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Abstract—To exploit frequency diversity in Wi-Fi channels,
instantaneous channel quality must be estimated. However,there
is a trade-off between acquiring channel quality information
and improving protocol efficiency because channel estimation
consumes time and frequency resource that ideally should be
used for data transfer. In this paper, we present D-Fi (Diversity-
aware Wi-Fi), a novel Wi-Fi PHY/MAC protocol, that capitali zes
on frequency diversity gains while sustaining protocol efficiency.
The D-Fi design allows to estimate channel quality while D-Fi
is performing channel contention using an OFDM-based Bloom
filter. To resolve the ambiguity caused by the Bloom filter, we
adopt two methods: (i) An analysis-based multi channel backoff
method enables to explore/exploit frequency diversity while
reducing the occurrence of the ambiguity. (ii) Applying machine
learning (ML) methods to the D-Fi PHY/MAC protocol corrects
the ambiguity taken place already and makes our protocol
reliable. We have shown the feasibility of D-Fi by implementing
it on the USRP/GNURadio platform. Experiments and trace-
driven simulations show that D-Fi successfully achieves frequency
diversity gains without losing improved protocol efficiency.

I. I NTRODUCTION

Frequency diversity is one of the characteristics that should
be considered in designing wireless communication systems,
especially for ones that operate over a wide frequency band
such as WiMAX [2] and 3GPP LTE [3]. In addition to
spatial and temporal diversities, signals transmitted over a wide
frequency band experience independent fluctuations across
frequencies. This phenomenon is generally called “frequency
selective fading” [4]. Frequency diversity is ignored in con-
ventional WiFi systems because these systems use a channel
as a whole. However, adoption of OFDM in 802.11 WLANs
triggered recent research interests [8], [9], [12] in harvesting
gains from frequency diversity. The importance of frequency
diversity research becomes more important than ever as IEEE
802.11 working group (WG) is standardizing the use of wider
channels. For example, 802.11n [1] can already use a 40MHz
channel by Phased Coexistence Operation (PCO) and 802.11ac
will provide up to a 160MHz channel. Accordingly, several
Wi-Fi protocols [8], [9], [12] exploiting frequency diversity
have already been proposed recently in academia.

To harness frequency diversity, a wireless communication
system must provide a channel quality estimation functionality.
Acquiring channel quality information consumes time and
frequency resource that ideally should be used for data transfer.
For example, many current wireless systems estimate channel
quality using a training sequence (pilot) in a preamble or spend
dedicated time only for the channel estimation purpose [1],[2],

[3], [6], [8], [9], [12]. Moreover, forN ×N Multiple-Input-
Multiple-Output (MIMO) systems,N2 channels have to be
estimated [7] resulting in substantial protocol inefficiency. In
this case, the high data throughput of a MIMO system cannot
be achieved due to the large overhead of channel estimation.
In short, there is a trade-off between frequency diversity gains
and protocol efficiency.

The research approaches to achieve frequency diversity
gains are categorized into two groups; (i) variants of Wi-
Fi systems that improve the protocol efficiency [10], [11],
[13] and (ii) frequency diversity aware protocols for various
wireless networks such as WiMAX [2], 3GPP LTE [3], [31],
[32], and Wi-Fi networks [8], [9], [12], [30]. However, noneof
them explore both of the conflicting objectives - i.e., reduction
of channel estimation overhead and protocol efficiency -
simultaneously. Most previous work emphasizes mainly one
side of these [8], [9], [11], [12], [13] since the two objectives
are considered as orthogonal to each other [10] (but it is not
true as we have discussed above). Also, frequency diversity
aware studies are highly theoretical rather than practical[30],
[31], [32], i.e., these researchers solved the channel allocation
problem assuming the perfect channel information is given.

We argue that satisfying two conflict objectives, achieving
frequency diversity gain and protocol efficiency, boils down
to acquisition of channel quality information with a mini-
mum channel estimation cost. In this paper, we present D-Fi
(Diversity-aware Wi-Fi), a novel Wi-Fi PHY/MAC protocol
that exploits frequency diversity while sustaining protocol ef-
ficiency. Specifically, D-Fi collects channel information while
resolving channel contentions using an OFDM-based Bloom
filter without requiring a dedicated channel estimation mecha-
nism. D-Fi can be combined with other protocols because it is
orthogonal to those existing Wi-Fi proposals [10], [11], [13],
[14] custom-tailored for improving protocol efficiency.

The D-Fi protocol has the following features.
• D-Fi channelizes a Wi-Fi band into several orthogonal

subchannels based on the OFDM technique and uses each
of them as a channel access unit. This channelized medium
access amortizes MAC coordination burdens and hence im-
proves overall MAC protocol efficiency. Moreover, it exploits
frequency diversity inherent in a wide band by a frequency-
aware subchannel allocation scheme.
• D-Fi estimates channel quality while performing con-

tention based channel allocation. To do so, D-Fi adopts a
Bloom filter based channel contention mechanism. Specifi-



cally, the D-Fi MAC protocol uses RTS/CTS-like Collision
Resolution reQuest (CRQ)/Collision Resolution rePly (CRP)
frames through a Bloom filter. A CRQ/CRP frame lasts only
for a few OFDM symbols. The overhead of D-Fi is much
smaller than that of the legacy RTS/CTS frame. Multiple
stations (STAs) contend for subchannels simultaneously ac-
cording to estimated subchannel quality as well as their traffic
demands. An AP can estimate the uplink channel quality of
the STAs using this synthesized CRQ frame without additional
channel estimation overhead. After an AP perform frequency-
aware subchannel allocation based on the channel estimates
then it broadcasts a CRP frame to inform the STAs of the
result of channel allocation.
• Bloom filter based channel contention incurs the am-

biguity problem because of an intrinsic characteristic of a
Bloom filter. D-Fi uses two methods to solve the problem.
Firstly, an analysis-based multi channel backoff algorithm
reduces the occurrence of the ambiguity while allowing D-
Fi STAs to distributively explore/exploit frequency diversity.
Next, applying machine learning (ML) algorithms to the D-Fi
protocol resolves the ambiguity so that D-Fi can operate the
MAC protocol reliably.

We implemented the OFDM-based D-Fi PHY/MAC on a
testbed consists of four USRPs/GNUradios. The experiment
shows the feasibility and practicality of the D-Fi PHY/MAC
protocol. Further, we used detailed trace-driven simulation
to evaluate the performance of D-Fi. Our results show that
D-Fi has up to 3x and 1.5x better performance in terms
of throughput compared to existing 802.11n and FICA [10],
respectively.

In summary, this paper makes the following contributions.
(i) We design and implement D-Fi, a Wi-Fi PHY/MAC
protocol that exploits frequency diversity while sustaining
the MAC efficiency. (ii) We provide a detailed analysis to
address the ambiguity problem arisen from the use of a Bloom
filter. Based on the analysis we propose a multi channel
backoff algorithm that explores/exploits frequency diversity
distributively while reducing the occurrence of ambiguity.
(iii) We apply ML methods to the D-Fi PHY/MAC protocol
and demonstrate the superior performance of ML methods in
solving the ambiguity problem arisen in the D-Fi PHY/MAC
protocol. (iv) We demonstrate the feasibility of D-Fi with our
prototype implementation on the USRP/GNURadio platform
and evaluate its performance using the detailed trace-driven
simulation.

The rest of this paper proceeds as follows. Section II
describes the design of the D-Fi PHY/MAC. We then provide
a detailed analysis to deal with the ambiguity arisen from the
use of a Bloom filter and propose a multi channel backoff
algorithm in section III. Section IV describes ML methods ap-
plied to solve the ambiguity problem in the D-Fi protocol. We
show the performance of ML algorithms and discusses some
ML-related issues. Section V evaluates the D-Fi’s performance
using our experimentation and trace-driven simulation. Section
VI reviews the related work. Finally, Section VII concludesthe
paper.

II. D-F I DESIGN

D-Fi is a CSMA-based Wi-Fi PHY/MAC protocol that
performs wireless channel contention and channel quality
estimation at the same time. Generally, channel quality es-
timation incurs overhead because extra estimation time and/or
training sequences (pilot) are used for estimation. D-Fi ac-
quires channel information while STAs are performing channel
contention and no additional overheads are required. Based
on the estimated channel quality, D-Fi exploits frequency
diversity. In this section, we detail the design of the D-Fi
PHY/MAC.

A. Channelization

Taking a large Fast Fourier Transform (FFT) window size
means a long OFDM data symbol in time. Therefore, for the
purpose of good protocol efficiency, it is desirable to choose a
large FFT window. Although it is possible to choose any large
FFT size theoretically, there are several practical concerns that
prevent large FFT [4]: (i) Computational complexity increases
as an FFT size increases since the theory tells us that the com-
plexity of the N-points FFT(or inverse FFT) isO(N logN).
(ii) The frequency separation between subcarriers is imperfect.
These limitations are generally caused by mismatched oscil-
lators, Doppler shift, or timing synchronization errors. And
these factors eventually lead to lose orthogonality between
subcarriers introducing non-negligible inter carrier interference
(ICI) in practice. In D-Fi, to deal with such limitations, we
choose the FFT size such that an OFDM symbol is 256/512
points in a 20/40MHz channel (subcarrier bandwidth is about
78.12KHz.).

Coherence bandwidth is a statistical measure of the range of
frequencies over which the channel can be considered “flat”.
Recent measurement studies [8], [12], [16], [17] have shown
that the minimum coherence bandwidth over the industrial, sci-
entific, and medical (ISM) license-free band (near 2.4/5GHz)
is approximately 3MHz in indoor environments. Therefore,
when a channel access unit (i.e., a subchannel) is narrower
than 3MHz it can be considered as flat within a subchannel
and is frequency-selective between subchannels.

These measurement results motivate us to develop D-Fi, a
Wi-Fi protocol that exploits frequency-selectivity. We choose
17 contiguous subcarriers to form a subchannel (bandwidth
is about 1.4MHz.). Among 17 subcarriers, 16 subcarriers are
used for data transmission and one subcarrier is used as a
pilot channel that tracks the subchannel quality while the data
is being transferred. There are 14 orthogonal subchannels in
a 20MHz band, and they are frequency-selective one another
in typical indoor environments.

B. Protocol Overview

D-Fi uses Contention Resolution reQuest (CRQ) / Con-
tention Resolution rePly (CRP) frame exchanges for channel
contention (Fig. 1). Note that a CRQ/CRP frame lasts only for
a few OFDM symbols and so its overhead is much smaller
than that of the legacy RTS/CTS frame. If the medium is
idle for more than distributed interface space (DIFS) STAs



Fig. 1. The D-Fi MAC protocol overview.

may transmit CRQ symbols simultaneously. Each STA selects
K subchannels1 likely to have good channel quality and
modulates his ownsignature on each selected subchannel.
Consequently, multiple CRQs sent from multiple STAs arrive
at the AP. These CRQ symbols can be misaligned due to
different propagation delay, sensing time (CCA), and RF RxTx
switching delay. However the total misalignment has been
shown to be tightly bounded [10]. In an OFDM system, as
long as the misalignment is less than the cyclic prefix (CP),
a receiver can decode misaligned signals [4]. We set the D-Fi
CP length such that the maximum alignment is less than CP
length.

An AP can extract STAs’ uplink channel quality information
from CRQ frames. Then the AP allocates subchannels to the
STAs based on any channel allocation policy, for example,
proportional fairness or throughput-optimum.

To inform STAs of the channel allocation results, the AP
broadcasts a CRP frame. This frame conveys the signature of
the contention winner and transmission rates for future data
transmission.

C. Channel Contention and Estimation

1) Signature: A signature is a binary bit sequence of 16
bits. A STA receives a unique signature when it joins a Wi-
Fi network. The rule for assigning a signature is as follows:
First, divide a 16 binary bits sequence into four continuous-
bits subsequences. Then choose one bit in each subsequence
and mark chosen four bits (one bit from each subsequence)
as “1” and the rest as “0”. Therefore, 256 (= 44) possible
signatures exist. Note that the number of STAs in a WLAN
is typically not very large (≤ order of tens and 256 is enough
for unique allocation to all STAs).

A signature is carried over one subchannel; one bit over
one subcarrier. We use binary amplitude modulation (BAM)
to modulate a single bit on each subchannel. Specifically,
BAM uses On-Off signaling that maps a binary “0” to zero
amplitude and a binary “1” to a random complex number on
the unit circle (ejθ) in a subcarrier. In other words, no signal is
transmitted to modulate a binary “0” in a subcarrier and a fixed
powered random complex signal is transmitted to modulate a
binary “1” in a subcarrier. A receiver can easily detect a BAM
symbol by measuring a signal power level on a subcarrier
without demodulating an exact symbol.

1They are not necessary to be continuous.

Fig. 2. The description for two Bloom filter based operations; inserting
elements, i.e., signatures (CRQ) and testing membership (CRQ decoding).
These operations are performed in one subchannel (i.e., oneBloom filter).
Broadcast of a channel contention result (CRP) is also described at the bottom
of the figure.

STAs may join and leave dynamically. At the time of
association, an AP allocates a signature to the joining STA.
The allocated signatures among 256 possible ones are called
“valid”. If a STA is inactive for long time, its signature is
taken back and set to be “invalid”.

2) CRQ Frame: To facilitate simultaneous channel con-
tention and estimation, D-Fi uses the Bloom filter [18]. A
subchannel where signatures are transmitted can be considered
as a Bloom filter consists of 16 bits. If only one signature
is transmitted over a subchannel, then we can easily detect
the signature. If two or more signatures collide, the AP uses
the Bloom filter technique to resolve signatures. The process
of identifying signatures from a Bloom filter is called ”CRQ
decoding” (Fig. 2).

In CRQ decoding, we should handle two types of ambiguity;
the physical and logical errors.

Physical errors. One bit in a Bloom filter is actually one
OFDM subcarrier. A STA will transmit a signal over some
selected subcarriers representing its signature. Since the fre-
quency separation between subcarriers is imperfect in practice
a subcarrier suffers from so-called “spectral leakage” [19].
A signal spills over adjacent subcarriers. Since subcarrier-
level signal detection is implemented by comparing between
a signal power level and a threshold [10], [11] the signal can
be falsely detected. We call this event “bitwise false positive
(bitwise-FP)” and the event that the signal is falsely missed
“bitwise false negative (bitwise-FN)”. Both of the events are
the physical errors. Careful and adaptive threshold adjustments
can make them negligible. Our software radio implementation
(explained in section V) as well as other implementations [10],
[11] showed that the physical error rates are quite small.

Logical errors. An intrinsic characteristic of a Bloom filter
is the logical error. During the CRQ decoding process, an
AP falsely determines the signatures that are not actually
requested. It is generally called “False Positive (FP)” of a
Bloom filter. For example, two stations STA1 and STA2,
whose signatures are “1000 1000 0010 0001” and ”1000
1000 0001 0010”, respectively, request to the same subchannel
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Fig. 3. The experimental result: the empirical CDF for the estimation error
of our method.

resulting in a Bloom filter of “1000 1000 0011 0011”. The
AP should decode “1000 1000 0011 0011” as a superposition
of the signatures of STA1 and STA2. However, due to the
inherent ambiguity, it may falsely decode it as “1000 1000
0001 0001” and “1000 1000 0010 0010 as well. Although
D-Fi only considers STAs having valid signatures as channel
contenders, there still is non-negligible FP rate.

We propose two methods to solve the ambiguity problem; an
analysis based multi channel backoff algorithm and machine
learning (ML) algorithms. The analysis based multi channel
backoff algorithm aims to limit the number of channel requests
for one subchannel. On average a STA will requestK sub-
channels at once, and an appropriate value ofK is determined
by the analysis shown in section III. The multi channel backoff
algorithm selectsK preferable (i.e., high quality) subchannels
in a distributed manner to exploit frequency diversity. On
the other hand, ML-based CRQ decoding aims to reduce the
probability of logical and physical errors in CRQ decoding
(explained in section IV). In short, multi channel backoff
prevents the logical errors while ML-based CRQ decoding
corrects the physical and logical errors.

3) CRP Frame:To inform a STA of a channel allocation
result, an AP broadcasts a CRP frame. This frame conveys the
signature of a contention winner and data rate information for
future data transmission for each subchannel. Since there are
256(= 28) signatures, 8 bits are used for a signature and the
rest are used for data rate information (Fig. 2).

4) Channel Quality Estimation:Assume that all stations
use the same transmission power and the total transmission
energy spreads evenly over each of four bits marked as “1”
when sending a CRQ symbol. An AP can guess the channel
qualities from the signal strength of unique bits. A unique
bit is a bit that is transmitted by one station only. After CRQ
decoding, we determine unique bits and use the average energy
level of the unique bits belong to a signature as the channel
quality (Fig. 2).

We have evaluated the channel estimation performance in

terms of accuracy in our implementation. For most of the cases
(≥ 90%), the estimation error of our method is less than or
equal to 1 dB (Fig. 3).

D. Proportional Fairness

Once channel quality estimates are available, an AP can
allocate subchannels to STAs by the proportional fairness
algorithm in [29]. Proportional fairness maximizes the sum
of logarithmic throughput over the fixed number (W ) of time
slots. LetTi[n] be the throughput of a STAi in a time slot
n, the throughput of a STAi duringW time slotsT (W )

i [n] is
then:

T
(W )
i [n] =

1

W

n+W−n0−1∑

m=n−n0

Ti[m] (1)

wheren0 is the number of slots look back to the past, and
W − n0 − 1 is the number of slots in the future. With the
equation (1), our objective function is written as:

max
∑

i

logT
(W )
i [n] (2)

By the Shannon’s theorem [4], the throughput can be further
re-written as a function of estimated SNRs. The difference
from the original problem is that we apply the proportional
fairness algorithm to the reduced problem space since an AP
can only estimate the channel quality of the STAs who have
made a request. Even with this restriction, in subsection V-B,
we will show that D-Fi has close to the optimal performance
in terms of exploring/exploiting frequency diversity.

E. Why Bloom Filter?

Basically, a Bloom filter is a space-efficient data structure.
Here, the space means the number of subcarriers constructing
a subchannel. As we have described in subsection II-A, we
cannot use large FFT windows. The price paid for this space-
efficiency is probabilistic ambiguity inherent to a Bloom filter:
it tells us that the element eitherdefinitely is not in the set
or may bein the set. The term “may” means that a Bloom
filter may generate ambiguity (i.e., false positives). In D-Fi,
resolution of the ambiguity is particularly important because
it estimates the channel quality based on the unique bits in
signatures. Unfortunately, it is impossible to eliminate false
positives completely and hence we turn our attention to find
a method to mitigate the false positive probability. As we
will see in section IV, machine learning algorithms (MLs) are
good solutions to this problem. In addition, a careful choice
of hashing functions (e.g., MD5 [18]) can further reduce the
ambiguity. This application is left for future work.

III. A NALYSIS

In this section, we analyze the false positive probability and
the collision probability of the contention mechanism in D-Fi.
Based on the analysis we propose a multi channel backoff
method that enables a STA to explore/exploit frequency diver-
sity distributively. It also reduces the false positive probability
of the Bloom filter based contention mechanism.



Fig. 4. The spectral leakage by the other hash function can only occur at
the boundary of the subsequence.

We assume a WLAN consists ofN STAs andC subchan-
nels. As a Bloom filter is used for each subchannelC Bloom
filters exist. A Bloom filter consists ofm binary bits (i.e.,
subcarriers) andh hash functions2. A STA can request forK
subchannels each time it contends for a channel. On average,
r (= N×K

C
) STAs will select a certain subchannel. In other

words, on average,r elements (signatures) will be inserted
into a Bloom filter. Given that hash functions are uniform,
the probability that a certain bit is selected by one ofh hash
functions is h

m
.

Let us derive the probability that a subcarrier is set to be “1”
taking into account the spectral leakage. An OFDM system
suffers from high spectral sidelobes [19], and consequently,
a subcarrier may accidentally be set to “1” because of the
leakage of power from subcarriers nearby. Assume that the
only adjacent subcarriers cause power leakage. LetPleak be
the probability of the spectral leakage. Then the probability
that a certain bit is set to “1” because of the spectral leakage
is 2hPleak

m
.

Remind that each of our hash functions selects one bit from
each of the non-overlapping subsequences (each subsequence
is m/h bits long). The probability that an inside bit - a bit not
adjoining to the subsequence boundary - is set to “1” is given
as:

h

m
+

2hPleak

m
(3)

While consecutive inside bits cannot be selected by two
hash functions at the same time, two boundary bits can be set
to “1” by two hash functions (Fig. 4). Therefore we have to
subtract the probability of the event that two hash functions
simultaneously set the bits at the boundary as “1” from the
equation (3):

h

m
+

2hPleak

m
− (

h

m
)2Pleak(1 + Pleak) (4)

Combining equation (3) and equation (4), the probability
that a certain bit is set to “1” is:

P 1
positive =

2( h
m

+ 2hPleak

m
− ( h

m
)2Pleak(1 + Pleak))

m
h

+
(m
h
− 2)( h

m
+ 2hPleak

m
)

m
h

(5)

Then the probability that a certain bit is set to “0” is1 −
P 1
positive.

2Each bit of a signature is chosen by each hash function.

Now we extend to the case of multiple requests onto
a subchannel. If there arer requests to a subchannel, the
probability that a certain bit is set to “0” isP r

negative =
(1−P 1

positive)
r, and the probability that a certain bit is set to

“1” is P r
positive = 1− (1 − P 1

positive)
r. Now consider a STA

that does not contend for the subchannel. Even if the STA
does not participate in contention, each of itsh signature bits
has non-negative probability of being “1”. The probabilitythat
all h bits are “1”, which would cause an AP to erroneously
claim that a STA has requested for the subchannel, is given
as:

PD−Fi
falsepositive = (P r

positive)
h (6)

For the collision probability of D-Fi, it is zero because an AP
allocates a subchannel to exactly one STA.

For the comparison purpose, we also analyze the false
positive and collision probabilities of the FICA [10] contention
mechanism. In FICA, a STA transmits a request signal over
one randomly chosen subcarrier within a subchannel. An AP
selects one active subcarrier and all the STAs who have sent
the signal on that subcarrier are allowed to use the subchannel
for the next data transmission. In addition, even if FICA does
not suffer from logical false positives, it may wrongly select
inactive subcarriers due to the spectral leakage. Therefore, the
probability of the false positive in FICA is:

PFICA
falsepositive = P (A bit is set to “1” w/ spectral leakage)

− P (A bit is set to “1” w/o spectral leakage)

= (1− (1 − (
1

m
+

2Pleak

m
))r)− (1− (1−

1

m
)r)

(7)

Since a collision occurs only when two or more STAs send
their request signals on the same subcarrier, the collision
probability in FICA is:

PFICA
collision = 1− (1−

1

m
)r−1 (8)

A. Remarks

To validate our analysis, we have performed simple sim-
ulations (Fig. 5). As anticipated, the false positive rate is
significant when the number of requests for a subchannel
is large. The D-Fi’s signature based contention mechanism
performs better than FICA’s when the number of requests
is less than 2.6; its collision probability and false positive
probability are smaller than those of FICA. Even so, it is
important to control the number of requests for a subchannel.
In order to make the number of requests for a subchannel
operate within an appropriate range, we propose a multi
channel backoff method. Our multi-channel backoff method
enables a STA to explore frequency diversity distributively
while controlling the number of requests to a subchannel.

B. Multi Channel Backoff

We propose a multi-channel backoff method that distribu-
tively controls the number of subchannels a STA requests.
Each STA maintains a vector,[Pr(1), P r(2), ..., P r(C)],
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Fig. 5. The analysis and simulation results: the false positive and the collision
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spectral leakage,Pleak.

wherePr(i) is how likely a STA requests for a channeli.
Initially all Pr(i) are set to beK/C. Based on the results of
contention, we adjustPr(·) according to the additive increase
/ multiplicative decrease (AIMD) manner. After hearing a CRP
frame, a STA knows whether it is selected to use a subchannel
or not. For each selected subchanneli, the STA increases the
value ofPr(i) by α. And for each non-selected subchanneli,
the STA decreases the value ofPr(i) by multiplying it with
1
β

. AfterwardsPr(·) is normalized in order that their sum is
to beK.

Algorithm 1 shows the pseudo-code of the multi channel
backoff algorithm.

On average, a STA requestsK subchannels. Obviously, the
optimal value ofK depends on the number of active STAs (N )
in a network. An AP estimates the number of active STAs in
the network [20] and periodically broadcasts an appropriate
K (= r×C

N
) value. We adjustr such that the false positive

probability is not large (e.g.,≤ 10%) based on the analysis
shown in section III.

One might argue that this multi-channel backoff mechanism
cannot accommodate many STAs due to the high false positive
probabilities. However, as we will see in the section IV, apply-
ing machine learning algorithms further eliminates the false
positive probabilities and this allows D-Fi to accommodate
many STAs (tens of STAs).

Algorithm 1 Multi channel backoff
for i := requested subchanneli ∈ C do

if subchanneli is requested & allocatedthen
Pr(i)← Pr(i) + α

else if subchanneli is requested & not allocatedthen
Pr(i)← Pr(i)/β

end if
end for
Pr(i)← Pr(i)× K∑

j∈C
Pr(j) , ∀i ∈ C
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Fig. 6. The accuracy for the CRQ decoding with the ML algorithms.

20 50 100 200 400 1000 2000 4000 8000

Number of instances
0

5

10

15

20

25

30

35

Tr
a
in
in
g
 T
im

e
 (
se

co
n
d
s)

Naive Bayes
J48 Decision Tree
Naive Bayes Tree
Support Vector Machine (SVM)

Fig. 7. The training time for ML models used for the CRQ decoding.

IV. ENHANCEMENT: MACHINE LEARNING

The multi-channel backoff controls to distribute requests
over subchannels. However D-Fi still suffers from non-
negligible false positives. We apply machine learning (ML)
methods [22], [23] to further reduce the false positive proba-
bilities.

To apply an ML method to the CRQ decoding process, we
collect the dataset consisting of per-subcarrier RSSI readings.
In our experiment, we assume that the maximum number of
requests to a subchannel is three. We refer to a single set of 16
per-subcarrier RSSI readings as aninstance. Since we know
the STAs transmitting a CRQ frame in advance we can put
a label (i.e., a list of the STAs transmitting a CRQ frame)
on eachinstance. We can use this labeled set ofinstancesto
establish the ground truth. Now, we apply a supervised ML
method to this set. Specifically, we train an ML model using
this set of labeledinstancesand evaluate the trained ML model
with the ground truth. ML models are evaluated with the cross-
validation method provided by WEKA [21].

To visualize the CRQ decoding performance with the ML



methods, in Fig. 6 we plot the accuracy of various ML
algorithms. The applied algorithms3 are Naive Bayes [24],
Naive Bayesian tree [25], J48(C4.5) decision tree, and support
vector machine (SVM) [27]. As shown in Fig. 6, all ML
algorithms significantly outperform the direct CRQ decoding
method (i.e., the method using the Bloom filter only) when
the number of training instances is greater than 200. With
sufficient training, ML algorithms correct the CRQ decoding
errors almost completely (≥ 99.9% accuracy). Fig. 7 shows
the time required to train an ML model. The Naive Bayes
algorithm, generally known as the simplest one, requires only
tens of microseconds to be trained due to its low complexity.
Moreover, an AP will take hundreds of milliseconds to collect
200 instanceswhich are revealed to be sufficient to train a
robust ML model. We next discuss several issues arisen when
we apply ML methods to a real WLAN.

A. Getting The Set of Labeled Instances in a Real WLAN

To establish ground truth in a real WLAN, an AP has
no choice but to label aninstancethrough the direct CRQ
decoding process. Then the false positives may happen and
a subchannel can be assigned to a STA who actually does
not request the subchannel. However the STA will not use the
subchannel for the data transmission and the AP can infer the
occurrence of a false positive and correct the label. Although
it is hard for an AP to get the complete set of the labeled
instancesin a real WLAN, we believe that this corrected set of
the instanceswill suffice to perform CRQ decoding robustly.
An accurate performance evaluation of ML methods in a real
world experimentation is our future work.

B. When an AP should train ML models?

To train a ML model, an AP needs a set consisting of at least
200 labeledinstances, and this set must be evenly distributed
over all possible labels. Note that our multi channel backoff
algorithm tries to distribute requests evenly over all subchan-
nels. Once trained, if no significant channel fluctuations exist,
an ML model produces an accurate CRQ decoding output. We
should re-train the ML model when a training set is outdated.

V. PERFORMANCEEVALUATION

A. Implementation

1) D-Fi Prototype and Experiment Setup:We implemented
the D-Fi OFDM-based PHY/MAC on a small testbed of 4
USRPs [34] and GNU Software Define Radio (SDR) [35].
We adopt a simple Binary Amplitude Modulation (BAM) to
modulate each bit of a signature used for a CRQ/CRP frame.
In order to minimize the false positive of the subcarrier-
level signal detection, the threshold used for the signal power
level comparison is adaptively configured. Our experiment is
conducted within a laboratory to show the feasibility of theD-
Fi PHY/MAC protocol in a typical indoor wireless scenario.

3Naive Bayes and Naive Bayesian tree are generally known as simple and
fast algorithms. And J48 tree and SVM are highly accurate shown in previous
work [22], [23] although they are the results obtained from the area of an
Internet traffic classification research.

Fig. 8. The topology used in our experiment.

We depict the topology used in our experiment in Fig. 8.
In Fig. 8, we have chosen four positions randomly, and let
one node serve as an AP and the other three nodes be STAs
associated with the AP. A rich set of the TX powers provided
by the SDR is used, resulting in the 10dB difference between
the min and max received signal strengths.

2) Results: Fig. 9 shows the feasibility of the OFDM
subcarrier-level signaling. Since we have used three STAs for
transmitting a CRQ symbol, multiple CRQ symbols combine
at a receiver. The sum SNR of this synthesized CRQ symbol
is plotted along thex-axis. We call the case that the signal
strength difference among the individual CRQ symbols is
smaller than 5 dB “similar case”, and otherwise “different
case”. In the whole range of our experiment setups, the D-
Fi’s subcarrier-level signaling performs reliably. Occasional
bitwise-FP and bitwise-FN may still happen, however, as we
have shown in section IV, D-Fi successfully handles such
occurrences with the ML algorithms. When this signature-level
signal detection is applied to the CRQ decoding process, the
accuracy of about 92% is achieved without the ML algorithms
because of the logical errors. Applying the ML methods, how-
ever, the CRQ decoding process almost completely eliminates
the logical errors and achieves the accuracy of about 99.9%.

We next show the accuracy of our channel estimation
method. As shown in Fig. 3, for most of the cases (≥

90%), the estimation error is less than or equal to 1 dB.
These two results show that the D-Fi’s channel contention
and estimation mechanisms are practically feasible in typical
indoor environments where a WLAN operates.

B. Trace-driven Simulation

1) Simulation Setup:The above D-Fi prototype on the
USRP is suitable for demonstrating the feasibility of the
Bloom filter based channel contention and estimation method,
but not the diversity exploration/exploitation performance of
D-Fi. Since an USRP relies on software to process a signal,
it experiences difficulty in processing a wide-band (20MHz)
signal. Additionally, the supported data rate is not as high
as that in hardware radios at a current development stage of
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Fig. 9. The accuracy of the subcarrier-level signal detection.

an USRP. Therefore, we resort to trace-driven simulations to
assess the diversity performance of D-Fi.

To conduct high fidelity emulation of real world setting,
we have used the 802.11n data traces provided by the authors
of [12]. The traces are obtained from commodity Intel Wi-Fi
Link 5300 NIC and its modified driver [5]. The traces contain
per-subcarrier (30 subcarriers for 20MHz) RSSI readings for
both the 24 mobile and 30 static diverse links. With the 54
diverse links, we have set up to 50 nodes in our simulations.

We compare the diversity exploration/exploitation perfor-
mance of 802.11n [1], FICA [10], Carrier-by-Carrier in turn
algorithm (C-by-C) [31], FARA [9], D-Fi, and the throughput-
optimal unit. For a fair comparison, we have modified C-
by-C and FARA to use a subchannel as an access basis.
For diversity-aware schemes such as C-by-C and FARA, we
consider the same amount of the MAC protocol overhead
with D-Fi to compare the performance due to the diversity
exploitation capabilities. Multi channel backoff parameters for
D-Fi (i.e., α and β) have been fine-tuned to assess the best
performance of D-Fi.

2) Results: We first show the D-Fi’s overall throughput
against the other schemes. Fig. 10 presents the empirical
cumulative distribution function (ECDF) of the throughput
for each scheme. The D-Fi’s throughput gains over legacy
802.11n and FICA are 3x and 1.5x, respectively. Because
the 802.11n scheme does not channelize a 20MHz band and
uses random access, it neither reduces the MAC overhead
nor exploits the diversity. FICA, which uses the channelized
random access, reduces the MAC overhead but fails to exploit
the diversity. Now, let us compare the D-Fi’s diversity explo-
ration/exploitation performance with the other diversity-aware
schemes in terms of throughput. Even though the proposed
multi channel backoff algorithm requests only a subset of all
the subchannels, the D-Fi’s diversity exploitation/exploration
performance is equivalent to those of the other diversity-aware
schemes as shown in Fig. 10.

We next show the D-Fi’s fairness performance. Since D-
Fi allocates a subchannel based on the proportional fairness
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algorithm, it is expected to be fair as in random access schemes
like 802.11n or FICA. To verify that, we compute Jain’s
fairness index with the throughput obtained by each STA. Fig.
11 presents the fairness index with all the schemes described
above. It clearly shows that D-Fi offers high throughput while
maintaining fairness comparable to random access schemes
like 802.11n and FICA.

VI. RELATED WORK

Related work falls in the following three areas.

A. Improving MAC efficiency

There has been a tremendous amount of work targeted
towards improving MAC protocol efficiency [10], [11], [13],
[15]. Among these, the most relevant to our work are [10],
[11], [13]. FICA [10] tackles the inefficiency of the 802.11
MAC by redesigning both the PHY/MAC using OFDM-
based fine-grained channelization. The authors of [11] have
proposed Back2F that migrates the time domain backoff to
the frequency domain. As the frequency domain backoff lasts
for several OFDM symbols, it reduces relative MAC overhead



and hence improves the MAC protocol efficiency. In addition,
REPICK [13] have modified a receiver [11] to perform the
frequency domain backoff instead of a transmitter and added
the feature of ACK piggybacking, which further reduce the
MAC overhead. These work share the similarity of using
the OFDM technique to enhance MAC protocol efficiency.
However, our work is different from them because D-Fi further
exploits frequency diversity using the Bloom filter based
channel contention/estimation while reducing overhead.

B. Frequency Diversity

Many theoretic classic proposals exploiting frequency di-
versity are well-summarized in the wireless communication
textbook [4]. Some of them are currently being used by cellular
systems like WiMAX [2], 3GPP LTE [3], etc. Recently,
in academia, the theoretic studies applying proportional fair
packet scheduling have been done in FDMA-based 3GPP
LTE [31], [32] and CSMA-based OFDMA systems [29], [30].
Assuming perfect channel quality information by a training
sequence (pilot), these work solved a resource allocation prob-
lem by mathematical modeling. However, our work proposes a
WLAN protocol that practically considers channel estimation
overhead. Many practical measurement studies have been con-
ducted to show the existence of frequency diversity. Among
these, the most relevant to our work are measurement studies
in the 2.4GHz/5GHz ISM bands [8], [12], [16], [17]. Also,
in WLANs, several frequency diversity-aware schemes have
been proposed [8], [9], [12]. The authors of [8] introduced
a practical rate adaptation scheme based on the effective
SNR (eSNR) which is a channel metric that can consider
frequency diversity. In FARA [9], a transmitter can send
multiple packets to multiple receivers concurrently basedon
the OFDM technique. Thus it needs not consider the time-
sync problem arisen when multiple packets combine at a
receiver. FARA can be used in the downlink of a WLAN
and is complementary to our work in that our work is mainly
focusing on the uplink. Finally, the authors of [12] proposed
a diversity-aware WLAN that uses an adaptive interleaver
and an forward error correction (FEC) scheme based on per-
subcarrier channel state information (CSI). It adopts different
domain approaches such as a per-subcarrier FEC method and
an interleaver and hence is orthogonal to our work.

C. Machine Learning

An explosive increase of digital data has led to spotlight
in the use of machine learning (ML) techniques to extract
engineering information from voluminous data [22], [23], [24],
[25], [27], [28]. In the field of networking, Internet application
traffic classification has been conducted using Naive Bayes
[24], C4.5 decision tree or Naive Bayesian tree [25], and
support vector machine (SVM) [27] algorithms. And [22],
[23] have performed the scientifically grounded performance
comparison among the several methods including well-known
ML algorithms in terms of the classification accuracy. In the
area of wireless networking, the authors of [28] have devel-
oped Airshark that extracts the signal-level features using the

functionality provided by a Wi-Fi card and identifies multiple
non-Wi-Fi signals like Zigbee, cordless phone, Bluetooth,
etc based on the SVM [27] algorithm. To the best of our
knowledge, our work is the first work that applies ML methods
to a PHY/MAC WLAN protocol.

VII. C ONCLUSION

We propose D-Fi, a novel Wi-Fi PHY/MAC protocol based
on the OFDM technique. The proposed protocol performs
channel contention and estimation at the same time using
a Bloom filter to efficiently exploit frequency diversity. In
addition, to address the ambiguity problem, an intrinsic weak-
ness of a Bloom filter, we propose a multi channel backoff
algorithm and apply machine learning algorithms to the D-
Fi PHY/MAC protocol. We showed the feasibility of D-Fi
by implementing it on a USRP/GNUradio testbed. Moreover,
we have shown that the D-Fi PHY/MAC protocol can exploit
frequency diversity with partial channel information through
our trace-driven simulations.

Our future research directions include a full implementation
of a D-Fi network using commodity devices for a thorough
evaluation of our protocol and extending the D-Fi protocol to
support a downlink or an ad-hoc mode operation.
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