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Abstract—To exploit frequency diversity in Wi-Fi channels, [3], [6], [8], [9], [12]. Moreover, for N x N Multiple-Input-
instantaneous channel quality must be estimated. Howevethere  Multiple-Output (MIMO) systemsN? channels have to be
is a trade-off between acquiring channel quality informaton  egtimated [7] resulting in substantial protocol inefficignin
and improving protocol efficiency because channel estimain thi the hiah data th hout of 2 MIMO t t
consumes time and frequency resource that ideally should be (S €aseé, the high data throughput ot a system canno
used for data transfer. In this paper, we present D-Fi (Divesity_ be aCh|eVed due to the |arge OVerhead Of Channel estimation.
aware Wi-Fi), a novel Wi-Fi PHY/MAC protocol, that capitali zes In short, there is a trade-off between frequency diversiting
on frequency diversity gains while sustaining protocol effiiency. gnd protocol efficiency.

The D-Fi design allows to estimate channel quality while D-F The research approaches to achieve frequency diversity

is performing channel contention using an OFDM-based Bloom . t ized into t o iants of Wi
filter. To resolve the ambiguity caused by the Bloom filter, we gains are categorized into two groups; (i) variants o -

adopt two methods: (i) An analysis-based multi channel baakit Fi Systems that improve the protocol efficiency [10], [11],
method enables to explore/exploit frequency diversity wheé [13] and (ii) frequency diversity aware protocols for varso

reducing the occurrence of the ambiguity. (i) Applying madine  wireless networks such as WIMAX [2], 3GPP LTE [3], [31],
learning (ML) methods to the D-Fi PHY/MAC protocol corrects [32] and Wi-Fi networks [8] [9] [12] [30] However. norod

the ambiguity taken place already and makes our protocol o L . .
reliable. We have shown the feasibility of D-Fi by implemening them explore both of the conflicting objectives - i.e., regre

it on the USRP/GNURadio platform. Experiments and trace- Of channel estimation overhead and protocol efficiency -
driven simulations show that D-Fi successfully achieveséquency simultaneously. Most previous work emphasizes mainly one

diversity gains without losing improved protocol efficieng. side of these [8], [9], [11], [12], [13] since the two objects
are considered as orthogonal to each other [10] (but it is not
true as we have discussed above). Also, frequency diversity
Frequency diversity is one of the characteristics that khowaware studies are highly theoretical rather than praci8a|
be considered in designing wireless communication systeriil], [32], i.e., these researchers solved the channedatilon
especially for ones that operate over a wide frequency bapblem assuming the perfect channel information is given.
such as WIMAX [2] and 3GPP LTE [3]. In addition to We argue that satisfying two conflict objectives, achieving
spatial and temporal diversities, signals transmitted awgide frequency diversity gain and protocol efficiency, boils dow
frequency band experience independent fluctuations acressacquisition of channel quality information with a mini-
frequencies. This phenomenon is generally called “frequenmum channel estimation cost. In this paper, we present D-Fi
selective fading” [4]. Frequency diversity is ignored inneo (Diversity-aware Wi-Fi), a novel Wi-Fi PHY/MAC protocol
ventional WiFi systems because these systems use a chatinet exploits frequency diversity while sustaining pratoef-
as a whole. However, adoption of OFDM in 802.11 WLANSiciency. Specifically, D-Fi collects channel informatiomie
triggered recent research interests [8], [9], [12] in hatv® resolving channel contentions using an OFDM-based Bloom
gains from frequency diversity. The importance of frequendilter without requiring a dedicated channel estimation haec
diversity research becomes more important than ever as IEREmM. D-Fi can be combined with other protocols because it is
802.11 working group (WG) is standardizing the use of widerrthogonal to those existing Wi-Fi proposals [10], [11]3][1
channels. For example, 802.11n [1] can already use a 40MHZ] custom-tailored for improving protocol efficiency.
channel by Phased Coexistence Operation (PCO) and 802.11&khe D-Fi protocol has the following features.
will provide up to a 160MHz channel. Accordingly, several e D-Fi channelizes a Wi-Fi band into several orthogonal
Wi-Fi protocols [8], [9], [12] exploiting frequency divetg subchannels based on the OFDM technique and uses each
have already been proposed recently in academia. of them as a channel access unit. This channelized medium
To harness frequency diversity, a wireless communicatiaecess amortizes MAC coordination burdens and hence im-
system must provide a channel quality estimation functipna proves overall MAC protocol efficiency. Moreover, it expki
Acquiring channel quality information consumes time anftequency diversity inherent in a wide band by a frequency-
frequency resource that ideally should be used for datafgan aware subchannel allocation scheme.
For example, many current wireless systems estimate channe D-Fi estimates channel quality while performing con-
quality using a training sequence (pilot) in a preamble ensp tention based channel allocation. To do so, D-Fi adopts a
dedicated time only for the channel estimation purposd?]], Bloom filter based channel contention mechanism. Specifi-
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cally, the D-Fi MAC protocol uses RTS/CTS-like Collision II. D-FI DESIGN

Resolution reQuest (CRQ_)/CoIIision Resolution rePly (FRP p_Fj is a CSMA-based Wi-Fi PHY/MAC protocol that
frames through a Bloom filter. A CRQ/CRP frame lasts onlyerforms wireless channel contention and channel quality
for a few OFDM symbols. The overhead of D-Fi is muchystimation at the same time. Generally, channel quality es-
smaller than that of the legacy RTS/CTS frame. Multiplgmation incurs overhead because extra estimation timéoand
stations (STAs) contend for subchannels simultaneously gGining sequences (pilot) are used for estimation. D-Fi ac
cording to estimated subchannel quality as well as thefiidra qyires channel information while STAs are performing crenn

demands. An AP can estimate the uplink channel quality @fntention and no additional overheads are required. Based
the STAs using this synthesized CRQ frame without additiong, the estimated channel quality, D-Fi exploits frequency

channel estimation overhead. After an AP perform frequencyersity. In this section, we detail the design of the D-Fi
aware subchannel allocation based on the channel estimggs /vAC.

then it broadcasts a CRP frame to inform the STAs of the o
result of channel allocation. A. Channelization

e Bloom filter based channel contention incurs the am- Taking a large Fast Fourier Transform (FFT) window size
biguity problem because of an intrinsic characteristic of @eans a long OFDM data symbol in time. Therefore, for the
Bloom filter. D-Fi uses two methods to solve the problenpurpose of good protocol efficiency, it is desirable to cteoas
Firstly, an analysis-based multi channel backoff alganith jarge FFT window. Although it is possible to choose any large
reduces the occurrence of the ambiguity while allowing DEFT size theoretically, there are several practical caortrat
Fi STAs to distributively explore/exploit frequency digély. prevent large FFT [4]: (i) Computational complexity incsea
Next, applying machine learning (ML) algorithms to the D-Fas an FFT size increases since the theory tells us that the com
protocol resolves the ambiguity so that D-Fi can operate thgexity of the N-points FFT(or inverse FFT) i8(N log N).
MAC protocol reliably. (ii) The frequency separation between subcarriers is ifeper

We implemented the OFDM-based D-Fi PHY/MAC on ahese limitations are generally caused by mismatched-oscil
testbed consists of four USRPs/GNUradios. The experimeafors, Doppler shift, or timing synchronization errorsnd\
shows the feasibility and practicality of the D-Fi PHY/MACthese factors eventually lead to lose orthogonality betwee
protocol. Further, we used detailed trace-driven simaifeti subcarriers introducing non-negligible inter carrieeiriérence
to evaluate the performance of D-Fi. Our results show th@tl) in practice. In D-Fi, to deal with such limitations, we
D-Fi has up to 3x and 1.5x better performance in termghoose the FFT size such that an OFDM symbol is 256/512
of throughput compared to existing 802.11n and FICA [10points in a 20/40MHz channel (subcarrier bandwidth is about
respectively. 78.12KHz.).

In summary, this paper makes the following contributions. Coherence bandwidth is a statistical measure of the range of
() We design and implement D-Fi, a Wi-Fi PHY/MAC frequencies over which the channel can be considered “flat”.
protocol that exploits frequency diversity while sustaii Recent measurement studies [8], [12], [16], [17] have shown
the MAC efficiency. (i) We provide a detailed analysis tahatthe minimum coherence bandwidth over the industrial, s
address the ambiguity problem arisen from the use of a Bloashtific, and medical (ISM) license-free band (near 2.4/55Hz
filter. Based on the analysis we propose a multi chanrigl approximately 3MHz in indoor environments. Therefore,
backoff algorithm that explores/exploits frequency déir when a channel access unit (i.e., a subchannel) is narrower
distributively while reducing the occurrence of ambiguitthan 3MHz it can be considered as flat within a subchannel
(iii) We apply ML methods to the D-Fi PHY/MAC protocol and is frequency-selective between subchannels.
and demonstrate the superior performance of ML methods inThese measurement results motivate us to develop D-Fi, a
solving the ambiguity problem arisen in the D-Fi PHY/MACWi-Fi protocol that exploits frequency-selectivity. Weotdse
protocol. (iv) We demonstrate the feasibility of D-Fi withio 17 contiguous subcarriers to form a subchannel (bandwidth
prototype implementation on the USRP/GNURadio platformg about 1.4MHz.). Among 17 subcarriers, 16 subcarriers are
and evaluate its performance using the detailed tracewiriysed for data transmission and one subcarrier is used as a
simulation. pilot channel that tracks the subchannel quality while ta@d

The rest of this paper proceeds as follows. Section i being transferred. There are 14 orthogonal subchannels i

describes the design of the D-Fi PHY/MAC. We then providg 20MHz band, and they are frequency-selective one another
a detailed analysis to deal with the ambiguity arisen from thn typical indoor environments.

use of a Bloom filter and propose a multi channel backoff .

algorithm in section I1l. Section IV describes ML methods agB: Protocol Overview

plied to solve the ambiguity problem in the D-Fi protocol. We D-Fi uses Contention Resolution reQuest (CRQ) / Con-
show the performance of ML algorithms and discusses sorn@mtion Resolution rePly (CRP) frame exchanges for channel
ML-related issues. Section V evaluates the D-Fi's perforoea contention (Fig. 1). Note that a CRQ/CRP frame lasts only for
using our experimentation and trace-driven simulatiowtise a few OFDM symbols and so its overhead is much smaller
VI reviews the related work. Finally, Section VIl concludes than that of the legacy RTS/CTS frame. If the medium is
paper. idle for more than distributed interface space (DIFS) STAs
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Fig. 1. The D-Fi MAC protocol overview.

may transmit CRQ symbols simultaneously. Each STA selects. 2. The description for two Bloom filter based operatiomserting
K subchannels Iikely to have gOOd channel quality andgelements, i.e._, signatures (CRQ) ‘and testing member_srRQ(@eco_ding).

. : These operations are performed in one subchannel (i.e. Bt filter).
modulates his owrsignatureon each selected SubChannelBroadcast of a channel contention result (CRP) is also iiestat the bottom
Consequently, multiple CRQs sent from multiple STAsS arrives the figure.
at the AP. These CRQ symbols can be misaligned due to
different propagation delay, sensing time (CCA), and RFRXT
switching delay. However the total misalignment has beenSTAs may join and leave dynamically. At the time of
shown to be tightly bounded [10]. In an OFDM system, asssociation, an AP allocates a signature to the joining STA.
long as the misalignment is less than the cyclic prefix (CPJhe allocated signatures among 256 possible ones are called
a receiver can decode misaligned signals [4]. We set the D*Falid”. If a STA is inactive for long time, its signature is
CP length such that the maximum alignment is less than @ken back and set to be “invalid”.
length. 2) CRQ Frame: To facilitate simultaneous channel con-

An AP can extract STAs' uplink channel quality informationtention and estimation, D-Fi uses the Bloom filter [18]. A
from CRQ frames. Then the AP allocates subchannels to #gbchannel where signatures are transmitted can be coedide
STAs based on any channel allocation policy, for examplgs a Bloom filter consists of 16 bits. If only one signature
proportional fairness or throughput-optimum. is transmitted over a subchannel, then we can easily detect

To inform STAs of the channel allocation results, the Akhe signature. If two or more signatures collide, the AP uses
broadcasts a CRP frame. This frame conveys the signaturetff Bloom filter technique to resolve signatures. The pmces
the contention winner and transmission rates for futur@ dasf identifying signatures from a Bloom filter is called "CRQ
transmission. decoding” (Fig. 2).

C. Channel Contention and Estimation In CRQ decoding, we should handle two types of ambiguity;

1) Signature: A signature is a binary bit sequence of 1éhe physical and logical errors.

bits. A STA receives a unique signature when it joins a Wb Physical errors. One bit in a Bloom filter is actually one

Fi network. The rule for assigning a signature is as foIIows:e 'Tg)cl\tﬂejus%%ir;r?ir.eré zT,?es\f\glrlmt;an;;ngi anZ![g?:I gi\:;rérsd;me
First, divide a 16 binary bits sequence into four continuou b 9 9 '

bits subsequences. Then choose one bit in each subsequgHgg Cy separation between subcarriers is imperfect irtipeac

and mark chosen four bits (one bit from each subsequenge ubcarrier suffers from so-called “spectral leakage’].[19
as “1” and the rest as “0". Therefore, 256 (4%) possible signal spills over adjacent subcarriers. Since subaarrie

signatures exist. Note that the number of STAs in a WLAILf“VeI signal detection is implemented by comparing between

. . . a signal power level and a threshold [10], [11] the signal can
s typically not very large £ order of tens and 256 is enoug%e fglsels detected. We call this even[t “E)it\[Nis]e falsegrmsit
for unique allocation to all STAS). :

A signature is carried over one subchannel; one bit ov} itwise-FP)” and the event that the signal is falsely misse

one subcarrier. We use binary amplitude modulation (BA Itwise false negative (bitwise-FN) '.BOth of the eve_nma
to modulate a single bit on each subchannel. Specifical e physical errors. Careful and adaptive threshold aujessts

an make them negligible. Our software radio implementatio

BAM uses On-Off signaling that maps a binary “0” to zer ) . . . .
amplitude and a binary “1” to a random complex number xplained in section V) as_well as other |mpleme_ntat|orﬁl§,[1
1] showed that the physical error rates are quite small.

the unit circle ¢79) in a subcarrier. In other words, no signal i Logical An intrinsic ch istic of a Bl il
transmitted to modulate a binary “0” in a subcarrier and adfixe ogical errors. An intrinsic characteristic of a Bloom filter

powered random complex signal is transmitted to modulatdSathe 10gical error. During the CRQ decoding process, an

binary “1” in a subcarrier. A receiver can easily detect a BAI\ﬁ‘P falsely determines the signatures that are not actually

symbol by measuring a signal power level on a subcarri quested. It is generally called “False Positive (FP)” of a
without demodulating an exact symbol Bloom filter. For example, two stations STA1 and STA2,

whose signatures are “1000 1000 0010 0001” and "1000
1They are not necessary to be continuous. 1000 0001 00107, respectively, request to the same subehann



terms of accuracy in our implementation. For most of the gase
(> 90%), the estimation error of our method is less than or
equal to 1 dB (Fig. 3).
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D. Proportional Fairness

Once channel quality estimates are available, an AP can
allocate subchannels to STAs by the proportional fairness
algorithm in [29]. Proportional fairness maximizes the sum
of logarithmic throughput over the fixed numbé¥§ of time
slots. LetT;[n] be the throughput of a STA in a time slot
028 : ' : 1 n, the throughput of a STA during W time SlOtSTZ—(W)[n] is
then:
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Fig. 3. The experimental result: the empirical CDF for théneation error whereng is the number of slots look back to the past, and
of our method. W — ng — 1 is the number of slots in the future. With the
equation (1), our objective function is written as:

resulting in a Bloom filter of “1000 1000 0011 0011". The max Y _log T, [n] )
AP should decode “1000 1000 0011 0011" as a superposition i

of the signatures of STAL and STA2. However, due t0 thg the Shannon's theorem [4], the throughput can be further
inherent ambiguity, it may falsely decode it as “1000 100Qy \itten as a function of estimated SNRs. The difference
0001 0001” and “1000 1000 0010 0010 as well. Althoughom the original problem is that we apply the proportional
D-Fi only considers STAs having valid signatures as channgfiness algorithm to the reduced problem space since an AP
contenders, there still is non-negligible FP rate. can only estimate the channel quality of the STAs who have
We propose two methods to solve the ambiguity problem; ahade a request. Even with this restriction, in subsectiddy V-
analysis based multi channel backoff algorithm and machigg will show that D-Fi has close to the optimal performance

backoff algorithm aims to limit the number of channel redses

for one subchannel. On average a STA will requEssub- E. Why Bloom Filter?

channels at once, and an appropriate valufoé determined  pasically, a Bloom filter is a space-efficient data structure
by the analysis shown in section Ill. The multi channel bakaHere, the space means the number of subcarriers consguctin
algorithm selectds” preferable (i.e., high quality) subchannelg gypchannel. As we have described in subsection II-A, we
in a distributed manner to exploit frequency diversity. OBannot use large FFT windows. The price paid for this space-
the other hand, ML-based CRQ decoding aims to reduce @iciency is probabilistic ambiguity inherent to a Blooniit
probability of logical and physical errors in CRQ decoding te|is us that the element eithelefinitelyis not in the set
(explained in section IV). In short, multi channel backoff, may bein the set. The termrhay means that a Bloom
prevents the logical errors while ML-based CRQ decodingter may generate ambiguity (i.e., false positives). IFD-
corrects the physical and logical errors. resolution of the ambiguity is particularly important basa

3) CRP Frame:To inform a STA of a channel allocationjt estimates the channel quality based on the unique bits in
result, an AP broadcasts a CRP frame. This frame conveys #ignatures. Unfortunately, it is impossible to eliminatdsé
signature of a contention winner and data rate informatiwn fpositives completely and hence we turn our attention to find
future data transmission for each subchannel. Since titere & method to mitigate the false positive probability. As we
256(= 2°) signatures, 8 bits are used for a signature and th#!| see in section IV, machine learning algorithms (MLspar
rest are used for data rate information (Fig. 2). good solutions to this problem. In addition, a careful ckoic

4) Channel Quality EstimationAssume that all stations of hashing functions (e.g., MD5 [18]) can further reduce the
use the same transmission power and the total transmissanbiguity. This application is left for future work.
energy spreads evenly over each of four bits marked as “1”
when sending a CRQ symbol. An AP can guess the channel
qualities from the signal strength of unique bits. A unique In this section, we analyze the false positive probabilitg a
bit is a bit that is transmitted by one station only. After CRGhe collision probability of the contention mechanism irFD-
decoding, we determine unique bits and use the averageyen@gsed on the analysis we propose a multi channel backoff
level of the unique bits belong to a signature as the chanmeéthod that enables a STA to explore/exploit frequencyrelive
quality (Fig. 2). sity distributively. It also reduces the false positive lpability

We have evaluated the channel estimation performanceaithe Bloom filter based contention mechanism.

I11. ANALYSIS



subsequence(m/h) Now we extend to the case of multiple requests onto
r ; a subchannel. If there are requests to a subchannel, the

\/!\spectral leakage

T ] 177~ 111 probability that a certain bit ig_set to “0” isl?;;ega_ti,qe =
1 (1= PJ,sitive)”» and the probability that a certain bit is set to
inside bit boundary bit “1Mis Plogitive = 1 — (1 — Pplositm)". Now consider a STA

that does not contend for the subchannel. Even if the STA
Fig. 4. The spectral leakage by the other hash function céyn @scur at does not partigipate in qu_]tentionf each othsignatur(_a bits
the boundary of the subsequence. has non-negative probability of being “1”. The probabitityat
all h bits are “1”, which would cause an AP to erroneously
claim that a STA has requested for the subchannel, is given
We assume a WLAN consists &f STAs andC subchan- as:
nels. As a Bloom filter is used for each subchantiéBloom Pﬁz_sf;osime = (P;;ositive)h (6)
filters exist. A Bloom filter consists ofn binary bits (i.e.,
subcarriers) and hash functiond A STA can request foix  For the collision probability of D-Fi, it is zero because aR A
subchannels each time it contends for a channel. On avera@Ji@cates a subchannel to exactly one STA.
r (= ¥xK) STAs will select a certain subchannel. In other FOr the comparison purpose, we also analyze the false
words, on average; elements (signatures) will be insertedPositive and collision probabilities of the FICA [10] cont®n
into a Bloom filter. Given that hash functions are uniformfnechanism. In FICA, a STA transmits a request signal over
the probability that a certain bit is selected by onehdfiash ©ne randomly chosen subcarrier within a subchannel. An AP
functions is2 . selects one active subcarrier and all the STAs who have sent
Let us deFir\L/e the probability that a subcarrier is set to Be «fhe signal on that subcarrier are allowed to use the subehann
taking into account the spectral leakage. An OFDM Systefﬂr the next data transmission. In addition, even if FICA sloe
suffers from high spectral sidelobes [19], and conseqgyenthot suffer from logical false positives, it may wrongly sele
a subcarrier may accidentally be set to “1” because of tieactive subcarriers due to the spectral leakage. Thexefoe
leakage of power from subcarriers nearby. Assume that tReobability of the false positive in FICA is:
only adjace_r_n subcarriers cause power leakage.R.gl. be N ﬂggAmme — P(A bit is set to “1” w/ spectral leakage
the probability of the spectral leakage. Then the prob@bili sepos

that a certain bit is set to “1” because of the spectral leakag — P(Abitis slet t02“;" wio spectral Ieakagie
i« 2hPloar ak oy ”
o = (1= (1= (C+ =) = (1= (1~ —))

Remind that each of our hash functions selects one bit from m m 7(7%)
each of the non-overlapping subsequences (each subsequenc
is m/h bits long). The probability that an inside bit - a bit noSince a collision occurs only when two or more STAs send
adjoining to the subsequence boundary - is set to “1” is giveheir request signals on the same subcarrier, the collision
as: probability in FICA is:
£+ 2h]Dleak (3)

m m PcFolIlzC':sonn =1- (1 - _)Til (8)

While consecutive inside bits cannot be selected by two m
hash functions at the same time, two boundary bits can be AetRemarks
to “1” by two hash functions (Fig. 4). Therefore we have to To validate our analysis, we have performed simple sim-
subtract the probability of the event that two hash fundtionlations (Fig. 5). As anticipated, the false positive rase i
simultaneously set the bits at the boundary as “1” from thgignificant when the number of requests for a subchannel

equation (3): is large. The D-Fi's signature based contention mechanism
h o 2hPus hoy performs better than FICAs when the number of requests
= (E) Piear (14 Piear) (4) is less than 2.6; its collision probability and false positi

. . i __&Tr]obability are smaller than those of FICA. Even so, it is
hCombmmg quatlon (3)“ ein.d.equanon (4), the probabili portant to control the number of requests for a subchannel
that a certain bit is set to “1" is: In order to make the number of requests for a subchannel

1 2(% + 2’”,3% — (%)QPleak(lJereak)) operate within an appropriate range, we propose a multi
Prositive = m channel backoff method. Our multi-channel backoff method
(m — 2)(h 4 2hPrear) (5) enables a STA to explore frequency diversity distribugivel
+ ~h - m while controlling the number of requests to a subchannel.
h
Then the probability that a certain bit is set to “0” is— B. Multi Channel Backoff
P} sitive- We propose a multi-channel backoff method that distribu-

tively controls the number of subchannels a STA requests.
2Each bit of a signature is chosen by each hash function. Each STA maintains a vectol,Pr(1), Pr(2),..., Pr(C)],



—— False Positive for FICA(analysis)
=@~ False Positive for FICA(simulation)
—>& Collision for FICA(analysis)

== Collision for FICA(simulation)
>& FICA(analysis)

—#— FICA(simulation)

0.4

o
(%)

[ —|— D-Fi(analysis)
—&— D-Fi(simulation)

Probability

e
N
T

0.1F

0.0

2 3
# of request

Fig. 5. The analysis and simulation results: the false esind the collision
probability of D-Fi and FICA. We have used 0.1 for the proligbiof the
spectral leakageP;cqx-

where Pr(i) is how likely a STA requests for a channgl
Initially all Pr(i) are set to bek'/C. Based on the results of

contention, we adjusPr(-) according to the additive increase

/ multiplicative decrease (AIMD) manner. After hearing afZR
frame, a STA knows whether it is selected to use a subchan
or not. For each selected subchaniheghe STA increases the
value of Pr(i) by «. And for each non-selected subchaniel
the STA decreases the value Bf-(:) by multiplying it with
%. Afterwards Pr(-) is normalized in order that their sum is
to be K.

Algorithm 1 shows the pseudo-code of the multi channel

backoff algorithm.
On average, a STA requedhs subchannels. Obviously, the
optimal value of’ depends on the number of active STAS)(
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Fig. 7. The training time for ML models used for the CRQ deogdi

in a network. An AP estimates the number of active STAs in
the network [20] and periodically broadcasts an approgriat

K (= =€) value. We adjust such that the false positive
probability is not large (e.g.< 10%) based on the analysis
shown in section III.

IV. ENHANCEMENT: MACHINE LEARNING

The multi-channel backoff controls to distribute requests

One might argue that this multi-channel backoff mechanisfYer subchannels. However D-Fi still suffers from non-
cannot accommodate many STAs due to the high false positRegligible false positives. We apply machine learning (ML)

probabilities. However, as we will see in the section 1V, lgpp
ing machine learning algorithms further eliminates thesdal

methods [22], [23] to further reduce the false positive prob
bilities.

positive probabilities and this allows D-Fi to accommodate T0 apply an ML method to the CRQ decoding process, we

many STAs (tens of STAS).

Algorithm 1 Multi channel backoff
for i := requested subchanne& C' do
if subchannel is requested & allocatethen
Pr(i) «+ Pr(i) + «
else if subchannel is requested & not allocatetien
Pr(i) « Pr(i)/8
end if
end for
Pr(i) « Pr(i) x ﬁ,w eC

collect the dataset consisting of per-subcarrier RSSlingad
In our experiment, we assume that the maximum number of
requests to a subchannel is three. We refer to a single sét of 1
per-subcarrier RSSI readings as iastance Since we know
the STAs transmitting a CRQ frame in advance we can put
a label (i.e., a list of the STAs transmitting a CRQ frame)
on eachinstance We can use this labeled set ioStanceso
establish the ground truth. Now, we apply a supervised ML
method to this set. Specifically, we train an ML model using
this set of labeleéhstancesand evaluate the trained ML model
with the ground truth. ML models are evaluated with the cross
validation method provided by WEKA [21].

To visualize the CRQ decoding performance with the ML



methods, in Fig. 6 we plot the accuracy of various ML
algorithms. The applied algorithrhsare Naive Bayes [24],
Naive Bayesian tree [25], J48(C4.5) decision tree, and@upp
vector machine (SVM) [27]. As shown in Fig. 6, all ML J
algorithms significantly outperform the direct CRQ decadin

method (i.e., the method using the Bloom filter only) when ( )

the number of training instances is greater than 200. With w :,@: —

o F20ft

sufficient training, ML algorithms correct the CRQ decoding
errors almost completely> 99.9% accuracy). Fig. 7 shows
the time required to train an ML model. The Naive Bayes
algorithm, generally known as the simplest one, requirdg on
tens of microseconds to be trained due to its low complexity. . )"
Moreover, an AP will take hundreds of milliseconds to cdilec 47ft

200 instanceswhich are revealed to be sufficient to train a

robust ML model. We next discuss several issues arisen when Fig. 8. The topology used in our experiment.
we apply ML methods to a real WLAN.

A. Getting The Set of Labeled Instances in a Real WLAN We depict the [op0|ogy used in our experiment in F|g 8.

To establish ground truth in a real WLAN, an AP ha#$n Fig. 8, we have chosen four positions randomly, and let
no choice but to label ainstancethrough the direct CRQ one node serve as an AP and the other three nodes be STAs
decoding process. Then the false positives may happen @sgociated with the AP. A rich set of the TX powers provided
a subchannel can be assigned to a STA who actually dd®sthe SDR is used, resulting in the 10dB difference between
not request the subchannel. However the STA will not use tHee min and max received signal strengths.
subchannel for the data transmission and the AP can infer the?) Results: Fig. 9 shows the feasibility of the OFDM
occurrence of a false positive and correct the label. Algfou subcarrier-level signaling. Since we have used three S®As f
it is hard for an AP to get the complete set of the labelddansmitting a CRQ symbol, multiple CRQ symbols combine
instancesn a real WLAN, we believe that this corrected set oéit a receiver. The sum SNR of this synthesized CRQ symbol
the instanceswill suffice to perform CRQ decoding robustly.is plotted along thec-axis. We call the case that the signal
An accurate performance evaluation of ML methods in a regirength difference among the individual CRQ symbols is
world experimentation is our future work. smaller than 5 dB “similar case”, and otherwise “different

) case”. In the whole range of our experiment setups, the D-
B. When an AP should train ML models? Fi's subcarrier-level signaling performs reliably. Odcas

To train a ML model, an AP needs a set consisting of at ledsitwise-FP and bitwise-FN may still happen, however, as we
200 labelednstancesand this set must be evenly distributedhave shown in section IV, D-Fi successfully handles such
over all possible labels. Note that our multi channel baickodccurrences with the ML algorithms. When this signatukesile
algorithm tries to distribute requests evenly over all $isve  signal detection is applied to the CRQ decoding process, the
nels. Once trained, if no significant channel fluctuationistex accuracy of about 92% is achieved without the ML algorithms
an ML model produces an accurate CRQ decoding output. \Wecause of the logical errors. Applying the ML methods, how-
should re-train the ML model when a training set is outdatedver, the CRQ decoding process almost completely elimsnate
the logical errors and achieves the accuracy of about 99.9%.

We next show the accuracy of our channel estimation
A. Implementation method. As shown in Fig. 3, for most of the cases (

1) D-Fi Prototype and Experiment Setupde implemented 90%), the estimation error is less than or equal to 1 dB.
the D-Fi OFDM-based PHY/MAC on a small testbed of 4hese two results show that the D-Fi's channel contention
USRPs [34] and GNU Software Define Radio (SDR) [35pnd estimation mechanisms are practically feasible incgipi
We adopt a simple Binary Amplitude Modulation (BAM) toindoor environments where a WLAN operates.
modulate each bit of a signature used for a CRQ/CRP frame. . . .

In order to minimize the false positive of the subcarrie®: race-driven Simulation

level signal detection, the threshold used for the signalggo 1) Simulation Setup:The above D-Fi prototype on the

level comparison is adaptively configured. Our experiment USRP is suitable for demonstrating the feasibility of the

conducted within a laboratory to show the feasibility of fre Bloom filter based channel contention and estimation method

Fi PHY/MAC protocol in a typical indoor wireless scenariobut not the diversity exploration/exploitation perfornsanof
D-Fi. Since an USRP relies on software to process a signal,

Naive Bayes and Naive Bayesian tree are generally knownngslesiand  jt experiences difficulty in processing a wide-band (20MHz)
fast algorithms. And J48 tree and SVM are highly accuratevehia previous

work [22], [23] although they are the results obtained frdm &rea of an signal. Additiona"y’ the_supported data rate is not as high
Internet traffic classification research. as that in hardware radios at a current development stage of

V. PERFORMANCEEVALUATION



1.0

0.10 - . - - . —
— Bitwise-FN (similar case) —— D-Fi
— Bitwise-FP (similar case) — 802.11
008l Bitwise-FN (different case) o8l ™ FICA[10]
"l | = Bitwise-FP (different case) “||— carrier-by-carrier [30]
—— FARA[9]
> —— Optimal
= 0.06 0.6
‘a [T
= a
Q (@]
8 0.04/ 0.4+
o
0.02F : : : i : : 4 0.2t
0.00 ; A\/<\A(_\ ; 0.0 i 1 H H i
0 2 4 6 8 10 12 14 16 18 -10 0 10 20 30 40 50 60 70
SNR(dB Throughput(Mbps)
Fig. 9. The accuracy of the subcarrier-level signal detecti Fig. 10. The simulation results: the empirical CDF of theottghput for

each scheme.

an USRP. Therefore, we resort to trace-driven simulations t
assess the diversity performance of D-Fi.

To conduct high fidelity emulation of real world setting,
we have used the 802.11n data traces provided by the authot
of [12]. The traces are obtained from commodity Intel Wi-Fi
Link 5300 NIC and its modified driver [5]. The traces contain
per-subcarrier (30 subcarriers for 20MHz) RSSI readings fo
both the 24 mobile and 30 static diverse links. With the 54
diverse links, we have set up to 50 nodes in our simulations.

We compare the diversity exploration/exploitation perfor
mance of 802.11n [1], FICA [10], Carrier-by-Carrier in turn
algorithm (C-by-C) [31], FARA [9], D-Fi, and the throughput
optimal unit. For a fair comparison, we have modified C- 00— T FICALIO] DR byt 1307 FARA 1T Optme
by-C and FARA to use a subchannel as an access basis
For diversity-aware schemes such as C-by-C and FARA, we
consider the same amount of the MAC protocol overhead Fig. 11. The simulation results: fairness (Jain’s fairnieskex).
with D-Fi to compare the performance due to the diversity
exploitation capabilities. Multi channel backoff paraerstfor allgorithm, it is expected to be fair as in random access sekem

D-Fi (i.e., « and 3) have been fine-tuned to assess the b Fe 802.11n or FICA. To verify that, we compute Jain's
performance of D-Fi. : . )

) ) ., fairness index with the throughput obtained by each STA. Fig
2) Results: We first show the D-Fi's overall throughput_ll presents the fairness index with all the schemes deslcribe

against the other schemes. Fig. 10 presents the empirigal, /o "\t cearly shows that D-Fi offers high throughputhehi
cumulative distribution function (ECDF) of the throughpu aintaining fairness comparable to random access schemes
for each scheme. The D-Fi's throughput gains over Iegaﬁxe 802.11n and EICA

802.11n and FICA are 3x and 1.5x, respectively. Because

the 802.11n scheme does not channelize a 20MHz band and VI. RELATED WORK

uses random access, it neither reduces the MAC overheage|ated work falls in the following three areas.

nor exploits the diversity. FICA, which uses the channelize

random access, reduces the MAC overhead but fails to exptit Improving MAC efficiency

the diversity. Now, let us compare the D-Fi's diversity expl There has been a tremendous amount of work targeted

ration/exploitation performance with the other diversayyare towards improving MAC protocol efficiency [10], [11], [13],

schemes in terms of throughput. Even though the propodéd8]. Among these, the most relevant to our work are [10],

multi channel backoff algorithm requests only a subset bf 4L1], [13]. FICA [10] tackles the inefficiency of the 802.11

the subchannels, the D-Fi's diversity exploitation/exatmon MAC by redesigning both the PHY/MAC using OFDM-

performance is equivalent to those of the other diversitgfre based fine-grained channelization. The authors of [11] have

schemes as shown in Fig. 10. proposed Back2F that migrates the time domain backoff to
We next show the D-Fi's fairness performance. Since Dhe frequency domain. As the frequency domain backoff lasts

Fi allocates a subchannel based on the proportional farnésr several OFDM symbols, it reduces relative MAC overhead

Jain' fairness index




and hence improves the MAC protocol efficiency. In additioriunctionality provided by a Wi-Fi card and identifies mulép
REPICK [13] have modified a receiver [11] to perform th@on-Wi-Fi signals like Zigbee, cordless phone, Bluetooth,
frequency domain backoff instead of a transmitter and addett based on the SVM [27] algorithm. To the best of our
the feature of ACK piggybacking, which further reduce thknowledge, our work is the first work that applies ML methods
MAC overhead. These work share the similarity of usingp a PHY/MAC WLAN protocol.

the OFDM technique to enhance MAC protocol efficiency.

However, our work is different from them because D-Fi furthe VIl. CONCLUSION

exploits frequer_ncy div_ersit_y usin_g the B_Ioom filter based \ye propose D-Fi, a novel Wi-Fi PHY/MAC protocol based
channel contention/estimation while reducing overhead. 4, the OFDM technique. The proposed protocol performs
channel contention and estimation at the same time using

a Bloom filter to efficiently exploit frequency diversity. In

Many theoretic classic proposals exploiting frequency diyqition, to address the ambiguity problem, an intrinsiakve
versity are well-summarized in the wireless communicatiq{bss of a Bloom filter. we propose a multi channel backoff
textbook [{1]. Sorr_]e of them are currently being used by m'”'algorithm and apply machine learning algorithms to the D-
systems like WIMAX [2], 3GPP LTE [3], etc. Recently,r"py/mAC protocol. We showed the feasibility of D-Fi
in academia, the theoretic studies applying proportiogal f . implementing it on a USRP/GNUradio testbed. Moreover,
packet scheduling have been done in FDMA-based 3GRR phaye shown that the D-Fi PHY/MAC protocol can exploit
LTE [31], [32] and CSMA-based OFDMA systems [29], [30]raquency diversity with partial channel information thgh
Assuming perfect channel quality information by a training,,; race-driven simulations.
sequence (pilot), these work solved a resource allocatio-p o, f;tyre research directions include a full implementati
lem by mathematical modeling. However, our work ProposesA 4 p-Fi network using commodity devices for a thorough

WLAhN p(;otocol that p_racltlcally considers cggnnﬁl esttl)matl evaluation of our protocol and extending the D-Fi protoeol t
overhead. Many practical measurement studies have been G@l,oort a downlink or an ad-hoc mode operation,

ducted to show the existence of frequency diversity. Among

these, the most relevant to our work are measurement studies ACKNOWLEDGMENT

in the 2.4GHz/5GHz ISM bands [8], [12], [16], [17]. Also, ] ]

in WLANS, several frequency diversity-aware schemes hayeVe owe special thanks to the anonymous reviewers and
been proposed [8], [9], [12]. The authors of [8] introducedf®Ung-myoung Kang for their thorough and helpful feed-

a practical rate adaptation scheme based on the effecti@ek. which was tremendously vital to significantly improve

SNR (eSNR) which is a channel metric that can considte conten'gs and presentatlon of this paper. This worlk was
frequency diversity. In FARA [9], a transmitter can seng§upported in part by the National Research Foundation of
multiple packets to multiple receivers concurrently based Korea (NRF) grant funded by the Korea government (MEST)
the OFDM technique. Thus it needs not consider the timgY0: 2010-0027410) and in part by Seoul R&BD Program

sync problem arisen when multiple packets combine at (BA100062M0209722).

receiver. FARA can be used in the downlink of a WLAN
and is complementary to our work in that our work is mainly
focusing on the uplink. Finally, the authors of [12] propdse[1] IEEE Standard for local and metropolitan area networkst B1: amend-
a diversity-aware WLAN that uses an adaptive interleaver ment5: Enhancements for higher throughput. IEEE Std 8622009

and an forward error correction (FEC) scheme based on pl-I-EF S for Lol and metopoltan area nenvoret6: A
subcarrier channel state information (CSI). It adoptsedéffit [3] 3GPP TS 36.201-820: Evolved universal terrestrial sadccess (E-
domain approaches such as a per-subcarrier FEC method and’TRA); long term evolution (LTE) physical layer; generalsdeiption.

. : [4] A. Goldsmith. Wireless Communications. Cambridge Br2g05.
an interleaver and hence is orthogonal to our work. [5] D. Halperin, W. Huy, A. Shethz, and D. Wetherall. Tool Base: Gath-

. . ering 802.11n Traces with Channel State Information. In ACbmpuer
C. Machine Learning Communication Review (CCR) 2011.

_— - :~f8] Y. Shen and E. F. Martinez. Channel Estimation in OFDM t8yss.
An explosive increase of digital data has led to spotligh AN3059, Freescale Semiconductor, Inc., Jan. 2006.

in the use of machine learning (ML) techniques to extraglj r. crepaldi, J. Lee, R. Etkin, S. Lee, and R. Kravets. GEl-Estimating
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: ; i 2012.

[25]3 [27], [28] II’? the field of networking, Inter.net app_dmon )}8% D. Halperin, W. Hu, A. Shethy, and D. Wetherall. Predidta 802.11

traffic C|aSSIfICQtIQn has been C_OI’]dUCtGd using Naive Bayes packet Delivery from Wireless Channel Measurements. In ASIG-

[24], C4.5 decision tree or Naive Bayesian tree [25], and COMM 2010.

support vector machine (SVM) [27] algorithms. And [22](%! ?a;?gﬁéninidﬂité 'g-rofgctgfg I"’r‘]”dACCM a%ﬁ%'ogr‘z%%%%re Rate

[23] have performed the scientifically grounded perforrmango] K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, arhéng. Fine-
comparison among the several methods including well-known grained Channel Access in Wireless LAN. In ACM SIGCOMM 2010.
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