Evaluating Storage Systems for Scientific Data in the
Cloud

Ketan Maheshwari* Justin M. Wozniak* Hao Yang Daniel S. Katz*¢
Matei Ripeanu? Victor Zavala* Michael Wilde*+

*Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL USA
ketan,wozniak,zavala,wilde@mcs.anl.gov

ABSTRACT

Infrastructure-as-a-Service (IaaS) clouds are an appealing
resource for scientific computing. However, the bare-bones
presentation of raw Linux virtual machines leaves much to
the application developer. For many cloud applications, ef-
fective data handling is critical to efficient application exe-
cution. This paper investigates the capabilities of a variety
of POSIX-accessible distributed storage systems to manage
data access patterns resulting from workflow application ex-
ecutions in the cloud. We leverage the expressivity of the
Swift parallel scripting framework to benchmark the perfor-
mance of a number of storage systems using synthetic work-
loads and three real-world applications. We characterize two
representative commercial storage systems (Amazon S3 and
HDFS, respectively) and two emerging research-based stor-
age systems (Chirp/Parrot and MosaStore). We find the use
of aggregated node-local resources effective and economical
compared with remotely located S3 storage. Our experi-
ments show that applications run at scale with MosaStore
show up to 30% improvement in makespan time compared
with those run with S3. We also find that storage-system
driven application deployments in the cloud results in better
runtime performance compared with an on-demand data-
staging driven approach.

Keywords
HPC, parallel computing, cloud, global file systems

1. INTRODUCTION

Clouds are poised to become a key platform for data-intensive
distributed computing [19]. Through virtualization, clouds
offer full ownership of a flexible and customizable infras-
tructure. The Magellan initiative on cloud usability and
data management [18] examined the cloud model for scien-
tific applications. One of the challenges identified in its final

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

fComputation Institute

University of Chicago
Chicago, IL USA

dsk@ci.uchicago.edu

iDept. of Electrical and Computer Eng.
University of British Columbia
Vancouver, Ca
yanghao0614,matei@ece.ubc.ca

report [25] was developing appropriate application program-
ming models that enhance the capabilities of the existing
MapReduce model:

Tools to simplify using cloud environments ...
and enhancements to MapReduce models to bet-
ter fit scientific data and workflows [are needed]
for scientific applications. The current tools of-
ten require significant porting effort, do not pro-
vide bindings for popular scientific programming
languages, and are not optimized for the struc-
tured data formats often used in large-scale sim-
ulations and experiments.

More recently, a survey conducted by XSEDE [12] indicated
the increasing cloud adoption in the scientific community.
One of the challenges reported by a majority of the users
interviewed was the difficulty and cost associated with man-
aging data. Furthermore, the survey indicated that many
users (27%) use the costly object store services such as S3
for application data management. On the other hand, ex-
perience using and comparing clouds with traditional high-
performance computing (HPC) environments [15, 26] sheds
light on the advantages of the cloud:

e The virtualized environment of the cloud eliminates
the queue waiting times often dominating application
turnaround times in shared clusters. The queue wait
times have been replaced by the time it takes virtual
machines (VMs) to become available. (Our past exper-
iments show that this is generally under one minute on
popular clouds such as EC2 and is constant regardless
of the requested number of VMs [13]).

e Administrator-level access to instances in the cloud
gives more control over resources, aiding in a range
of user activities, such as installation and upgrade of
software tools, and in customization of network poli-
cies, such as firewalls, without jeopardizing the system
security.

e Clouds offer an economically affordable solution under
certain cost models.

Despite these advantages, however, there is a lack of suitable
techniques and tools to manage application data effectively
and economically on distributed cloud resources.

This paper explores the coupling of a programming model
suitable for a popular application class, namely, many-task
computing, with various storage systems suitable for the
cloud. Specifically, we use the Swift parallel scripting frame-
work with virtual storage and file management systems (col-
lectively, storage systems) in cloud computing environments
and assess their impact on application performance and over-
all usability. To better understand the practicalities of these
systems, we benchmark the overall performance of the cou-
pled system using both synthetic workloads and real-world
applications.

This paper makes contributions over multiple axes:

1. Platform characterization: it sheds light on the net-
work characteristics between Amazon EC2 cloud pro-
visioning regions not generally taken into account while
building computational models.

2. Storage system performance characterization: it bench-
marks the performance of various storage systems with
respect to core data access patterns.

3. Application porting to the cloud: It demonstrates ex-
ecution of real-world applications on the cloud via a
parallel scripting programming approach under two
distinct data management models. More important,
it helps in understanding the tradeoffs resulting from
the choice of the storage system to support workflow
applications.

4. Guidelines for toolkit evolution for clouds: It makes
a case for improved usability of the cloud computing
model using tools well adapted to traditional tightly
coupled systems such as HPC clusters.

While we touch upon the subject of cost, we consider it
outside of the scope of this paper and do not analyze it in
any detail. The rest of this paper is structured as follows.
Network characteristics of global EC2 cloud are analyzed
in Section 2. Virtual storage solutions used in the current
study are described in Section 3. The Swift parallel scripting
framework is briefly discussed in Section 4. Our experiment
setup for cloud related experiments is described in Section 5.
Section 6 evaluates the performance of storage solutions for
common workflow data access patterns. We discuss three
use-case applications in Section 7 and present evaluation
in Section 8. Related work is discussed in Section 9. We
present concluding remarks and future work in Section 10.

2. THE NATURE OF THE CLOUD

Cloud vendors often do not reveal the true nature of the
underlying fabric behind the virtualized resources. Clouds
such as Amazon EC2 can have a global span. Users have
limited information about the topology, network, and hard-
ware capabilities. Consequently, one must explore available
clues to gauge the nature of cloud environments and the best
solutions for efficiently using resources.

Figures 1 and 2 present the bandwidth and latency, respec-
tively, between instances from all eight available regions of
Amazon EC2 cloud. Depending on the platform and appli-
cation requirements, questions that must be answered in-
clude the following: What are the network capacity and
latency between cloud instances at the zone, region, and
global level? What is the expected time to completion given

a fixed number of resources in a given set of regions? What
are the tradeoffs between storage and network performance
that inform advanced data management solution? Which
additional region is best to draw resources from, once the
resource allocation limits have been reached in a given re-
gion?

The results obtained in figures 1 and 2 are significant for the
consumers of cloud infrastructures that are deployed over
global networks. While the infrastructure is presented to the
user as a single virtual platform, the expected performance
of application will vary wildly dependent upon the factors
beyond a users control. This not only risks applications
performance but also increases the user costs of using the
infrastructure.

Performance of distributed applications significantly rely upon
the bandwidth and latencies of the underlying infrastruc-
ture [17]. Storage systems such as the ones discussed in this
paper circumvent these issues to some extent by implement-
ing efficient caching, replication, and prediction mechanisms.

8 8 & g
N ~
S)
Bandwidth in MB/sec

@

US-east US-west-1 US-west-2 EU SA Aus Singapore Japan

0 20 40 60 80 100 120 140 160

US-east US-west-1 US-west-2 EU SA Aus Singapore Japan

Figure 1: Heatmap of network bandwidths between
instances of global Amazon EC2 cloud environment.

3. STORAGE SYSTEMS

Computing via workflows that assemble complex processing
stages using existing components as their building blocks is
an established method in the science domain. A popular
approach to support these workflows is the many-task ap-
proach, in which the workflow processes communicate through
intermediary files stored on a shared file-system.

On clouds, however, the backend data storage system can
become a bottleneck when supporting I/O-intensive work-
flows [27]. Hence, an increasingly popular way to support
workflow applications is to harness some of the resources
allocated by the cloud, particularly node-local storage, and
assemble a scratch storage space to store the intermediary
data used to communicate among workflow tasks. In this
scenario, the workflow scheduler is in charge of staging the
application data into the intermediate space and staging out
the results as needed. The details of workflow enactment de-
pends on the precise data access semantics and API offered

@
S
w
=]
3

=) IN] N
] S S

@
S

150

Latency in msec

@
3

=]

S

N
S

50

N
S

US-east US-west-1 US-west-2 EU SA Aus Singapore Japan

)
)

0 20 40 60 80 100 120 140 160
Us-east US-west-1 US-west-2 ~ EU SA Aus Singapore Japan

Figure 2: Heatmap of network latencies between in-
stances of global Amazon EC2 cloud environment.

by this intermediate space. At one end of the spectrum are
intermediate storage systems that offer a shared file-system
with complete POSIX API support (e.g., MosaStore [1, 21],
and Chirp/Parrot [20]). Whereas, at the other end of the
spectrum are two overlapping solutions: (1) solutions that
offer a custom API, possibly specialized for classes of ap-
plications (e.g., the Hadoop File System - HDFS); and, (2)
solutions that do not offer a shared name and storage space
and leave explicit data movement between independent stor-
age nodes and space management to be handled by the work-
flow scheduler. Apart from performance, an additional ben-
efit from using the storage systems is lower cost: most cloud
billing systems do not invoice separately the instance-local
storage space/traffic; thus, deploying and using an interme-
diate storage space comes at zero cost (as opposed to using
the backend storage where both space and traffic are gener-
ally billed).

3.1 Amazon S3

Amazon S3 [2] is the storage service provided by Amazon.
Its full design and architecture have not been made pub-
lic; however, an important building block is the Dynamo [5]
key-value store. S3 was not designed to be a file system and
is not POSIX-compatible. It acts as a large-scale datastore
and backup service for cloud-based applications. S3 is pre-
configured, albeit at a cost charged by Amazon. It has a
simple two-level namespace: buckets (with unique names in
the global namespace) and objects (the data stored within
the buckets). It provides durability, availability, and rel-
atively fast access. These characteristics make S3 an ideal
service for applications requiring backup and archiving (e.g.,
the Smart Grid State Estimation application [14]). Third-
party interfaces such as S3FS [7] provide access to S3 service
as mountable file systems with a subset of common file op-
erations. S3F'S also implements a simple, local node caching
mechanism to improve performance over that of raw S3 ac-
cess.

3.2 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is a high-
throughput file system designed to store and process large
amounts of data stored on cheap, shared-nothing clusters of
commodity machines. HDFS aggregates the disk space of
the distributed nodes on which it is installed and provides
a unified storage view of the aggregated space. A block of
data (usually 64 MB) is the unit of management for load bal-
ancing, physical data movement, replication, and fault tol-
erance. Data movement is governed via “streaming” access
modes, implying its suitability for record-level manipulation
on datasets. Metadata and file namespace on an HDF'S clus-
ter are managed by a “NameNode” process. The actual data
blocks are managed by the “DataNode” processes running
on each compute node of a cluster.

3.3 MosaStore

MosaStore is a low-overhead, user-level distributed storage
system based on FUSE [6]. MosaStore can be deployed to
aggregate the storage space of compute nodes to an appli-
cation and offered it as a shared POSIX-compatible storage
system. MosaStore is WorkﬂowéAToptimized in that it sup-
ports various data placement optimizations designed specif-
ically for workflow applications. Its key attributes are: (1)
The POSIX API makes integration with applications triv-
ial; (2) Files are striped across multiple nodes. This is a
useful feature if nodes do not have disks and if RAM disks
with inherently limited space need to be aggregated; and
(3) Support is provided for cross-layer optimizations that
enable the storage system to expose details of the stored
data (e.g., data location, replication level) to an application
or workflow.

3.4 Chirp/Parrot

Chirp [20] is a user-level storage system that provides a vir-
tualized, unified view of data over multiple real file systems
(e.g., over file systems deployed over independent clusters).
Deploying Chirp does not require kernel changes or special
access privileges (admittedly, not a key issue when deploy-
ing on cloud, but often a major adoption barrier when using
large, shared clusters). Chirp servers consist of directory
servers (containing only the directory hierarchy of the Chirp
namespace) and data servers (containing the actual files).
The files are not striped across multiple nodes. Parrot is
an interceptor layer that traps the application’s POSIX file
system calls and redirects them to Chirp. A combination of
Parrot and Chirp can thus provide a POSIX-accessible stor-
age environment with files distributed across multiple native
file systems.

3.5 Summary of Storage Systems Features

In this section, we summarize the operations of the stor-
age systems, showing the common abstractions and working
mechanisms. Storage systems can be seen as having three
components (though in some cases these components are
minimal):

1. On the client side (where the client application runs),
a component that enables the application to access the
data. This can be as complex as FUSE-based imple-
mentation in MosaStore (or S3 access through S3FS),
Java APIs for HDFS, or an ability to deal with file
management and transfers (e.g., Parrot for Chirp).

2. On the storage side, the basic native storage (block or
chunk level) and a component that exposes it to the
rest of the system, and signals that the component is
active to enable discovering failures, decision system to
replication, liveliness etc (e.g. Mosastore’s benefactor
component).

3. A management component that keeps track of func-

tionalities involving striping, space management, garbage

collection, data placement, etc. Not all systems have
all these; some (e.g., Chirp) leave the applications to
manage these functionalities by themselves.

4. SWIFT

We use the Swift parallel scripting framework to express
application flow and orchestrate tasks on clouds.

Swift [22] is an implicitly concurrent programming language
originally designed to express workflows consisting of large
numbers of scientific application invocations on multiple di-
verse resources. Swift separates application workflow logic
from runtime configuration, allowing for a highly flexible
development model. Swift can invoke application binaries
on distributed resources, similar to ordinary command-line
invocations, rendering better binding with application exe-
cution environment without extra coding required from the
user. Swift/K is a parallel scripting framework for dis-
tributed application programming. It supports explicit data
movement via protocols such as FTP, scp, and TCP. A pilot-
job abstraction is supported via its coasters implementa-
tion [8]. The Swift/T engine (T stands for Turbine, a dis-
tributed engine) [23] distributes the load of processing Swift
workflow logic across multiple sites. This enables extremely
scalable workflow logic processing and task management.

5. EXPERIMENT SETUP

We prepared a Linux image with the tools and software in-
stallation and required security and communication tuning.
FUSE was installed and enabled as a kernel module. The
Chirp server was installed on each of the cloud instances’
EBS device. Read/write operations were performed on ran-
domly chosen Chirp servers via explicit calls to Parrot. For
HDFS, a default setup mimicking that of Hadoop applica-
tions was used. An instance was chosen as a NameNode,
whereas the rest of the instances were designated as DataN-
odes with storage space formatted over the EBS device.
One of the DataNodes served as a secondary NameNode.
For MosaStore, one instance was designated as the manager
node whereas the rest of the instances were the benefactor
nodes. The application binaries and library dependencies
were installed on the image. Application input data was
loaded on the storage systems or on local EBS storage as re-
quired. In all experiments, instances drawn from the same
prepared image were size “ml.large”, consisting of two cores
and 8 GB memory each.

6. RAW PERFORMANCE EVALUATION

The fundamental I/O patterns in workflows involve succes-
sive reads and writes occurring concurrently on file systems
for interdependent and independent tasks. In this section
we explore the common I/O patterns of workflow applica-
tions and look into the performance on underlying storage
systems. In order to ensure uniformity in data movement,

as seen in Section 2 the instances are drawn from a single
region for the experiments described in this section.
Performance benchmarks for parallel reads of data of vary-
ing sizes from the underlying storage systems are shown in
figure 3. The data is read from the respective storage system
into the local file system, EBS devices in the case of Amazon
cloud.

35 T T T
S3 read :
chirp read
30 HDFS read —*— B

S3 w/o fuse read —8—
Mosa read —®—

25

20

bandwidth in MB/sec

50 100 200 500 750 1000
Data size in MB

Figure 3: Performance benchmark of storage sys-
tems on Amazon cloud: concurrent reads of 40 files
with varying size across 40 Amazon nodes.

Performance benchmarks for parallel writes of data of vary-
ing sizes to the underlying storage systems are shown in
figure 4. The data is written to the storage system from the
local file system.

30 T T T T T
53 write H : :
chirp write
25 — HDFS Write -

53 w/o fuse write —8—
Mosa write —#&—

20

bandwidth in MB/sec
&

50 100 200 500 750 1000
Data size in MB

Figure 4: Performance benchmark of virtual storage
systems on Amazon cloud: concurrent writes of 40
files with varying size across 40 Amazon nodes

In read-after-write (RAW) pattern, shown in figure 5, data
is read from the storage immediately after being written to
it. Shown in figure 6 are the performance measurement plots
for the RAW pattern on varying data sizes. From the perfor-

read write

read write

50-1000M

Local File System » Global File System »| Local File System

50-1000M

Local Disk

Mount Point

Local Disk

Figure 5: Read-after-write data access pattern: data is read immediately after being written to a global

storage system mount point.

18 T T T T
S3
16 chirp A T e [
HDFS —a— : : :
” 53 w/o fuse —8—

12 B TR RRP: fooe vl oo ..~

10 F PP e F -

bandwidth in MB/sec

50 100 200 500 750 1000

Data size in MB

Figure 6: Performance benchmarks for 40 concur-
rent read-after-writes on 40 EC2 nodes.

mance benchmarking plots, we see a trend of high variability
on the remotely located S3 system and a more consistent be-
havior from the storage systems installed over local space.
we see consistently better bandwidths for HDFS and Mosa-
Store systems except at the 1000 MB datasizes. One of
the most common data access pattern in many-task work-
flow applications is concurrent reads and writes. We see
that MosaStore shows better read-after-write performance
beyond 500MB (fig 6). Consequently, we chose MosaStore
for node-local aggregated storage for application measure-
ments.

7. APPLICATION OVERVIEW

In this section we describe three real-world applications and
their implementation using the virtual storage systems cou-
pled with Swift.

7.1 Power Locational Marginal Price Simula-
tion (LMPS)

Optimal power flow studies are crucial in understanding the
flow and price patterns in electricity under different demand
and network conditions. A big computational challenge aris-
ing in power grid analysis is that simulations need to be run
at high time resolutions in order to capture effects occurring
at multiple time scales. The power flow simulation appli-
cation under study analyzes historical conditions in the Illi-
nois grid to simulate instant power prices on an hourly basis.
The application runs linear programming solvers invoked via
an AMPL (A Mathematical Programming Language) model
representation and collects flow, generation, and price data

with attached geographical coordinates. A typical appli-
cation consists of running the model in 8,760 independent
executions corresponding to each hour of the year.

7.2 Parallel Blast

Blast is one of the most prevalent applications used on clouds.
A protein alignment search tool, Blast performs searches
from protein databases. Parallel Blast workflow adds two
additional steps to the basic Blast application. First, a split-
ter splits the protein database into multiple fragments on
which the traditional Blast can be run. Second, the result-
ing search results from each of the blast are merged using
a blastmerge step. The application flow and its interaction
with underlying storage system is shown in figure 7. In this
study we use a reduced ‘nr’ nucleotide database with 1.5
million entries. The splitter splits this database into 300
fragments resulting in a total of 602 application calls.

format_db ul] | do_blast ”l-l | blast merge|

| split_db |
f\ Execution
read Storage write
300X2M index, 300X1M
DB fragments header, blast_outs final_outs
500M sequence

Figure 7: Blast application and its interaction with
storage systems.

Cumulative jobs
700

600 t

500 |

400 |

300 r

200 r

number of completed jobs

100 ¢

0

0 20 40 60 80 100 120 140 160 180 200
Time in sec

Figure 8: Blast application cumulative task execu-
tion plot with Swift/K data staging. A total of 602
tasks were run on 40 cloud instances.

00 10:00 2000 30.00 40600 5000 60.00 70:00 80

Figure 9: Blast application execution trace with
Swift /T and MosaStore data staging; A total of 602
tasks run on 40 cloud instances. The light blue bars
indicate worker-coordination wait; green bars indi-
cate the executions.

7.3 EnergyPlus

The EnergyPlus application is a suite of energy analysis and
thermal load simulation programs [4]. The application takes
into account the local historical climate and materials prop-
erties data to calculate an estimated energy consumption of
a building. The application can take an ensemble of param-
eters such as orientation and height and compute distinct
sets of energy requirements. In our study, we vary the ori-
entation of a building located in Chicago between 10 and 100
degrees at a step size of 10, combined with building height
between 9 and 30 meters, resulting in 210 permutations. A
postprocessing step after each EnergyPlus call converts the
resulting data into a summarized json format. The total
number of tasks in this application is 420 (figure 10).

| post-
energyplus process
f\ Execution ; \
read Storage write
2M 1M
Weather Data, output.tgz, output.json
Building Data xmitable xml

Figure 10: EnergyPlus application and its interac-
tion with storage systems.

8. EVALUATION

In this section, we discuss the results and an evaluation of
our study. Figure 13 shows the power grid application end-
to-end makespan times for an increasing number of instances
on global locations of EC2 instances starting from 20 to 120
with different virtual storage systems.

We use the local disk writes as a baseline for these exper-
iments. While raw local writes are faster on the local file
systems, the results are available only to the nodes where
the computation was done. In order to gather results at the
end of the computation, an additional expensive stage out

Cumulative jobs
450

400 +

350 ¢

300 t

250 |

200 |

150 ¢

number of completed jobs

100

50

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time in sec

Figure 11: EnergyPlus application cumulative task
execution plot with Swift /K data staging; A total of
420 tasks run on 40 cloud instances.

operation is required which is eliminated by virtue of the
storage systems.

The general trend we see from the plot in figure 13 is a sharp
improvement in execution performance in the initial incre-
ments of nodes from 20 to 60. We notice a knee in the per-
formance curve at node count 60 because the allocation goes
beyond the United States region after this point. A steady
improvement is observed after this point followed by no sig-
nificant improvements despite adding nodes as indicated by
a near-plateau between 80 and 120 nodes especially in the
case of Amazon S3. This behavior is expected because as
the number of nodes increases the amount of communica-
tion to remote instances from a centrally located S3 servers
is added on top of application communications. A general
trend of steady performance (flat curve) after 60 nodes is
expected for other storage systems because of the remote
location of regions beyond 60 nodes drawn from the EU and
Asian data centers.

Figures 8 and 11 show cumulative task completion plots for
the Blast and EnergyPlus applications respectively, gener-
ated from the Swift/K execution log. The executions are
carried out via Swift/K coasters setup and using an explicit
staging mechanism. Figures 9 and 12 respectively show ap-
plication completion results via Swift/T with MosaStore as
storage solution in an alternative task trace representation
obtained via MPE [24].

The difference between the Swift/T and Swift/K executions
is data staging. While Swift/K performs explicit on-demand
data movement, Swift/T assumes a shared data access across
executions. In a distributed cloud environment this is made
possible by virtue of the storage systems. Clearly, Swift/T
storage system driven applications (Figs. 9 and 12) perform
better than Swift/K explicit staging applications (Figs. 8
and 11).

9. RELATED WORK

In this section, we discuss projects related to storage, com-
putation, and execution management in the cloud environ-
ments.

TimeLines -,

[« D]

1200 126 250 376 500 625 750 876 100@;151%5

Figure 12: The Energy plus application execution
trace with Swift/T and Mosastore as data staging
platform; A total of 420 tasks run on 40 cloud
instances. The light blue bars indicate worker-
coordination wait, green bars indicate the execu-
tions.

The cloud model of computing presents several distinct data
management techniques. Work described in [11] addresses
the need for data oriented services specific to cloud environ-
ments such as content specific access and security. Work
described in [9] presents algorithms to augment the load
balancing among file blocks on distributed storage systems
such as HDFS.

Other projects have used clouds to extend high-end comput-
ing, for example a federated computing in the CometCloud
project [3]. CometCloud offers a layered suite of services
for managing multiple applications (via workflow, Master /-
Worker, and MapReduce services) on aggregated computa-
tional platforms (via accessibility, overlay and communica-
tion services). Benchmarks similar to ours have been doc-
umented in recent cloud evaluation [10] in a computational
context.

A study by one of the authors of current work raised doubts
about S3’s appropriateness as a live storage system for dis-
tributed applications [16], citing a lack of support for flexi-
ble access control and concerns about high-performance data
access. However, the same study cite several features such
as data durability, high-availability, and ease of access via
POSIX (achievable on top of FUSE) or other APIs (e.g., the
REST API) that can make S3 an appealing storage solution
for scientific applications. Our work back the findings with
application performance results as evidence and lays further
motivation for usage of aggegated, node-local storage sys-
tems in the clouds.

10. CONCLUSIONS

We evaluate two representative storage systems each from
scientific and commercial domain in the cloud. With an
availability of local ephemeral storage and remote object
storage in the form of S3, data handling in clouds poses in-
triguing challenges. We attempt to address these challenges
by understanding the network characteristics of a commer-
cial cloud implementation and setting up the cloud with
Swift orchestrated computations over storage systems. We
benchmark our approach with basic read and write patterns
commonly observed in scientific applications. With the cur-

300 T T
; Local Disk =——+—
MosaStore —#—

Amazon S3 =———

200

150

100

malespan time in min

50

20 40 60 80 100 120
Cloud Instance count

Figure 13: Application makespan times with results
written to local disk and virtual storage systems on
an increasing number of cloud instances.

rent state of the art of this work, we draw the following main
conclusions:

e Globally implemented clouds rely heavily on internet
backbone resulting in a non-uniform and variable net-
work characteristics which application deployments must
take into account. Storage solutions can mitigate re-
sulting variabilities to some extent by techniques such
as caching, replication and prediction.

e Applications with small to medium immediate storage
requirements can be run effectively by aggregating the
cloud node-local space with the help of storage solu-
tions. These solutions almost always perform better
compared to the dedicated object store provided by
clouds such as S3 by Amazon.

e Storage solutions such as S3 are nonetheless important
for large-scale data handling and archival purposes.

e Depending upon the application requirements, Swift
can handle both implicit and explicit data motions in
the cloud.

For data motion during an application execution, we study
two approaches: explicit workflow engine staged data move-
ment and implicit data movement via coupling the virtual
storage systems with workflow systems. We chose HDFS
for its popularity, MosaStore for its ability to offer a shared
POSIX-compatible and at the same time support optimiza-
tions for workflow applications, and Chirp/Parrot for its ease
of deployment. From the results obtained from benchmark-
ing and actual application studies with different cloud con-
figurations (local, single zone, and global) we were able to
understand the effectiveness of storage systems. We show
how real-world application data can be handled in the cloud
by using storage systems. In particular, our experiments
shed light on utility and performance of storage systems as
an alternative to the de facto S3 storage offered by Amazon.

Acknowledgments

This work was partially supported by the U.S. Department
of Energy, under Contract No. DE-AC02-06CH11357. We
thank Gail Pieper for proofreading help. We thank Ama-
zon for AWS Amazon research grant award. Some work by
DSK was supported by the National Science Foundation,
while working at the Foundation. Any opinion, finding, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

11.
1]

[10]

[11]

[14]

[15]

REFERENCES

S. Al-Kiswany, A. Gharaibeh, and M. Ripeanu. The
case for a versatile storage system. SIGOPS Oper.
Syst. Rev., 44(1):10-14, Mar. 2010.

Amazon Simple Storage Service. aws.amazon.com/s3.
CometCloud: an autonomic framework for enabling
real-world applications.
nsfeac.rutgers.edu/CometCloud.

D. B. Crawley et al. Energyplus: creating a
new-generation building energy simulation program.
Energy and Buildings, 33(4):319 — 331, 2001.

G. DeCandia et al. Dynamo: amazon’s highly
available key-value store. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems
principles, SOSP 07, pages 205-220, New York, NY,
USA, 2007. ACM.

Filesystem in Userspace. fuse.sourceforge.net.
FUSE-based file system backed by Amazon S3.
code.google.com/p/s3fs.

M. Hategan, J. Wozniak, and K. Maheshwari.
Coasters: uniform resource provisioning and access for
scientific computing on clouds and grids. In
Proceedings of Utility and Cloud Computing, 2011.
H.-C. Hsiao, H.-Y. Chung, H. Shen, and Y.-C. Chao.
Load rebalancing for distributed file systems in clouds.
Parallel and Distributed Systems, IEEE Transactions
on, 24(5):951-962, 2013.

D. Knight, K. Shams, G. Chang, and T. Soderstrom.
Evaluating the efficacy of the cloud for cluster
computation. In Aerospace Conference, 2012 IEEFE,
pages 1-10, 2012.

E. Kolodner et al. A cloud environment for
data-intensive storage services. In Cloud Computing
Technology and Science (CloudCom), 2011, pages
357-366, 2011.

D. Lifka, I. Foster, S. Mehringer, M. Parashar,

P. Redfern, C. Stewart, and S. Tuecke. Xsede cloud
survey report. Technical report, NSF, Sept. 2013.

K. Maheshwari, K. Birman, J. Wozniak, and D. V.
Zandt. Evaluating cloud computing techniques for
smart power grid design using parallel scripting. In
Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on, 2013.
K. Maheshwari, M. Lim, L. Wang, K. Birman, and
R. van Renesse. Toward a reliable, secure and fault
tolerant smart grid state estimation in the cloud. In
Innovative Smart Grid Technologies, Washington DC,
USA, Feb. 2013. IEEE-PES.

A. Marathe et al. A comparative study of
high-performance computing on the cloud. In

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

25]

[26]

27]

Proceedings of the 22nd international symposium on
High-performance parallel and distributed computing,
HPDC ’13, pages 239-250, New York, NY, USA, 2013.
ACM.

M. R. Palankar, A. Jamnitchi, M. Ripeanu, and

S. Garfinkel. Amazon s3 for science grids: a viable
solution? In Proceedings of the 2008 International
Workshop on Data-Aware Distributed Computing,
DADC ’08, pages 5564, New York, NY, USA, 2008.
ACM.

D. A. Patterson. Latency lags bandwith. Commun.
ACM, 47(10):71-75, Oct. 2004.

L. Ramakrishnan et al. Magellan: experiences from a
science cloud. In Proceedings of the 2nd International
Workshop on Scientific Cloud Computing,
ScienceCloud 11, pages 49-58, New York, NY, USA,
2011. ACM.

J. Shamsi, M. Khojaye, and M. Qasmi. Data-intensive
cloud computing: Requirements, expectations,
challenges, and solutions. Journal of Grid Computing,
11(2):281-310, 2013.

D. Thain, C. Moretti, and J. Hemmes. Chirp: a
practical global filesystem for cluster and grid
computing. Journal of Grid Computing, 7(1):51-72,
2009.

E. Vairavanathan, S. Al-Kiswany, L. Costa,

M. Ripeanu, Z. Zhang, D. Katz, and M. Wilde.
Workflow-aware storage system: An opportunity
study. In Proc. CCGrid, 2012.

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster. Swift: A language for
distributed parallel scripting. Par. Comp., 37:633-652,
2011.

J. M. Wozniak, T. G. Armstrong, K. Maheshwari,

E. L. Lusk, D. S. Katz, M. Wilde, and I. T. Foster.
Turbine: A distributed-memory dataflow engine for
high performance many-task applications.
Fundamenta Informaticae, 128(3):337-366, 2013.

C. E. Wu et al. From trace generation to visualization:
A performance framework for distributed parallel
systems. In Proc. of SC2000: High Performance
Networking and Computing, November 2000.

K. Yelick et al. The Magellan report on cloud
computing for science. Technical report, US
Department of Energy, Washington DC, USA, Dec.
2011.

Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen. Cloud
versus in-house cluster: evaluating Amazon cluster
compute instances for running MPI applications. In
State of the Practice Reports, pages 11:1-11:10, New
York, NY, USA, 2011. ACM.

7. Zhang, D. S. Katz, M. Ripeanu, M. Wilde, and

I. Foster. AME: An Anyscale Many-task Computing
Engine. In Proceedings of the 6th Workshop on
Workflows in Support of Large-scale Science, WORKS
'11, pages 137-146, New York, NY, USA, 2011. ACM.

