather than “maximum margin”.



5 Bounds for Clustering Algorithms

Some learning problems do not allow for high compression rates using compression
schemes such as SVMs (i.e. the number of support vectors can sometimes be very large).
A considerably stronger type of compression can often be achieved by clustering algo-
rithms. While there is lack of formal links between entirely unsupervised clustering and
classification, within a transduction setting we can provide a principled approach to using
clustering algorithms for classification. LetA be any (deterministic) clustering algorithm
which, given the full sampleXm+u, can cluster this sample into any desired number of
clusters. We useA to clusterXm+u into 2, 3 . . . , c clusters wherec ≤ m. Thus, the al-
gorithm generates a collection of partitions ofXm+u into τ = 2, 3, . . . , c clusters, where
each partition is denoted byCτ . For each value ofτ , letHτ consist of those hypotheses
which assign an identical label to all points in the same cluster of partitionCτ , and define
the priorpτ (h) = 1/2τ for eachh ∈ Hτ and zero otherwise (note that there are2τ possi-
ble dichotomies). The learning algorithm selects a hypothesis as follows. Upon observing
the labeled sampleSm = (Xm, Ym), for each of the clusteringsC2, . . . , Cc constructed
above, it assigns a label to each cluster based on the majority vote from the labelsYm of
points falling within the cluster (in case of ties, or if no points fromXm belong to the
cluster, choose a label arbitrarily). Doing this leads toc − 1 classifiershτ , τ = 2, . . . , c.
For eachhτ there is a valid error bound as given by Theorem 3.4 and all these bounds are
valid simultaneously. Thus we choose the best classifier (equivalently, number of clusters)
for which the best bound holds. We thus have the following corollary of Theorem 3.4 and
Lemma 2.1.

Corollary 5.1 LetA be any clustering algorithm and lethτ , τ = 2, . . . , c be classifications
of test setXu as determined by clustering of the full sampleXm+u (into τ clusters) and
the training setSm, as described above. Letδ ∈ (0, 1) be given. Then with probability at
least1 − δ, for all τ , (5) holds withlog(1/p(h)) replaced byτ and ln(m/δ) replaced by
ln(mc/δ).

Error bounds obtained using Corollary 5.1 can be rather tight when the clustering algorithm
is successful (i.e. when it captures the class structure in the data using a small number of
clusters).

Corollary 5.1 can be extended in a number of ways. One simple extension is the use of
anensembleof clustering algorithms. Specifically, we can concurrently applyk clustering
algorithm (using each algorithm to cluster the data intoτ = 2, . . . , c clusters). We thus
obtainkc hypotheses (partitions ofXm+u). By a simple application of the union bound
we can replaceln cm

δ by ln kcm
δ in Corollary 5.1 and guarantee thatkc bounds hold si-

multaneously for allkc hypotheses (with probability at least1 − δ). We thus choose the
hypothesis which minimizes the resulting bound. This extension is particularly attractive
since typically without prior knowledge we do not know which clustering algorithm will
be effective for the dataset at hand.

6 Concluding Remarks

We presented new bounds for transductive learning algorithms. We also developed a new
technique for deriving tight error bounds for compression schemes and for clustering al-
gorithms in the transductive setting. We expect that these bounds and new techniques will
be useful for deriving new error bounds for other known algorithms and for deriving new
types of transductive learning algorithms. It would be interesting to see if tighter trans-
duction bounds can be obtained by reducing the “slacks” in the inequalities we use in our
analysis. Another promising direction is the construction of better (multiple) priors. For ex-
ample, in our compression bound (Corollary 4.1), for each number of compression points



we assigned the same prior to each possible point subset and each possible dichotomy.
However, in practice a vast majority of all these subsets and dichotomies are unlikely to
occur.
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