
256 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

Applying Formal Methods to Networking: Theory,
Techniques, and Applications

Junaid Qadir and Osman Hasan

Abstract—Despite its great importance, modern network infras-
tructure is remarkable for the lack of rigor in its engineering.
The Internet, which began as a research experiment, was never
designed to handle the users and applications it hosts today. The
lack of formalization of the Internet architecture meant limited
abstractions and modularity, particularly for the control and
management planes, thus requiring for every new need a new
protocol built from scratch. This led to an unwieldy ossified In-
ternet architecture resistant to any attempts at formal verification
and to an Internet culture where expediency and pragmatism are
favored over formal correctness. Fortunately, recent work in the
space of clean slate Internet design—in particular, the software
defined networking (SDN) paradigm—offers the Internet commu-
nity another chance to develop the right kind of architecture and
abstractions. This has also led to a great resurgence in interest
of applying formal methods to specification, verification, and syn-
thesis of networking protocols and applications. In this paper, we
present a self-contained tutorial of the formidable amount of work
that has been done in formal methods and present a survey of its
applications to networking.

Index Terms—Computer networks, formal specifications, for-
mal verification.

I. INTRODUCTION

THE networking industry in a way is a victim of its own
popularity. Internet, which began as a research experiment

in the late 1960s, became popular before many aspects of
Internet’s design could be formally contemplated and designed
[1]. The overwhelming success of the Internet led to the need
of rapid innovations in applications and protocols. This has
helped develop a culture that values engineering judgment,
heuristics, and running code1 more than it values sound engi-
neering and rigorous verification. Unfortunately, the expedient
rapid innovations resulting from this approach has resulted in
a hit-and-trial hacking based software development culture. In
contrast to well-honed verification and testing tools available

Manuscript received November 18, 2013; revised March 7, 2014 and
June 4, 2014; accepted August 2, 2014. Date of publication August 7, 2014;
date of current version March 13, 2015.

The authors are with School of Electrical Engineering and Computer
Science, National University of Sciences and Technology, Islamabad 44000,
Pakistan (e-mail: junaid.qadir@seecs.edu.pk; osman.hasan@seecs.edu.pk).

Digital Object Identifier 10.1109/COMST.2014.2345792

1The ethos of the Internet research is reflected in the famous quote of David
Clark: “We reject: kings, presidents and voting. We believe in: rough consensus
and running code.”

for other fields such as ASIC hardware design, large-scale
software systems, the networking industry has a very primitive
testing tool-chain. The lack of rigor in networking industry,
on the other hand, can be observed by the fact that simulation
based testing—which is inherently a trial-and-error process—is
routinely used to “establish” the correctness of networking
protocols, software, and hardware. With exponential number
of possibilities, exhaustive testing is almost always impossible
and thus subtle bugs remain unchecked and undetected until
they manifest themselves at invariably inopportune times where
the consequences of bugs in the wild can be drastic [2], [3].
Such a lack of rigor is unacceptable in other mature engineering
or manufacturing fields, and the networking community is
increasingly realizing the need for better tools and techniques
for verification and testing.

Formal methods allow us to not only verify the properties
of protocols and systems, but also will help us deepen our
conceptual understanding of large classes of protocols. With
the emergence of large-scale computer systems such as data
centers, and the emergence of cloud computing paradigm using
which consumers can access resources on a pay-per-usage
basis, computing is increasingly being democratized. However,
the cost of failure of such large-scale computing systems is
huge which motivates the use of formal methods to provide an
increased level of system reliability and correctness [4].

There are many prominent examples of huge losses accruing
from failing systems, protocols, and services [4]. For example,
a recently published white paper by Rapid7 [5] identifies some
vulnerabilities in the commonly used Universal Plug and Play
(UPnP) protocol, i.e., a communication protocol for routers,
smart TVs, network-attached storage etc. According to the
report [5], these issues can endanger about 50 million network-
enabled devices that are using UPnP. Similarly, due to the
incorrect operation of a network card, over 15 000 flights were
grounded at the Los Angeles International Airport in 2007 and
no one was allowed to enter or leave the US via this airport
for about 8 hours [6]. At times such undetected bugs in the
design phase can also compromise the privacy of the Internet
users. For example, various vulnerabilities have been identified
in the programs running in the web servers of the social media
giant Facebook; a recent one [7] involves a program that the
company has been running since 2011 and allows someone to
access arbitrary files on the company’s web server. Facebook
paid a bug bounty of $33 500 to the engineer reporting this case
[7]. In addition to vulnerabilities in software and protocols, a
large share of failing network services is due to operator errors
(which includes configuration errors) [8].

1553-877X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 257

A standard technique to manage complexity in computer
systems is to utilize abstractions and modularity. Apart from
the lack of a developed verification tool-chain, the Internet
also suffers from a paucity of useful abstractions, especially
for the control plane, which has led to accumulation of a “big
bag of protocols” [9]. This is in contrast with other fields of
computer science: e.g., the software industry has matured to
incorporate a hierarchy of abstractions designed to simplify
the task of programming while ensuring correctness—e.g., in
software development, the high-level end-to-end requirements
are separated from the low-level machine code by various
abstractions such as algorithms, programming languages, com-
pilers, tracers and debuggers, static analysis tools, etc. The lack
of abstractions has resulted in an unwieldy complex Internet
architecture, with under-developed underlying principles and
theoretical foundations, that is totally ill-suited to the kind of
dependence that is expected of the modern Internet.

Formal methods—computer techniques based on mathemati-
cal logic—are poised to play a central role in future networking
as the research community increasingly converges towards a
firm realization that traditional informal methods are grossly
inadequate for specification, analysis, and validation of net-
working protocols [10]. Formal methods have been extensively
applied to the verification of hardware design [11], communi-
cation protocols [12], [13] (e.g., routing protocols [14]), secure
software systems [15], engineering systems [16], programming
languages [17], network simulations [18], large software pro-
grams [19], etc. Likewise, formal methods have also been used
in the networking domain with promising results. For example,
the lightweight formal modeling and verification tool, Alloy,
has been successfully used to discover some major issues with
the widely used Chord protocol [20]. These issues could not
be identified with over a decade of research on the Chord
protocol using the traditional analysis methods. Similarly, the
network simulator J-Sim, extended with the bounded model
checking capability, was able to detect an unknown bug in
an earlier J-Sim implementation of the Ad-Hoc On-Demand
Distance Vector (AODV) protocol [21]. Another notable ex-
ample of detecting errors in widely used telecommunication
systems using formal methods include the usage of the higher-
order-logic theorem prover Coq for identifying several bugs in
the implementation of the open source Netgear WNR3500L
wireless router firmware [22].

Despite the above-mentioned results, there has been an im-
pression in the networking community that formal methods
do not return benefits commensurate with the effort to use
them. Vint Cerf has written that “Formal methods have not
yielded results commensurate with the effort to use them.
They are overblown, verbose, hard to use, hard to understand.”
[23]. This criticism has unfortunately resulted from the lack of
appreciation of advances in formal verification and sometimes
due to poor communication between the formal verification
community and the networking community. It is imperative in
today’s world, and it will become increasingly important in
the future, to move away from manual error-prone methods of
testing and verification and automate as much of the testing
and verification tasks as we can [24]. Formal methods are still
useful even if they do not meet the utopian “gold standards” of

complete automation and complete generality of mathematical
proofs—in particular, interactive theorem proving, abstracted
models, and light-weight methods are highly suited to certain
niche applications [10]. Advances in modern technology has
fortunately facilitated development of many automatic and
semi-automatic tools that can be conveniently used by prac-
titioners with limited specialized background knowledge of
formal methods.

With the increasingly central role networks play in all as-
pects of our lives (business, personal, entertainment, etc.), the
correct functioning of networking protocols and systems has
never been more important. In recent times, there has been
significant interest in the application of formal methods to
networking [25], not only due to the importance of this subject,
but also due to the possibilities created by recent architectural
developments in the networking community. In particular, the
software defined networking (SDN) architecture, which pro-
poses splitting of the control/data planes and the management
of multiple data planes through a centralized controller to allow
programming the network in a software-like fashion, makes
networking accessible via formal methods. This has accentu-
ated the networking community’s interest in applying formal
methods to networking [26]. With the use of formal methods in
networking, the field of network verification looks set to evolve
from the current set of ad-hoc verification tools and emerge as
an engineering discipline.

Contributions of this work: In this paper, we provide a self-
contained tutorial covering the vast amount of work that has
been done in the area of formal methods with a special focus
on their applications in the domain of networking. Due to
the great breadth of the subject, and vast amount of works in
associated fields, we cannot hope to be comprehensive in every
respect—nonetheless, we provide an extensive, self-contained,
description of application of formal methods to networking
with an adequate background on logic, programming lan-
guages, automatic verification, etc. This work is different from
existing surveys [27]–[30] in its exclusive focus on application
of formal methods to networking and incorporation of new
trends that have emerged with recent network architectural
developments (such as the development of the SDN network-
ing architecture). The emergence of SDN, and other recent
innovations, have spurred a surge of interest in the application
of formal methods to networking [31]. Our paper is timely
since, despite the recent focus and interest in our subject area,
there does not exist a unified survey paper that a networking
researcher can use to develop a high-level broad understanding
of formal methods and techniques and learn about their appli-
cations in the context of networking. This paper attempts to fill
this void, and will be valuable to networking researchers who
wish to exploit the large amount of work done in the formal
methods community to build reliable future networks whose
correctness is formally verifiable.

The remainder of this paper is organized as follows.
Sections II–IV serve to provide the necessary background to
various topics in formal methods and verification make this
paper self-contained. The necessary background on logic is
provided in Section II. Different techniques for specification
and modeling, such as finite-state-machines, Kripke structures,

258 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

binary decision diagrams, etc., are described in Section III.
Different techniques for formal verification, such as model
checking, theorem proving, static analysis, etc., are described
in Section IV. After discussing the necessary background,
the stage is set for the three main sections of this paper
(Sections V–VII) in which we describe the various application
of formal methods in the context of networking in detail.
In the section formal verification techniques in networking
(Section V), we present a formal verification technique based
categorization of applications of formal methods in network-
ing; we also present a discussion on the suitability of various
techniques for different verification tasks in networking as
well as a discussion on common pitfalls. We provide a broad-
ranging overview of application domains of formal methods
in networking in application domains of formal methods in
networking (Section VI). We then focus on developments in
SDN and detail how formal methods, logic, and programming
languages can be used in such networks in section applications
of formal methods in SDN (Section VII). Various open issues
and future works are then identified in Section VIII. Finally,
this paper is concluded in Section IX.

II. LOGIC—THE FOUNDATION OF FORMAL METHODS

Logic is the branch of knowledge that focuses on systemiz-
ing truth, reasoning, and inference. Studied by generations of
philosophers (Socrates, Plato, Aristotle, Kant, etc.), logic has a
rich ancient tradition in philosophy [32]. Logic was developed
in ancient Greece as a device for systematizing deduction
through which true statements, or conclusions, could be derived
from premises—statements that are assumed to be correct.
Although, utilized in mathematics at least since Euclid (2300
BC), the incorporation of logic into a mathematical framework
has occurred mostly in the last two centuries [33] through the
efforts of Frege, Peano, and Russell to axiomatize mathematics.
In the field of computer science, logic has been referred to as
“the calculus of computer science”2 [34] to highlight its pivotal,
and indeed “unusually effective” [35], role in the fields of
formal methods [36], artificial intelligence [37], and theoretical
computer science [38]. Formal methods, which utilize logic for
modeling and reasoning about computer systems, have been
extensively for formal verification of computer systems (both
hardware and software) [36].

What is logicism? As per Aristotle’s definition, logic is new
and necessary reasoning—new since we learn what we did not
know, and necessary because the conclusions are inescapable.
Leibniz dreamed of such a mechanical system of reasoning
which he called calculus ratiocitinator to calculate new and
necessary conclusions from facts described in a logical sym-
bolic language, which Leibniz called characteristica univer-
salis. Frege devised a set-based logical language for developing
Mathematics on a solid footing. Frege (1848–1925) conceived
of an ambitious project, called logicism, which aimed at deduc-
ing mathematics (more specifically, set theory, number theory,
and analysis) from laws of logic [39]. This project after Frege

2In a metaphorical reference to the central place calculus occupies in natural
sciences.

was taken up most notably by Russell, along with Whitehead,
who embarked on an ambitious project to put mathematics on
firm foundations. The use of symbolic notation, an integral
component of Russell’s attempt to formalize mathematics, al-
lowed rapid progress and allowed emphasis on the structure and
the form of reasoning.

The “failure” of logicism: It was discovered by Russell that a
logical language based on naive set theory—which defined sets
to be a collection of objects and allowed sets to contain sets
(including possibly itself) as elements—could not be used as
the foundation of all mathematics because it suffered from para-
doxes. Russell showed the following simple example, known
as Russell’s paradox, to illustrate this: does the set S of all
sets that do not contain itself contain the set S itself? This
riddle exposed that naive set theory is not sufficient to act as
a foundation of mathematics leading to axiomatized set theory
and various typed set theory to deal with the self-referential
that created the Russell’s paradox. In mathematics, the standard
form of axiomatic set theory is the Zermelo–Franenkel set
theory with the axiom of choice (ZFC) which acts as the most
common foundation of mathematics. Eventually, Fregian logic
also had to be restricted—into what is now known as first-
order logic—to deal with Russell’s paradox, and this restricted
logic was incorporated by ZF set theory. In 1931, Godel
dealt a deathly blow to logicism when he proved that any
axiomatic system capable of expressing the laws of arithmetic is
incomplete—i.e., there will always be some truth of arithmetic
that cannot be proved using the axioms of the system. While
logicism “failed” in its aim of deducing arithmetic from the
axioms of logic, it was instrumental in establishing the limits
of computation and of “formal reasoning.” It helped identify
the limits of computation and of axiomatized logic systems.

Components of logical reasoning: In modern terms, every
logic-based language is defined in terms of three components:
syntax, semantics, and proof theory. The syntax of a language
specifies all the components that can be part of a well-formed
formulae. The purpose of standardizing a syntax is to aid in un-
derstanding, communicating, and reasoning. The semantics of a
language, informally speaking, deals with the “meaning” of the
formulae, or sentence, formatted according to the language’s
syntax. In logic, the semantics of a language specifies the truth
of a formulae with respect to each possible world [37]. As an
example, x+ y = 2 is true when x and y are both equal to 1
but false in a world where x and y are both equal to 2. More
formally, the term “model”—which is used in the name of a
technique known as “model checking” that we shall see later in
Section IV-C—is used in logic in place of “possible world.” The
meaning of a statement M is a model of α (commonly depicted
as M |= α, and read as M models α) is that the formulae α
is true in situation represented by model M. The concept of
logical entailment is similar: we can denote in notation α |= β,
i.e., the formulae α entails the formulae β if and only if every
model in which α is true, β is true as well. In other words,
logical entailment α |= β implies that if α is true, β must also
be true. Lastly, proof theory is concerned with manipulating
formulae according to certain rules.

In the remainder of this section, we will provide background
information about some important logics relevant to the overall

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 259

TABLE I
TRUTH-TABLE OF TRUTH-FUNCTIONAL CONNECTIVES

problem of formal specification and verification of computer
networks. A discussion of the applications of various logics in
the context of networking is presented later in Section VII-B.

A. Propositional Logic

Propositional logic, also called propositional calculus or sen-
tential logic, was developed into a formal logic by Chrysippus
and developed further by the Stoics and eventually by Leibniz.3

Propositional logic differs from syllogistic logic, proposed by
Aristotle, in that it focuses on propositions which are declara-
tive sentences that can only take values of True or False. Since
the propositions are akin to Boolean variables, propositional
logic is also known as Boolean logic [37]. Propositional logic
is important for two main reasons. Firstly, it is fundamentally
important for computer systems since it is the theory behind
digital circuits. Moreover, most of the advanced logics (such as
first-order logic, also called predicate logic, which is covered in
Section II-B) build upon propositional logic.

In propositional logic, new propositions are generated from
old through truth-functional connectives [40], which define the
formal grammar of propositional logic, such as the not operator
(¬), the and operator (∧), the or operator (∨), the if, or implies,
or the conditional operator (→), and the iff, or equivalence,
or the biconditional operator (↔). Although, the Boolean
propositional operators have intuitive analogues in natural lan-
guage, they are defined formally. Sometimes, the mathematical
terminology has a direct analogue with our intuition: e.g., the
Boolean operator and is an operator that is defined to give a true
value if and only if applied to two expressions whose values are
true [33]. At other times, the mathematical terminology may
extend our intuitive interpretation: e.g., mathematical usage of
the implication logical connective extends the intuitive concept
of implication by divorcing the concept of causality from impli-
cation [41]. Similarly, the Boolean operator or, when applied
to two expressions, has the intuitive analogue of inclusive or,
i.e., any one or both expressions are true. It is important to
stress that these operators are formally defined through a truth
table, and these operators may not exactly match our everyday
understanding of these words. The truth tables of the logical
connectives used in propositional logic can be seen in Table I.

Propositional logic formulae: The formulae of a formal
language built on propositional logic are expressions that can
be recursively built from propositional variables by using
connectives. There are four important concepts that apply to
formulae. Two of these concepts are important properties of a
formulae: i) being a tautology, ii) being a contradiction, while

3Leibniz is also credited for being the developer of symbolic logic, along
with his more famous contributions towards development of calculus.

the remaining two concepts refer to relations between formulae:
iii) tautological implication, and iv) tautological equivalence.

There are two fundamental concepts that deal with formulae
of all logics: i) satisfiability—is this formula ever true? and ii)
validity—is this formula always true? It may be noted that the
satisfiability problem is very general, indeed various computer
science problems can be reduced to a satisfiability formula-
tion. Determining the satisfiability of sentences in propositional
logic was the first problem that was proved to be NP-complete
[37]. Similarly, determining the validity of logic formulae is an
extremely important problem. Another important problem that
deals with propositional logic is the propositional tautology or
equivalence checking.

B. Predicate Logic

Developed initially by Frege and Peirce, predicate logic
[36], [40] enhances propositional logic—which only allows
propositional symbols and operators—with i) propositional
symbols, ii) predicates, iii) functions and constant symbols,
iv) quantifiers (universal quantifier, ∀, meaning “for all,” and
an existential quantifier, ∃ meaning “for some”), v) equality,
and, vi) variables [37]. The prime motivation behind develop-
ing predicate logic is that the truth-functional connectives of
propositional logic (such as not, and, or, if, iff, etc.) alone are
not rich enough to capture the much richer logical structure
of natural language which often uses quantifiers, or modifiers,
such as “there exists,” “all,” “some,” “among,” “only,” etc.

It is worth emphasizing the difference between a proposition
and a predicate. A proposition is a statement that is either true
or false—for example, IPv4 addresses are 32 bits long is a
true statement. A predicate, on the other hand, is used to cap-
ture relation(s) or dependence on some input parameter(s)—a
predicate evaluates to true or false depending on some input
parameters. In the case of a unary predicate—e.g., x is a
philosopher—the truth of the statement depends on the a soli-
tary input variable. For binary predicates, however, the truth
of a statement depends on two input variables—e.g., x > y,
depends on the values of both x and y. In general, predicate
logic may have n-ary relations between objects [37]. Predicate
logic is extremely important, especially for our subject topic of
formal verification of communication systems, as it can be used
to formalize the semantics of programming languages, and to
specify and verify programs.

C. First-Order Logic

Predicate logic can be categorized into various orders de-
pending on how the quantifiers are used in predicate logic. In
first-order logic, it is assumed that the world contains objects
(such as switches, routers, users, etc.), relations (faster than,
happens after, etc.), functions (one more than, next hop of,
etc.), and quantifiers through which facts can be expressed
about some or all the objects in the universe [37]. In first-
order logic, quantifiers can range over individuals, whereas
in higher-order logic, the quantifiers can also range over sets,
or relations. Higher-order logic can also be defined, with
ω-order logic being essentially the simple theory of types. While

260 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

predicate logic subsumes first-order logic, second-order logic,
or infinitary logic, etc., the unqualified use of predicate logic
typically refers to first-order logic.

First-order logic was delineated by Hilbert, and then Skolem
who proposed building set-theory on the basis of first-order
logic. First-order logic, like propositional logic, is a complete
system [39] (first proved by Godel in his completeness theo-
rem). There are various useful verification tools that are based
on first-order logic including the Alloy analyzer (which we will
discuss later in Section IV-D).

In 1928, David Hilbert proposed the Entscheidungsproblem,
German for the “decision problem” [42], which asked for an
algorithm which will take a statement of a first-order logic as
input, and answer if the statement is universally valid—i.e.,
valid in every structure satisfying the axioms—with a “yes”
or a “no.” Hilbert’s intent was to find a system for completely
axiomatizing, and formalizing, all mathematical knowledge and
proofs. In 1936, Alonzo Church and Alan Turing independently
showed that a general solution to the Entscheidungsproblem
is impossible—thus, no mechanical, or algorithmic, method
can prove the validity of arbitrary predicate logic statements.
The Church-Turing result for the Entscheidungsproblem also
has significant implications for the use of automatic theorem
proving methods for software systems. In particular, we cannot
write a program (written in any common language such as
Java, C, etc.) which will be able to always answer the decision
question: Is a given logical formula φ in predicate logic true for
all its valuations, i.e., does |= φ hold, yes or no?

The unfortunate implication of this is that no automatic
deductive verification tool can exist that will work with any ar-
bitrary predicate logic formula instance as an input and always
terminate while producing a correct “yes”—corresponding to
a valid input formula—or a “no” answer corresponding to an
invalid input formula [36]. This poses a fundamental, and insur-
mountable, problem to the automatic theorem proving approach
of verification, also known as automatic deductive verification.
Therefore, first-order logic, unlike propositional logic is only
a semi-decidable theory—i.e., there exists an effective method
for telling if any arbitrary given formula is in the theory, but it
may give either a negative answer or no answer at all when the
formula is not in the theory.

D. Higher-Order Logic

A higher-order logic (HOL) is more expressive than first-
order logic as it allows a more general usage of quantifiers
along with stronger semantics. Unlike first-order logic in which
variables cannot denote predicates, variables in second-order
logic can denote predicates allowing the logic to talk about
itself more easily. There can be higher-orders beyond second-
order logic. The main strength of HOL is that it is highly
expressive, and can express any mathematical theory, like
multi-variable calculus [43] and probability [44], in its true
form. The higher expressiveness associated with higher-order
logic, however, is tempered with the downside that model-
theoretic properties of higher-order logic are less well-behaved
than those of first-order logic. In particular, validity in higher-
order logic is not even semi-decidable (or anywhere in the
arithmetical hierarchy).

E. Hoare Logic

Hoare logic (also known as Floyd–Hoare logic or program
logic) is a formalism that defines logical rules—i.e., axioms
and inference rules—to provide an axiomatic basis for verifying
computer programming [45]. The central construct used in
Hoare logic is the partial correctness specification in the form
of a Hoare triple:4 {P}C{Q} where P is the pre-condition,
Q is the post-condition, and C is the command. Hoare logic
builds upon other conventional logic, e.g., first-order logic, for
specifying the pre- and post-conditions.

Hoare Logic is a deductive proof system for Hoare triples
{P}C{Q}. The partial correctness specification {P}C{Q}
means that whenever C is executed in a state satisfying P ,
and if the execution of C terminates, then the terminating state
after C’s will satisfy Q. Hoare logic deals with verification of
partial correctness of a command, and termination of a program
has to be separately proved to show total correctness. The
generality of Hoare’s approach is based on its characteriza-
tion of programming constructs as transformations of states
which can universally apply to any imperative programming
language construct. The underlying semantics of a program can
be viewed a set of transformations from an initial state to a
final state. Since a sequential program can also be envisioned
as a transformational system, Hoare logic is particularly suited
to analysis and verification of sequential computer programs.
Hoare logic is a sound system (every provable formula is true)
but not a complete system (i.e., not all true statements are
provable). More details about Hoare logic can be found in [46].

Hoare logic, and the use of Hoare-style pre-conditions and
post-conditions, is commonly used in many settings. As an
example, the Java Modeling Language (JML) defines a spec-
ification language for Java programs, following the design by
contract paradigm, which uses Hoare style pre-conditions and
post-conditions and invariants for extended static checking. The
same style is inherited by ESC/Java.

F. Modal Logic

Modal logic is an expressive form of logic that uses ad-
ditional quantifiers. Modal logic was originally developed by
philosophers to study different “modes of truth”—e.g., an
assertion P may be false in the present world, however, the
assertion “possibly P ” will be true if the assertion P is true in
some alternate world [47]. Temporal logics essentially have two
kinds of operators: logical operators (loaned from traditional
the logic framework in which temporal logic is used) and modal
operators. The modal operators capture in modal logic the in-
tuitive notions of necessarily, always, possibly, sometimes, etc.
The symbols N , F , G, A, E represent Next, Future, Globally,
All, and Exists, respectively. In typical notational terms, the
box symbol is used to represent necessity, while the diamond
symbol is used to represent possibility. For example, Gp would
mean always p; Fp will mean sometimes p; �p means possibly
p; �p means necessarily p.

4The Hoare triple is also known as partial correctness assertion or PCA and
is partially based on Floyd’s intermediate assertion method.

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 261

Modal claims can be understood semantically in a theory
of “possible worlds”—an idea commonly attributed to Leibniz
which was advanced by Saul Kripke in the late 1950s. Kripke
advanced Leibniz’s conception of the actual world being one
“possible world” amongst other, by proposed a mathematical
theory of models (now known as Kripke models) for possible
worlds. A statement is “possible” in modal logic if it is true
in at least one possible world; a statement is “necessary” if
it is true in all possible worlds. We will see later that “model
checking” (covered in Section IV-C) depends fundamentally on
the concept of possible worlds and utilizes Kripke models.

G. Temporal Logic

The use of temporal logic, a special type of modal logic, for
formal specification and verification of computer systems was
proposed by Amir Pnueli in a highly influential paper [48] in
1977. In this paper, Pnueli argued that temporal logic—a for-
malism for dealing with how truth values of assertions change
over time—is especially appropriate for describing reactive
systems such as operating systems and network communication
protocols. In a reactive system, which contrast with sequential
terminating programs that essentially transform the input to the
output and then terminate, the normal behavior is to engage in
a nonterminating computation that continuously interacts with
the environment. Examples of reactive systems include operat-
ing systems and network communication protocols. Temporal
logic is especially invaluable in the field of model checking
finite-state concurrent programs [49]: Leslie Lamport, in his
highly cited paper “what good is temporal logic?,” has high-
lighted that the main utility of temporal logic is in modeling
concurrent systems [50].

Temporal logic formulae differ from ordinary Boolean for-
mula in that the temporal formulae have new modal operators—
which allow qualitative description of temporal events by im-
plicitly incorporating temporal ordering of events—in addition
to the traditional Boolean operators—“and,” “or,” “not,” and
“implies” [51], [52]. The usage of temporal logic has been
widely adopted for use with finite-state programs with algo-
rithmic methods available that can verify the temporal-logic
properties of finite-state systems. While the capacity to only
include finite states may appear too limiting, it turns out that a
wide range of systems, especially, hardware systems and com-
munication protocols, can be modeled as finite-state programs.
Some (linear) temporal logic operators include G (Globally), F
(Eventually, Finally), X (Next), and U (Until). For example, we
may want to reason about the temporal properties of a protocol
in the following way: a message is not received unless one is
sent, a message that is sent is eventually received, etc.

Temporal logic has been extensively applied to computer
systems, and is a key component of the popular model checking
approach (discussed in Section IV-C), because it can capture
two keys notions of computer performance. Firstly, temporal
logic can capture the “liveness” property that some good thing
will happen in the future—i.e., the form Fp, which indicates
that some proposition will be true in the future in the course of
the computation. Secondly, the “safety” property of the form
Gp can capture the desire that globally p is ensured which

incorporates the proposition that undesirable states are never
obtained. In addition, the “fairness” property is also defined
which states given certain conditions, an event will occur, or
will fail to occur, infinitely often. The fairness property is
often expressed with Gp (infinitely often) and Fp (eventually
always).

There are two important subtypes of temporal logic: linear
temporal logic (e.g., LTL)—where each moment in time has
a unique future trajectory or possible future—and branching
temporal logic [53] in which each moment can be split into
many different possible futures. Linear temporal logic (LTL)
is a subset of the more complex CTL that additionally allows
branching time and quantifiers. LTL is also sometimes called
propositional temporal logic, abbreviated PTL. LTL can use
both propositional and first-order forms. Computation tree logic
(CTL) is an example of branching temporal logic that has addi-
tional path quantifiers such as A (for all paths ∀) and E (there
exists a path) that denote universal and existential quantification
over paths starting in a certain state, respectively. CTL is used
mostly for applications in hardware verification, while LTL is
used mostly for applications in software verification. While
CTL and LTL do have overlapping expressiveness, each logic
can express properties outside the domain of the other—e.g.,
LTL can express fairness properties which CTL cannot, but
CTL can express the so-called reset property which LTL cannot.

H. Other Logics

Relational Logic: The logic used in the Alloy analyzer [54]
is a relational logic that combines the quantifiers of first-order
logic with the operators of the relational calculus. Relational
logic extends first-order logic by incorporating transitive clo-
sure allowing greater expressiveness. Since first-order logic is
undecidable, the focus of the Alloy analyzer is in model finding
rather that exhaustive model checking—in particular, not find-
ing a model does not preclude a model in a larger scope. Most
tools for relational notation, other than Alloy analyzer, e.g.,
PVS etc., focus instead on theorem proving and are thus not
fully automated. Kodkod [55] is an example tool that is based
on the relational logic of Alloy. The inclusion of “transitive
closure” enables expressiveness (beyond that offered by first-
order logic) that can be used to encode common reachability
constraints. Since the relational logic of Alloy uses multi-arity
relations instead of functions over sets, it is first-order and thus
amenable to automatic analysis due to its simplicity.

Router Logic: Feamster et al. [56] proposed routing logic
to define a set of rules that can be used to determine if a
routing protocol satisfies various properties. Feamster et al.
also utilized this logic for analyzing the behavior of BGP
protocol under various conditions. Importantly, Feamster et al.
suggested that in addition to analysis of existing configurations,
router logic can be used to synthesize network-wide router
configurations from a high-level description.

I. Algebra and Logic

An algebra is a structure that consists of sets and operations
that act on those sets. Using the tools of algebra, logical
statements can incorporate unknowns, symbols, and formulas.
Mathematical logic, or symbolic logic, has improved upon the

262 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

logic of Aristotle by exploiting symbolic manipulations defined
essentially by methods of algebra. This symbolic calculus en-
ables correct reasoning with economy of mental effort5 and has
led to rapid development in mathematical knowledge.

While algebra is mostly associated with axioms of simple
numbers, computer protocols and programs, with all their in-
herent complexity, are also surprisingly amenable to algebraic
analysis. Algebra can be applied to large scale concurrent sys-
tems evolving in parallel as well as to micro-level manipulation
of program code. As such algebra, along with logic, provides an
invaluable tool for modeling and verifying distributed protocols
and systems. We will very briefly outline some of the more im-
portant algebra that are fundamental to verification of computer
systems and networks.

Boolean Algebra: The algebra of logic was founded by George
Boole (1815 to 1864), and perfected by later logicians,
to formalize the “laws of thought.” Boolean algebra is
essentially the “algebraization” of classical propositional
logic and the bridge between logic and algebra.

Relational Algebra: The field of databases extensively utilizes
ideas from relational algebra. Relational algebra, an off-
shoot hybrid of first-order logic and of algebra of sets,
essentially deals with manipulations of relations. The for-
malism of relational algebra, proposed by E.F. Codd in the
1970s, can be used as a query language for relations and
serves as a theoretical foundation of databases.

Kleene Algebra: The study of semantics and logics of programs
utilizes Kleene algebra which defines algebraic structures
with operators +, ., ∗, 0, and 1 satisfying certain axioms.
Kleene algebras arise in many diverse contexts: relational
algebra, semantics and logics of programs, etc. Kleene al-
gebra was extended to incorporate tests to produce Kleene
algebra with tests (KAT) [57]. KAT has recently been used
in the NetKat [58] project to provide consistent reason-
ing principles about network applications in the setting
of SDN.

Process Algebra: Process algebra is a widely used formalism
used for specifying and verifying distributed concurrent
software systems (including computer protocols). In pro-
cess algebra, a system is specified in the provides syntax,
and the composed system is then verified against the de-
sired properties axiomatically [59]. Finite state automata
theory models a process as an automaton which has a
number of states and transitions. The automata model lacks
in that it does not incorporate the notion of interaction. In
parallel and distributed systems (such as computer proto-
cols), which are also called reactive systems, support for
concurrency and interaction is required. Process algebra is
essentially an algebraic approach to providing support for
concurrent interaction between distributed parallel com-
puter systems.

5To paraphrase Alfred Whitehead, symbolism facilitates understanding and
tracking of transitions in reasoning almost mechanically by the eye without
undue taxing of the brain.

III. TECHNIQUES FOR FORMAL SPECIFICATION

AND MODELING

The formal verification of a system mainly requires two
inputs from the user, i.e., the given system description and the
corresponding properties that need to be verified. All formal
verification tools support a specification language that is used to
express the system, or its abstracted model, and the properties.
The relationship between the formally specified system and its
properties is then formally verified using computer-based tools.
In this section, we will study techniques for specifying and
modeling systems in Section III-A and for specifying properties
in Section III-B. We will cover verification methods later in
Section IV.

A. Modeling Systems

Systems can be divided into two broad classes. Transforma-
tional systems may be modeled as black boxes that take certain
input and produce a final result as output and terminate. Such
systems can modeled in terms of their input/output relations.
Formal methods developed for such transformational systems
include the Floyd–Hoare logic (Section II-E), which allow
reasoning about such systems through pre- and post-conditions,
and specification languages like Z (which we will cover in
Section III-B). Reactive systems, on the other hand, maintain
an ongoing interaction with their environment, and thus such
systems must be specified and verified in terms of their ongoing
behaviors. Formal methods proposed for such reactive systems
have to use more sophisticated techniques than those provided
by the pre- and post-conditions in notations such as Z. In partic-
ular, label transition systems (called Kripke structure) based on
the concept of finite state machines (FSMs) and temporal logic
have been proposed for modeling reactive systems.

In the following subsections, we will discuss various ap-
proaches for modeling systems. We will cover FSMs, Kripke
structures, binary decision diagrams (BDDs), and model extrac-
tion from code in Section III-A1–A4, respectively.

1) Finite State Machines: The mathematical formalism of
finite state machine (FSM), or finite state automaton, is com-
monly used in the study of the design of computer programs
and sequential circuits [76]. An FSM can be conceived as an
abstract machine having finite states in which the machine can
be in only one state at any given time. The FSM can make
a transition—i.e., change its state from the current state to
another state when triggered by some event or condition. A
given FSM is defined by its set of states, and the triggering
conditions for each transition. The “state transition model” of
FSM has been extensively used in formal verification and serves
as the basis of system modeling in “model checking.” The state
transition model is amenable to mechanical automated verifi-
cation, but suffers from the “state space explosion” problem,
which describes the case when the number states of the system
model becomes so large that it becomes infeasible to exhaus-
tively explore the state-space using the available computational
resources.

Broadly speaking, there are two kinds of FSMs: i) the more
general Mealy machines, in which the output depends not
only on the system state but also on the system input, and

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 263

ii) Moore machines, which are special cases of Mealy ma-
chines, in which the output is determined by only the system
state. A FSM is deterministic if the next state and the output are
uniquely determined by the current state and input, otherwise,
the FSM is non-deterministic if a given state and input can non-
deterministically lead to one of many possible next states and
outputs. Non-deterministic FSM (NFSM) can be viewed as a
generalization of deterministic FSM.

A protocol specification can be translated into a FSM model,
with each asynchronous process coded as a separate FSM,
extended by message queues and variables if necessary. The
system remains finite and amenable to exhaustive search if the
queue size and the range of variables is bounded. The system
is non-deterministic in general since in each system state a
number of transitions may be simultaneously executable. There
are two important structural properties of FSMs when used
to represent protocols [77]. Firstly, the state space is sparse,
i.e., the set of effectively reachable state is much less than the
number of potentially reachable states with a ratio of 1 in 109

being typical. Secondly, the state space is tightly connected,
i.e., the states are usually reachable by mildly different paths
that differ only in the order in which the execution of the
asynchronous protocol is interleaved. Unfortunately, the FSM
verification problem is PSPACE-complete, and therefore is
computationally very complex. The problem, however, reduces
to be NP-complete if the FSM can be formulated as a combina-
tional logic network.

Automata Theory is a field of theoretical computer science
that has been used in the study of computability and lan-
guages [78]. Finite automata constitute an important formalism
in theoretical computer science. It is useful for modeling a
wide variety of systems that have a finite number of states
(e.g., communication protocols, for lexical analysis as used
in compilers, for scanning text, for expression pattern match-
ing, etc.). An automaton can be envisioned as a special case
of Moore machines in which only two outputs—ACCEPT
and REJECT—are defined. Variations on the general theme
of automata, with varying degrees of expressiveness, have
been proposed [76]: e.g., timed-automata [79], Petri nets
[80], etc. These formalisms have been adopted in the field
of formal verification: e.g., Petri nets have been commonly
used for representing concurrent network protocols [81] while
timed-automatons have been used for verifying timing prop-
erties of network protocols and real-time systems in time-
automata based model checking tools (to be discussed later in
Section IV-C) such as UPPAAL [82].

2) Kripke Structure: Kripke structure is a labeled state tran-
sition graph that can adequately capture the temporal behavior
of reactive systems. From a practical point of view, the Kripke
structure is nothing but a labeled FSM extended to incorporate a
labeling function that maps states to sets of atomic propositions
making it possible to specify simple propositional properties
on the FSM. When used in conjunction with some temporal
operators, these propositional properties can be used to specify
properties like “from a state labeled REQ, the state labeled
ACK will eventually be reached” [83]. Kripke structure can
easily model diverse kinds of systems that are described using
formulae of first-order logic.

Kripke structures are often used to model reactive systems
that interact with the environment in a continuous fashion
without terminating [84]. Since such systems do not terminate,
input-output transformation characterization is not sufficient.
Instead, it is important to capture the state of the system,
and how the system state changes as a result of some action.
One way of doing this is by identifying the transition of the
system—which describes the system state before an action
occurs and after it occurs, respectively.

More formally, Kripke structures consist of a set of states, set
of transitions between states, and labels for each states defining
properties that are true in that state. A Kripke structure M over
AP, representing a set of atomic propositions, is a 4-tuple M =
(S, S0, R, L) where i) S is the finite set of states, ii) S0 is the
set of initial states, iii) R is the transition relation, and iv) L is
a labeling function that labels every state with the set of atomic
propositions that are true in that state.

3) Binary Decision Diagrams (BDDs): The concept of “bi-
nary decision diagrams” (BDDs) is quite old but was pop-
ularized by Bryant in 1992 [85] as an efficient method for
representing state transition systems [86], [87]. It has been
pointed out earlier that techniques like model checking suffer
from the problem of state explosion which is quite likely to
occur if the system under study is composed of components that
can perform transitions in parallel. This can cause the system
states to grow exponentially leading many experts to be skeptic
about the ability of model checking to scale to large systems.
Model checking owes most of its success to the development of
the data structure of BDDs which allows efficient verification
of large transition systems. Computer science luminary Don
Knuth cites BDDs as one of the most fundamental data structure
development in the last 25 years which allows solutions to
problems previously imagined as intractable [87]. The BDD
data structure allows concise representation of large transition
systems and easy manipulation, and is therefore an important
component of many logic synthesis and formal verification
systems [87], [88].

Bryant also observed that reduced ordered BDDs (OBDDs)
are a canonical representation of Boolean functions. The use
of reduction and ordering is common in BDDs, and in fact,
the term BDD is commonly understood to refer to reduced
ordered BDDs [87]. BDDs are able to reduce the space required
for storing state transition systems by identifying redundancies
through the following three rules: i) merge equivalent leaves,
ii) merge isomorphic nodes, and lastly iii) to eliminate redun-
dant tests.

It was noted in [89] that the rule sets that network administra-
tors typically write lead to small BDDs. BDD is a very popular
data structure that can be used, along with efficient graph
algorithms for BDDs, to significantly improve the computing
time and space efficiency of algorithms [90], [91].

4) Model Extraction From Code: One of the hindrances in
the popularization of formal verification is the tediousness of
the task of creating system models. A possible solution to this
problem for the specific case of software systems is to apply ver-
ification methods not to models of code, but to implementation
code directly through some automated model extraction tech-
nique. Some example efforts in this domain include extension

264 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

of the SPIN model checker for support of embedded software in
abstract models [92], formal verification of device driver code
at Microsoft [93] through automatic predicate abstraction of C
programs [94], extracting code written in F# to implement the
TLS security protocol to process models in applied pi-calculus
[95], and CMC tool at Stanford that works directly with
C code [96].

B. Formal Specification

Formal specification can be used by the formal verification
process to verify that the desired properties are held by the
system model. For the purpose of formal verification, equiva-
lence checking can be used to match an implementation against
a full specification of what a program must do. However, due to
the significant overhead involved in writing a full specification,
formal verification is often done with partial specification that
describes only some desired behavior of the program. This
endeavor which contrasts with equivalence checking is known
as property checking. Most property checking tools use either
logical deductive interference or model checking, and report a
counterexample when a property violation is seen. It is worth
emphasizing that correctness is not an unqualified concept since
correctness measures the relation between two entities: a speci-
fication and an implementation, or a property and a design [97].
Thus verification is only as good as the specification, making
specification an extremely important part of verification.

Broadly speaking, formal specification techniques can be
categorized into three types based on the underlying formalism.
Firstly, in the mathematical or language-based techniques,
commonly a predicate calculus based approach is taken to
represent protocols. Secondly, in the FSM-based techniques,
an existing programming language may be extended to incor-
porate the representation of a state machine and associated
rules. Techniques like extended FSMs, Petri nets, abstract state
machines fall under this category. Lastly, in the temporal logic
techniques, which are especially useful for reactive systems,
in which the protocol is described in terms of statements that
implicitly incorporate the relative ordering of events and their
actions. IEEE’s “property specification language” (PSL) (IEEE
1850 standard) is an example specification language rooted in
temporal logic that is commonly used in hardware design where
it is a common practice to augment design with assertions
serving to specify correct behavior.

IV. TECHNIQUES FOR FORMAL VERIFICATION

In this section, we will provide background information
about the various techniques that have been proposed for
formal verification. We will first discuss the SAT problem
which deals with satisfiability of logic formulae and will see
how it has become a very versatile verification technique. In
general, formal verification approaches include both automated
and interactive techniques. We will discuss theorem proving—a
technique that can be automated for decidable logics such
as propositional or first-order logic, but which works in con-
cert with a human expert for dealing with the undecidable
higher-order logic as a proof-assistant—in Section IV-B. We

discuss model checking as an example automated method in
Section IV-C. In the later part of this section, we will discuss
light-weight formal methods, static analysis, and symbolic exe-
cution and simulation in Section IV-D–F, respectively. Finally,
we will provide a taxonomy of formal verification techniques in
Section IV-G.

We note here that our focus in this section is on provid-
ing the necessary background on various formal verification
techniques. The applications in the context of networking of
various formal verification techniques are presented later in
Section V-B in a unified fashion.

A. Satisfiability of Logic Formulae: The SAT Problem

A fundamental concept that applies to all logic formulae
is the concept of satisfiability: is this formula ever true? The
Boolean satisfiability (abbreviated as SAT) problem is an im-
portant problem in theoretic computer science having a wide-
range of applications. The SAT problem can be defined as:
Given any arbitrary formula, find a satisfying assignment or
prove that no satisfying assignment is possible. Such an as-
signment may not always exist—in which case, we will say
that the problem is over-constrained, and the solver will report
that satisfying the formula is not possible. The SAT problem
was the first problem shown to be NP-complete,6 and many
practical problems can be reduced to a SAT formulation [98]
and solved through off-the-shelf SAT solvers. The SAT problem
is at the very heart of the problems of design, specification and
verification of computer systems [36] for diverse logics.

A formula is satisfiable if it has an interpretation that makes
it logically true. Whereas, a logical formula is valid if it
is logically true in all possible interpretations. Conversely, a
propositional formula is valid if and only if its negation is
unsatisfiable. As an example, consider a Boolean variable p.
The formula p ∧ ¬p is unsatisfiable since it is not true in any
interpretation—in other words, it does not have any model. The
formulas p and ¬p, on the other hand, are satisfiable but not
valid since they are true in some, but not all, interpretation(s).
Finally, the formula p ∨ ¬p is valid since it is true in all inter-
pretations. In the SAT problem, we seek a satisfying assignment
for a given propositional formula on a set of Boolean variables
which assigns values to the variables such that the formula
evaluates to True.

The main idea behind the traditional SAT solving based
verification, depicted in Fig. 1, is to express the verification
problem, i.e., M |= φ where M is a model of a system and
φ is a specification expressing what should be true in situation
M, in propositional logic. This propositional logic relationship
is then negated and transformed to conjunctive normal form
(CNF), i.e., a conjunction of disjunction of literals (usually
termed as the sums of products in digital circuit design), in such
a way that ascertaining the satisfiability of this CNF allows us
to deduce the validity of M |= φ as shown in Fig. 1. This CNF

6Any instance of NP-complete problem can be transformed into an instance
of another NP-complete problem quite easily. As an example, both graph
coloring and SAT problems are NP-complete, and an instance of the former
problem (i.e., graph coloring) can easily be transformed into an instance of the
latter (i.e., SAT).

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 265

Fig. 1. Formal verification using SAT solvers.

form is then given to the SAT solver in the corresponding syntax
to automatically check its satisfiability.

Broadly speaking, there are two ways to use a SAT solver.
The first, and simplest way, is the eager approach for the
application to generate a Boolean formula for the SAT solver
so that it may determine that the satisfiability of the formula.
Alternatively, the application can use the lazy approach to
reduce a problem to a series of inter-related SAT queries, in
which the SAT solver incrementally solves subsequent queries
dynamically generated based on the results of previous queries
[99]. Much of the improvement in SAT solver performance in
recent years has been driven by several improvements to the
basic DPLL algorithm such as i) non-chronological backjump-
ing and learning conflict clauses, ii) optimization of constraint
propagation rules, iii) heuristics for picking split variables (even
restarting with a different split sequence), and iv) highly effi-
cient data structures. A detailed account of various algorithms
for solving the SAT problem is presented in [100], whereas
recent advances in SAT-based formal verification can be viewed
at [101], [102]. A comparison of propositional satisfiability
and the related field of constraint programming can be seen in
[99]. Modern tools can solve practical industrial SAT problems
having millions of variables and constraints in mere seconds. In
practice, such approaches can help avoid the daunting propo-
sition of redeveloping algorithmic solutions for solving new
problems, thus enabling a wide variety of application areas to
benefit.

While we are mostly interested in propositional satisfiabil-
ity due to its tractability, the concept of satisfiability can be
generalized to other Boolean logics—in particular, the quan-
tified Boolean formulas (QBF) problem generalizes the SAT
problem7 and refers to the problem of deciding the satisfiability
of quantified Boolean formulae, or QBF, in which the variables
can be either universally or existentially quantified. The ability
to utilize universal and existential quantifiers in arbitrary ways
makes QBF considerably expressive than SAT. It must be noted
that SAT is NP-complete which means any NP problem can
be encoded in SAT. Similarly, QBF is PSPACE-complete, i.e.,

7In the SAT problem, all the variables are implicitly existentially quantified.

Fig. 2. Formal verification using theorem proving.

any PSPACE problem can be encoded in QBF. Unfortunately,
current QBF solvers do not scale, and therefore, our primary
focus will be on the SAT problem and solvers.

The SAT problem has many interesting variations. For ex-
ample, the MaxSAT problem is the application of SAT problem
to optimization theory, the AllSAT problem aims to determine
all satisfying assignments, etc. Motivated by the success of
SAT solvers, researchers have recently given significant at-
tention to Satisfiability Modulo Theories (SMT). While SAT
solvers determine the satisfiability of propositional formulas,
SMT solvers can, on the other hand, check the satisfiability
of formulas in some decidable first-order theory (e.g., linear
arithmetic, array theory, uninterpreted functions, bit-vectors,
etc.) [103]. SMT is seeing rapid progress and initial commercial
use in software verification [104].

Various SAT/SMT tools have been proposed with rapid
progress in this field being sustained by Moore’s law and
consistent advances in algorithms, data structures, and decision
heuristics [105]. Example SAT/SMT solver tools include Min-
iSAT [106], Chaff [107], and the Z3 tool from Microsoft [108].
Due to the great generality of SAT/SMT solvers, it is remark-
able that various contemporary verification tools that differ in
terms of source language, methodology, and degree of automa-
tion, eventually fall back on these solvers for the core task of
checking validity and satisfiability. With their impressive gen-
erality, scalability, and maturity, SAT/SMT solvers look set to
play a significant role in future formal verification technology.

B. Theorem Provers

In the theorem proving paradigm of formal verification, we
are interested in a deductive proof of Γ
 φ, where Γ is a set
of formulas representing the system behavior (implementation)
in a suitable logic, and φ is another formula representing
the system property (specification) that needs to be checked.
As depicted in Fig. 2, this relationship is verified as a proof
goal using a computer-based tool theorem prover, which is
sound and complete. The term soundness has a background
in mathematical logic where a system is said to be sound if
it can only prove valid arguments with respect to a semantics.
Completeness, in contrast, implies that there will be no false

266 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

positives which require exhaustive analysis of every possible
scenario.

The dream of having automated theorem provers is a long-
standing dream of many an ambitious scientists starting from
Leibniz, to Peano and Hilbert [109]. Herbrand in 1930 provided
a mechanical method for proving theorems but due to lack
of appropriate computing facilities the method was difficult to
apply. In 1936 Church and Turing showed that it is impossible
to devise a generic method of verifying the validity of first-
order logic. First-order logic is said to be semi-decidable in
that methods exist for verifying validity of a formula if it is
indeed valid, however, such methods will never terminate in
general for invalid formulae. This has defined the limits of
automatic theorem proving. In the 1960s, Herbrand’s method
was implemented on a digital computer, followed by an even
more efficient Davis–Putnam–Logemann–Loveland (DPLL) al-
gorithm [110]. The resolution principle, proposed by Robinson
in 1965, has been a major step forward. The DPLL algorithm
is important for many applications including automated the-
orem proving and satisfiability modulo theories (SMT). The
DPLL algorithm is used to solve the CNF-SAT problem—i.e.,
determine the satisfiability of propositional logic formulae in
conjunctive normal form (CNF).

Despite the theoretic complexity of automated reason-
ing in expressive logics, in practice, interactive theorem
provers—also known as proof assistants—which solve the
proof verification problem are useful in many settings. Inter-
active theorem provers differ from automatic theorem proving
in that it requires human assistance. A proof assistant is a
program that takes a formalized mathematical statement and a
plausible proof, and checks whether the proof is valid. There
are three key ingredients of a proof assistant. Firstly, it needs to
incorporate an expressive formal language and logic—which
is typically, but not always, a variant of higher-order logic.
Secondly, it needs to have support for checking proofs and
in aiding proof construction. Lastly, it needs to have a
programming language—typically a functional programming
language—that allows extending the system with new proof
procedures (e.g., decision procedures). There are various in-
teractive theorem provers that have been proposed including
tools that are based on first-order logic (e.g., ACL2 [111],
Microsoft’s Z3 tool [108]—which uses many-sorted first-order
logic, etc.) and others that are based on higher-order logic (e.g.,
Isabelle [112], HOL [113], PVS [114], Coq [115], etc.).

C. Model Checking

Developed independently in 1980’s by Clarke and Emerson8

[49], and by Queille and Sifakis [118], model checking can
be envisioned as an automated debugging, or exhaustive sim-
ulation and testing, technique useful for checking any property
violations (i.e., bugs or errors) [119]. While formal verification
has traditionally been associated with logic-based axiomatic
or deductive techniques for establishing proofs of correctness,

8For a historical account of the development of model written, the interested
reader is referred to [116] and [117] (written by Emerson from his personal
perspective).

Fig. 3. Formal verification using model checking.

model checking has been the first step towards engineerization
of this field [84], [119].

The main insight of model checking is that proof
construction—a tedious and non-trivial task requiring good deal
of ingenuity and guidance from the user—is not necessary for
the case of finite state concurrent systems. In model checking,
we are interested in showing that M |= φ where M represents
a Kripke structure9 or a labeled transition graph, as a model
of system description while the specification is still a formula
(typically written in propositional temporal logic). As depicted
in Fig. 3, the model checking problem is (from [120]): “Let
M be a Kripke structure (i.e., a state transition graph), φ be
a formula of temporal logic (i.e., the specification). Find all
states s of M, such that M, s |= φ (i.e., M has property
φ at that state s).” As discussed earlier in Section III-A2,
Kripke structures are labeled FSM with the states labeled
with a sets of atomic propositions that are true in this case;
all other unlabeled propositions are assumed false according
per the “closed-world” assumption. This model checking can
be performed for finite state systems algorithmically, unlike
proof systems, in a push-button fashion. In model checking, the
verification procedure intelligently searches through the entire
state space of the design in an exhaustive fashion [49], and thus
this technique is applicable for finite state systems.10 Although
this looks limiting, many interesting systems (e.g., hardware
devices, communication protocols, etc.) can be modeled as
FSMs in practice.

It is important to ensure that the term “model” in “model
checking” is not confused with its everyday usage of being
an abstraction of the actual system under study. In the case of
“model checking,” the inventors of this method were interested
in the model-theoretic interpretation [121], [122] of the term
“model”—i.e., determining that M, representing the system
interpreted as an automaton, is a (Kripke) model for the tem-
poral logic formula φ representing the desired property [120].
It should be noted that when we say that M is a model for the
formula φ, we really are paraphrasing our intention of saying
“φ, when interpreted as in M, is true.” Noting the distinction
between the various interpretations of models can alleviate any

9A Kripke structure, proposed by Saul Kripke, is a nondeterministic automa-
ton representing a system’s behavior. Kripke structures are commonly used in
model checking for interpreting temporal logics.

10Infinite state can only be analyzed with abstraction [83] and induction.

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 267

unnecessary confusions. To summarize, model checkers are
named such because they check whether a system, interpreted
as an automaton, is a (Kripke) model of a property expressed as
a temporal logic formula.

Model checking is a rigorous method which, unlike testing,
verifies a property only if it is true for all possible executions.
This is a very useful feature as the verification engineer does
not need to think about creating smart test cases to identify
system problems. Similarly, model checking has many benefits
over deductive proof techniques which makes it preferable
wherever it is applicable. Some compelling benefits of model
checking [120] include: i) it is fast compared to other rigorous
methods; ii) it provides diagnostic counterexamples; iii) it can
work well with partial specifications/properties; iv) logics can
easily express various concurrency properties; finally, v) it does
involve any human-guided proofs.

Buchi automata has been used in model checking as a bridge
between automata theory and temporal logic. In particular,
Buchi automata can provide an automata-theoretic formaliza-
tion of a linear temporal logic, or LTL, formula. It was shown
in the mid 1980s that there exists for every temporal logic for-
mula a Buchi automaton that accepts precisely those runs that
satisfy the formula. There are algorithms that can mechanically
convert any temporal logic formulae into the equivalent Buchi
automaton. Typically, the property invariants are expressed as
LTL formulas, and a negated version is converted to Buchi
automata to be used in the model checking algorithm to detect
violation of the desired property.

Scalability of Model Checking: The state explosion problem
limits the application of model checking to large scale prob-
lems. Various approaches have been proposed for coping with
this issue including symbolic model checking, bounded model
checking, and statistical model checking. These approaches are
covered next.

a) Symbolic model checking: The main insight of sym-
bolic model checking is that it is more efficient to consider
large number of states simultaneously at a single step instead
of traversing enumerated reachable states one at a time. Sym-
bolic model checking facilitates such a state space traversal by
allowing representations of states set and transition relations as
Boolean encoded formulas, BDDs, or related data structures.
This allows handling of much larger designs containing hun-
dreds of state variables [123]–[125]. Symbolic algorithms can
thus work with the FSM represented implicitly as a formula
in quantified propositional logic without the need of explicitly
building a FSM graph. Symbolic model checking is the most
commonly used variant of model checking in industrial scale
model checking tools. The first symbolic model checking tool,
SMV, was developed by McMillan in 1992 and used BDDs
to combat the state explosion problem [126]. More recently,
SMV has been extended and reimplemented as NuSMV and
NuSMV2 [127].

b) Bounded model checking: Symbol model checking
can also be performed through SAT procedures [128]. SAT
procedures can operate on Boolean expressions without requir-
ing canonical forms and without the potential space explosion
of BDDs. Various efficient implementations are available for
solving SAT problems. Bounded model checking (BMC) uses

a SAT procedure instead of BDDs [129]. A Boolean formula
is constructed that is satisfiable iff there is a counterexample of
length k. By incrementing the bound k, longer counterexamples
can be searched. After some number of iterations, we may
conclude that no counterexample exists and the specification
holds. The state explosion problem is thus handled by focus-
ing on falsification rather than exploring all reachable states.
Incorporation of the falsification approach into a SAT based
framework in a BMC allows scaling to much larger number
of states. BMC techniques using the falsification approach are
very useful since in many practical scenarios, we are more in-
terested in finding bugs as early as possible in the design rather
than in formally proving the correctness of the design. SAT-
based BMC for falsification is a very popular model checking
technique in the industry. As an example, safety property may
be verified by increasing the number of iterations to the bound
defined by the diameter of the FSM. The advantage of the
bounded model checking approach is that it can quickly find
counterexamples due to the depth first nature of SAT search
procedures. Secondly, since the bound is increased incremen-
tally, the approach finds the counterexample of minimum length
which leads to better diagnostics. Finally, it also uses lesser
space as compared to BDD-based approaches. The NuSMV2
tool [127] incorporates both BDD-based and SAT-based model
checking. BMC can also be performed using SMT tools [130].
BMC tools include a CBMC [131] which is a bounded model
checker for ANSI-C and C++ programs.

c) Statistical model checking: Statistical model checking
is a proposal that can allow model checking to scale to large
systems by relaxing the requirements of formal correctness.
The key insight is to use hypothesis testing with a simulation
based approach to deduce from some sample executions if the
system under test satisfies the specification [132].

d) Probabilistic model checking: Various approaches
have been proposed for building probabilistic model checking
tools [133]–[135]. PRISM is an example probabilistic model
checking tool that can be used for reachability analysis [136]
and protocol verification [137]. While traditionally, establishing
performance evaluation and correctness have been orthogonal
tasks, a promising new direction in formal methods research is
to develop probabilistic methods that can allow joint analysis of
both correctness and performance [138].

e) Model checking for software: Model checking is not
inherently well suited for verifying software due to the asyn-
chronous and unstructured nature of software. While, the early
successes of model checking were mainly in hardware veri-
fication, recent progress has made model checking viable for
software verification [139]. Popular model checking softwares
include Java Pathfinder [140], Microsoft’s Slam Toolkit [93],
UC Berkeley’s BLAST [141]. The interested reader is referred
to a detailed survey on model checking for software for more
details [139].

D. Light-Weight Formal Methods

“Full-blown” formal methods, such as model checkers and
proof systems, have some limitations due to which there is
interest in alternative “light-weight” formal methods [142].

268 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

Proof systems, like theorem provers, have the deficiency that
they cannot be fully automated due to fundamental limits of
computation. Model checkers, on the other hand, face the state
explosion problem and cannot deal with indirection, which is
a fundamental concept of software [54]. Lightweight formal
methods [143] tend to overcome these limitations by exploiting
advances in technologies such as SAT solvers.

The Alloy analyzer works by translating constraints to be
solved from Alloy into Boolean constraints which are then
fed to an off-the-shelf SAT solver. Alloy is also known as
a model-finding tool since it aims to find an instance of a
counterexample, known as a model in logic theory, quickly
rather than for completeness. Alloy defines both a language
for describing structures and also a tool for exploring them—in
particular, it specifies a new high-level language, inspired from
Z [144], for specifying the behavior of software; secondly, it
uses an automated SAT-solver based analyzer to work through
all the possible scenarios. The software design modeled with
a high-level notation is then analyzed over billions of possible
executions to catch any pathological conditions. The important
consequence is that subtle design errors are caught even before
the design is coded. The design, once thoroughly tested, can
then be constructed with much more confidence. Alloy repre-
sents a new generation of software analysis engines similar in
principle to tools traditionally used for verification of hardware
designs [145].

E. Static Analysis

Static analysis is a class of techniques concerned with ex-
tracting information about the run-time behavior of a program,
or a configuration file, without actually executing the source
file. Static analysis, which means analysis without execution
(e.g., SLAM [93]), is to be contrasted with dynamic analysis,
which involves executing the program (e.g., Verisoft [17]).
Static analysis can discover bugs in configuration files, or
software systems, before they are activated or executed thus
obviating the reflexive debugging that results from discovery of
bugs after deployment. Due to the fundamental limits imposed
by the theory of computation (cf. Turing’s halting problem
which is notorious for being undecidable), static analyzers
cannot extract run-time behavior of all programs perfectly.
Static analyzer attempt to defy the undecidability of the halting
problem by not focusing on completeness or soundness but
instead on quick and efficient debugging. The key insight used
by static analysis is to utilize an approximate interpretation,
or an abstract interpretation, of the program. In many cases,
this approximate interpretation is finite, and thus amenable to
analysis.

In the context of debugging, soundness means the ability to
detect all possible errors of a certain class, or not miss a bug
if one exists—in other words, a sound debugger will give no
false negatives. An effective static analyzer, thus, has to balance
three desirable, but often competing, costs: i) the cost of false
negatives due to being unsound, ii) the computational cost of
analysis, and iii) the usability of the tool (which can be mea-
sured in total time investment of the user) [146]. In particular,
it turns out that soundness and completeness have a tradeoff.

For assurance based projects where soundness is needed (i.e.,
if told that there are no errors, we should be sure that there are
none), we are limited to accepting incompleteness, or to accept
false alarms or false positives. The presence of false alarms is
usually irritating for customers of debugging tools—who aim
incidentally to reduce the number of bugs and not necessarily
eliminate all of the bugs—who often give up on soundness to
reduce the number of false alarms. Most commercial debugging
tools (such as Coverity, etc.) are neither sound nor complete,
but perform well in practice catching many errors with lesser
number of false alarms.

It is instructive to compare static analysis with model check-
ing directly [147]. In general, model checking has some benefits
that are hard for static analysis to match: e.g., i) it can check the
implication of code, and not just surface-visible properties, ii)
it gives stronger correctness results, etc. A major drawback of
model checking approach is the need to create a correct working
environment model—this restrictions makes model checking
infeasible for many networking verification tasks [148] and
adds significant overhead even when feasible especially for
large scale systems. Also, no model is as good as the imple-
mentation itself, and the abstraction in the modeling process
is a potential for producing false positives or missing critical
errors. Static analysis is more useful than model checking in
some aspects: e.g., i) it is quicker, ii) it can easily check millions
of lines of code, iii) it can find thousands of errors. Some of
these comparisons are direct outcomes of the fact that static
analysis does not run any code, while model checking does
[147]. Static analysis is a widely used technique used in many
software testing tools (e.g., Coverity, FindBugs, etc.) that can
analyze extremely large code-bases [149].

Static analysis is known to all programmers in its most basic
form of typechecking in compilers (e.g., a Java compiler will
catch errors such as adding a number to a Boolean, etc.) This
kind of static analysis focuses on simple checking with no false
alarms and thus only scratches at the surface of what can be
achieved with static analysis. More extensive static analysis
requires more computation but can check a wider range of
properties—e.g., runtime exceptions due to division by zero,
array bounds violation, etc. can be detected.

Extended static checking defines a powerful paradigm for
program checkers in which verification conditions—i.e., a log-
ical formula that is valid iff the program is free of the classes
of error under consideration—are defined, and then counterex-
amples to the verification condition are searched mechanically
[150]. Extended static checking for Java (ESC/Java) [151] is a
compile time program checker that performs formal verification
of properties of Java source code through theorem proving.
ESC/Java is an annotation language, which is effectively a
subset of Java Modeling Language (JML). It allows the pro-
grammer to add Hoare-style preconditions and postconditions
and loop invariants into the program with special comments in
the source code.

F. Symbolic Simulation and Execution

Symbolic execution [152], also called symbolic evaluation,
is a “abstract interpretation” method for analyzing a program

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 269

TABLE II
TAXONOMY OF FORMAL VERIFICATION TECHNIQUES

assuming symbolic values for inputs rather that actual inputs
that would arise through the normal execution of the program.
Symbol execution is essentially a technique for generating
an optimized test suite that satisfies a customizable coverage
criteria using which deep errors in software applications may
be identified. Although the idea of symbolic execution is quite
old (proposed by King in 1976 [153]), symbolic execution
has emerged as an effective tool recently with advanced in
constraint satisfaction tools. Symbolic execution proceeds by
exploring as many program paths as it can in a given time
budget, thereby creating a logical formula encoding the ex-
plored paths. A constraint solver is then used to calculate
feasible execution paths. Symbolic execution are much more
powerful than dynamic execution techniques, such as those
incorporated in popular debugging tools like Valgrind [154],
since it can find a bug if there exists any buggy input on a
path without depending on a concrete input that triggers the
bug. Symbolic simulation [155] is an extension of the idea of
symbolic execution to hardware systems. Simulation is a time-
test tool for formal verification. Simulation can be generalized
in two different ways: i) ternary simulation [156]—where we
have a “don’t care” value X in addition to 0 and 1; ii) symbolic
simulation—where Boolean variables can act as input param-
eters and outputs are functions of these parameters. Ternary
symbolic simulation unfortunately suffers from the problem of
large growth in the state space leading researchers to look for
alternative techniques in recent times [30].

G. Taxonomy of Formal Verification Techniques

In this section, we classify common formal verification tech-
niques based on the basis of four main characteristics. The first
characteristic is soundness: a technique is termed sound if the
results verified by it are always true. The second characteristic
is automation which refers to an automatic push-button type
verification process which does not require user guidance. The
third characteristic is the provisioning of illustrative counterex-
amples in case of finding a bug. Finally, the last character-
istic we will use in our classification is the ability to verify
generic properties that are universally quantified. A taxonomy
constructed on the basis of this classification is presented in
Table II. The techniques are arranged in the order of their
increasing complexity in terms of usage.

Referring to Table II, the three full-blown formal verification
techniques (SAT solvers, theorem proving and model checking)
are sound while the other three techniques (light-weight formal
methods, static analysis, and symbolic simulation and execu-

tion) compromise on soundness to provide more user friendly
alternatives. The results of light-weight formal methods cannot
be termed as sound due to the partial nature of modeling and
analysis. However, these techniques usually support automatic
analysis and provide debugging support by providing counter
examples. Most of the static analysis tools compromise the
soundness to improve completeness of the analysis. Symbolic
techniques have not been identified as sound since for real-
world systems the number of possible input combinations is
usually very high and the whole range cannot be covered even
in the symbolic form. Failing test cases provide counter exam-
ples, which are very useful for debugging the system. While
interactive theorem provers require explicit user guidance in
the verification process and thus are very cumbersome to use
and also do not provide counter examples, interactive theorem
provers provide the most powerful verification technique in
terms of tackling a wide range of verification problems and
is the sole technique that supports verifying generic theorems
as well.

V. FORMAL VERIFICATION TECHNIQUES IN NETWORKING

In this section, we will describe various applications of
formal verification methods to networking. We will initially
focus on highlighting the applicability of various verifica-
tion techniques to various problem domains in networking in
Section V-A. We will then provide a detailed technique-
categorized description of application of formal verification
techniques in networking in Section V-B. Finally, some com-
mon pitfalls in applying formal methods are highlighted in
Section V-C.

A. Applicability of Verification Techniques in Networking

Networks include many components—such as hardware in-
cluding digital circuits and software including operating system
and communication protocols—that must work correctly in
harmony for the holistic correctness of the networking service.
The appropriate choice of technique depends on the networking
subsystems we are trying to formally model and verify. Due to
the diversity of the subsystems, it is envisioned that multiple
verification techniques would be used in the field of network-
ing: e.g., BDDs and model checking would be useful for digital
circuit verification, static analysis would be useful for checking
for overflow and bugs in software, model checking can be used
for communication protocol verification, etc.

270 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

Fig. 4. Applicability of core formal verification techniques in networking.

Before we indulge into the detailed discussion of the appli-
cations of various formal verification techniques in networking,
it is important to note that simulation or testing is a very ef-
fective analysis technique and formal methods should never be
thought of as an alternative to simulation. Both the techniques
complement one another and thus have to play together for an
effective, realistic and complete analysis. It is a very common
occurrence that some sub-systems of the given system are more
safety-critical, e.g., the correctness of the protocol ensuring the
reliable communication in a network is more important than the
graphical user interface module. Thus, it is more viable in terms
of verification time and effort to use simulation for analyzing
the non-critical blocks and formal verification for analyzing the
safety-critical sub-systems only. Moreover, simulation offers
a very viable solution for verifying complete system models,
which, due to their large size and complexity, are almost
impossible to be modeled and verified using formal methods.
Finally, formal methods are based on mathematical foundations
and thus cannot be used to reason about properties for which
closed form solutions do not exist. Thus, these aspects are also
handled by simulation or numerical methods.

Techniques such as light-weight formal methods, static anal-
ysis, and symbolic simulations, bridge the gap between for-
mal methods and traditional simulations. Their analysis results
are trust worthier than traditional simulations but cannot be
termed as sound and complete as the ones that are obtained via
model checking or theorem proving. On the other hand, these
verification methods are user friendlier than the core formal
verification techniques. These techniques can be used at various
abstraction levels and models and have shown promising results
in reachability and returnability analysis of networks.

Using powerful abstractions, the core formal verification
techniques of theorem proving and model checking have also
been used in the literature to analyze almost all key aspects of
networking. In order to highlight the strengths of these core
formal verification methods, the Fig. 4 connects a particular
sub-system of a networking system to a formal verification
method only if the method allows to analyze the sub-system
including all the required details, i.e., without using any abstrac-
tions. In this figure, we are focusing on the applicability of core

verification techniques of theorem proving and model checking,
which are both sound and complete, and do not include other
techniques such as SAT solving, light-weight formal methods
which are generic solutions. The figure is not intended as a
final say in this matter, but represents the authors opinion
regarding which technique is best suited to various problems
of verification in networking.

Automated theorem provers (and SAT solvers) for propo-
sitional and some subsets of first-order logic allows us to
automatically analyze models of the given systems. The only
requirement for this kind of verification is to translate the
system behavior and the desired properties in the target logic.
The verification can then be done in an automatic push-button
fashion. The main limitation of propositional logic is its limited
expressiveness as it cannot be used to represent verification
problems for all sorts of systems (like the systems including the
notion of time and continuous systems). Thus, they are quite
well suited for analyzing system models at a higher abstraction
level during the early design phases. Besides that, automatic
theorem provers can only be used to verify the combinational
circuits of the digital blocks of the networking devices and
some basic protocols, which can be described completely in
propositional logic.

Model checking is primarily used as a verification technique
for reactive systems, i.e., the systems that exhibit a behavior
that is dependent on time and their environment, like communi-
cation protocols. These kinds of behaviors cannot be assessed
using automated theorem provers and thus the most suitable
approach to tackle the verification of networking protocols
(essentially all the protocols used in the seven layers of the OSI
model) and the sequential logic of digital circuits of networking
devices is model checking. Moreover, many aspects of real-
time operating systems, such as mutual exclusiveness during
common file sharing, can be checked using model checking.
The verification involves translating the behavior of the given
system in the language supported by the model checker and the
desired properties in temporal logic. The model checker can
then check if the properties hold for the model automatically
and in the case of failures can also provide error traces, which
are quite useful for debugging. The verification is again is
automatic. Due to the enormous involvement of protocols in
networking systems, model checking is undoubtedly one of
the most widely used formal verification technique in this
domain. Besides the functional verification, probabilistic model
checking allows us to tackle the verification of performance
related characteristics of networking systems as well. However,
in this case, we cannot model the continuous behaviors of the
medium and thus a discretized model of the medium is used.

Model-checking is limited to systems that can only be ex-
pressed as finite state machines. Another major limitation of
the model checking approach is state space explosion. Sim-
ilarly, due to its inherent nature, model checking cannot be
used to verify generic mathematical expressions and deal with
continuous models. Interactive theorem provers, with higher-
order logic, allows us to overcome all these limitations. Thus,
interactive theorem provers can be used to verify commu-
nication protocols, their performance, and reason about the
correctness of networking systems while considering physical

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 271

TABLE III
REPRESENTATIVE SUMMARY OF VERIFICATION APPLICATIONS CATEGORIZED BASED ON TECHNIQUE USED

and randomized aspects associated with the medium, like noise.
Moreover, due to its ability to reason about continuous aspects,
theorem proving can also be used to formally verify physical
components, like analog and mixed signal devices and optical
networks, in communication devices. This technique is also
expressive enough to handle reactive systems, like communi-
cation protocols, and complete operating systems. However,
this flexibility comes at the cost of manual verification where
specific user guidance is required to verify all formulas ex-
pressed in higher-order-logic, due to its un-decidable nature.
Thus, the interactive theorem provers are only suitable if the
verification of some very safety-critical sub-block of a system,
with continuous or randomized behavior, is required.

B. Technique-Based Categorization of Applications

In this subsection, we will discuss the application of formal
verification techniques discussed in Section IV in the context
of networking. In particular, we will discuss applications of
model checking, theorem provers, light-weight formal methods,
static analysis, and symbolic simulation and execution in this
particular order. A representative summary of applications of
these techniques, categorized per technique, is presented in
Table III for easy reference.

1) Applications of SAT/SMT Solvers in Networking: Recent
advances in SAT/SMT solvers have significantly advanced the
state of the art in formal verification, and SAT/SMT tools
for various logics are routinely used in network verifica-
tion projects. There has been a remarkable upsurge of inter-
est in propositional logic SAT solving since a diverse class
of problems (including scheduling, planning, problems) can
be expressed as propositional satisfiability problems. While
propositional satisfiability (SAT) problem is the canonical NP-
complete problem which makes it intractable in theory, it can
fortunately be solved efficiently in practice.

There are various applications of SAT/SMT solvers in the
literature of formal verification for networking. We present
a few works as examples. Zhang et al. have presented an
approach for verifying and synthesis of firewalls using SAT and
QBF [168]. FLOVER, a model checking system, implemented
using the Yices SMT solver [169], verifies that the networks
security policy is not violated by the aggregate of flow policies
instantiated within an OpenFlow network [166]. Recently, there
has been work in verifying the data plane through SAT solvers.
Anteater [161] verifies the data plane by translating connectiv-
ity invariants into SAT problems that are checked against the
data plane by a general SAT solver to return a counter example
in case of violation of invariants. NetSAT is another data plane
verification project that is SAT based [167].

2) Applications of Model Checking in Networking: There
are a great number of model checking tools that have been
devised with some popular model checkers being SPIN [170],
NuSMV [127], and Alloy [54]. SPIN, developed in early 1980s
by Holzmann for assuring dependability in complex telephone
switching systems, is a popular award-winning11 explicit-state
model checking tool. SPIN was the first model checker devel-
oped, with its initial focus being on telecommunication systems
and protocol verification. SPIN is now used for diverse applica-
tions from hardware verification to distributed control software
used in nuclear power plants and spacecrafts. The IEEE Future-
bus cache coherence protocol is the first IEEE protocol whose
specification was debugged successfully through model check-
ing. NuSMV, in contrast to SPIN, is a symbolic model checking
tool that also incorporates features of bounded model checking.
NuSMV was the first implementation of symbolic model check-
ing and was developed by McMillan in 1992 [126]. NuSMV

11The SPIN model checker has been awarded the ACM Software System
Award http://www.acm.org/announcements/ss_2001.html.

272 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

TABLE IV
REPRESENTATIVE SUMMARY OF VERIFICATION TOOLS CATEGORIZED BASED ON TECHNIQUE USED

can utilize both BDD-based and SAT-based techniques. Alloy
is also a symbolic model checker that translates constraints
into Boolean formulas which are then solved through an ex-
ternal SAT-solver. SPIN and NuSMV support temporal logic
for property specifications with SPIN supporting propositional
LTL and NuSMV supporting CTL. For model specification,
SPIN uses the PROMELA language (which is inspired by C)
while NuSMV uses the SMV description language to specify
finite state machines. Alloy uses first-order logic for both model
specification and property specification. A detailed comparison
of SPIN, NuSMV, and Alloy, and some other model checking
tools, is presented in [174]. Popular model checking tools are
listed in Table IV, along with other popular formal verification
tools, for quick reference. Apart from SPIN, NuSMV, and
Alloy, it is worthwhile to mention two other popular types of
model checking tools. The PRISM tool [136] is a probabilistic
model checking tool, while the UPPAAL tool [82] is a model
checking tool based on timed-automata which can be used for
verification of real-time systems.

Model checking techniques and tools have been extensively
applied in the context of networking, and we will present a
representative sample. Zave et al. have used model checking
to understand SIP [175]. Al-Shaer et al. have used model
checking for configuration analysis for general networks [91]
and for SDN networks having federated OpenFlow infrastruc-
tures [160]. In [160], network routing tables are represented as
BDDs and reachability predicates are computed using model
checking. In other works for OpenFlow networks, Canini et al.
present the model checking based NICE platform for verifica-
tion [159], and Son et al. present a model checking based se-
curity invariant property checker [166]. In a recent work [176],
three state-of-the-art VM based open-source cloud management

platforms have been formally analyzed and verified using the
technique of bounded model checking using the SAT/SMT
solvers SMT-Lib and Z3Solver.

Most of the model checking work has focused on verifying
safety property since verifying liveness property entails com-
puting an infinite long trace of states in which the desired
property is never reached with heuristics-based MaceMC being
a notable exception [177]. A summary of various tools that are
used in this regard is presented separately in Table IV.

3) Applications of Theorem Provers in Networking: Theo-
rem provers have many applications in networking research. As
specific examples, we will discuss three theorem proving tools
that are popularly used in networking research. The Coq tool,
which incorporates higher-order logic along with richly-typed
functional programming language, defines a system for ma-
nipulating and mechanical verification of formal mathematical
proofs by machines [115]. Coq also supports extracting certified
programs to popular functional languages like OCaml, Haskell,
etc. The Coq tool has been used for verifying the network con-
troller in SDN environments [163] and for ensuring per-packet
and per-flow consistency of network updates [178]. The Z3 tool
from Microsoft, which uses a portfolio ofx solvers, is another
popular theorem prover used in many software testing, analysis
and verification projects [108]. Finally, the Isabelle/HOL theo-
rem prover has been used for network verification and the BGP
policy verification [112] is a notable example in this regard.

Besides the functional verification, theorem provers have
also been used for the formal performance analysis of network
applications based on the higher-order-logic formalizations of
probability theory [44] and Markov Chains [179]. Some notable
examples in this regard include the performance analysis of
the Stop-and-Wait protocol [164], scheduling algorithms of

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 273

Wireless sensor networks [165], the memory contention prob-
lem in multiprocessor systems [180] and the quantitative anal-
ysis of information flow in a network [181].

4) Applications of Light-Weight Formal Methods in Net-
working: Light-weight formal methods in general, and particu-
larly the Alloy tool, have been widely deployed to solve a wide
variety of problems ranging from security analysis [157] to the
design of telephone switching networks [10], [182]. The main
attraction of using light-weight formal methods is in their ease
of use and their operational orientation towards non-specialists.

5) Applications of Static Analysis in Networking: Static
analysis has also been used in networking context most notably
for reachability analysis in IP networks [162], firewall analysis
(e.g., Margrave [172], etc.), BGP configuration fault detection
[148], [183], etc. Static analysis can It can also be used for
debugging of networking software using static analysis tech-
niques described for software verification (described earlier in
Section IV-E).

6) Applications of Symbolic Simulation in Networking:
Header Space Analysis (HSA) [173] is an example ternary
symbolic simulation implementation proposed recently for ver-
ifying various properties such as reachability, loop detection,
etc. for SDNs. Canini et al. have proposed a symbolic execution
and model checking based NICE framework for catching bugs
which works by exploring symbolically all possible code paths
[159]. In another work, Bishop et al. [184] have proposed
symbolic evaluation testing of TCP implementation against a
HOL specification.

C. Common Pitfalls Applying Formal Methods

In this subsection, we will describe some common pitfalls
that network practitioners must avoid while applying formal
methods in networking.

1) Selecting Inappropriate Techniques: As highlighted in
this work, there is a vast amount of work that has been done in
the field of formal methods. There are various logics, notations
and technologies available, each making its own claim of
superiority, that may be utilized. Many of the claims are valid in
that certain techniques do certain excel in niche areas; however,
each technique has its disadvantages as well. As Keshav has
pointed out [185], the choice of the most appropriate tool
is certainly non-trivial even for an established researcher, let
alone for a graduate student. It is important to use the most
appropriate specification language for the task, as noted in the
10 commandments stated in [186].

Technique selection directly impacts the verification effort
and complexity. For example, while verifying a communica-
tion protocol, we can use automated theorem provers, model
checking and theorem proving. While using automated theorem
provers, the model needs to be abstracted so that it can be
captured by the logic (with limited expressiveness.) supported
by the theorem prover. Model checking can also handle this
protocol but due to the state-space explosion problem, we
would be limited by the number of nodes in the verification.
A generic expression for the desired characteristic quantified
over all possible number of nodes can be verified using an
interactive theorem prover but this would be very time con-

suming. This decision is generally made based on the desired
properties and models and time and resources at hand. It is
always recommended to use automated verification methods
whenever possible. In an industrial case study, we usually use
various techniques for verifying the complete system. In such
cases, integrating the results obtained via various techniques is
also a main challenge.

2) Using Mismatching Tools: We have multiple tools sup-
porting a single formal verification technique and each tool
is optimized in certain aspect. For example, the SPIN model
checker and supports LTL while nuSMV supports both LTL and
CTL. On the other hand, nuSMV does not support abstraction
over entity instances [174]. Similarly, UPPAAL allows us to
verify real-time systems, which the above-mentioned model
checking tools are not capable of verifying. Similarly, the
higher-order-logic theorem prover HOL-Light provides support
for multivariable calculus but do not support probabilistic rea-
soning, which is available in the HOL theorem prover. Thus,
one of the foremost jobs of a verification engineer is to identify
the desired features of the tools that are required in the selected
technique. This kind of an upfront analysis is very critical
since an inappropriate selection of a tool can cause unnecessary
delays in the verification process.

With research in network verification recently starting to
flourish, it is important to determine the right tools for various
verification tasks in network verification. Two tools that are
immediately useful for a networking researcher are Alloy and
SPIN: a practical comparison of these two tools is presented
in [187].

3) Naïve Overreliance on Unfaithful Models: In formal ver-
ification, we always work with models instead of real systems.
For example, while verifying a piece of code written in C++, it
needs to be translated to an appropriate logic for using theorem
proving or the language supported by the model checker for
model checking based verification. The first challenge is the
assurance that this model faithfully captures the behavior of the
given system. Since, if the model is incorrect then the whole
purpose of using formal verification is lost. Even though we can
never be 100% sure that the model depicts the system correctly,
the verification process can certainly raise the confidence level
in our model. It is usually recommended to verify as many prop-
erties as possible during the verification phase as it is very less
likely that a correct property will be verified for a wrong model.

VI. APPLICATION DOMAINS OF FORMAL METHODS

IN NETWORKING

In the history of the Internet, formal correctness has mostly
taken a backseat to practical expediency and pragmatic con-
siderations. The development, standardization, and deployment
process is cumbersome and inflexible leading to an environment
which only just works [188]. As an example of the unfortunate
adhocism that pervades the culture of network protocols, it is
noted that BGP, despite any lack of convergence guarantees,
is often used in service as an interior-gateway routing protocol
(IGP) [189]. While there were some initial successes in the ap-
plication of formal methods to networking [182], the network-
ing enterprise quickly transformed into a complex behemoth

274 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

impervious to any attempts at formal analysis and verification.
In addition to the inherent complexity of networking protocols,
the vertical integration of control and data planes meant lack
of modularity and a paucity of useful abstractions [9]. With
the tools of formal methods unable to tame the staggering
complexity of networking, the resulting frustration bred skep-
ticism leading to a widespread critical view, enunciated by
Vint Cerf [23], that formal methods are “overblown, verbose,
hard to use, (and) hard to understand.” Fortunately, modern
attempts at redesigning the Internet ossified architecture—and
more specifically, the SDN movement—create new abstractions
by separating the control and data planes and thus allow a great
opportunity for incorporating formal methods in networking.
With the utility of Internet firmly entrenched in all aspects of
modern life, the use of formal methods for ensuring correctness
of specification and operation is anticipated to be incorporated
into mainstream Internet operations.

Traditionally, the focus of formal verification community has
been on hardware systems or software systems, and relatively
less on network verification. Networked systems comprise a
software component (implementing the node OS, protocols,
applications, etc.) and a hardware component (featuring the
range of hardware configuration such as microprocessors, gen-
eral purpose processors, DSPs, ASICs, etc.). Networked system
are in fact distributed systems composed of end hosts that
use the network as well as networking nodes (such as routers,
switches, and various middleboxes such as firewall, load bal-
ancers etc.) that implement the network. In previous work,
network verification is considered as essentially a state machine
verification problem [30]—i.e., a communication network can
be visualized as a finite network of FSMs. Although, this prob-
lem is quite complex theoretically—PSPACE-complete for the
general problem of verification of network of FSMs—structural
properties of networks as we shall see fortunately enable effi-
cient practical techniques.

We will now discuss various applications of formal methods
and verification techniques in networks categorized according
to the application domain. We will initially discuss protocol
verification, and will follow it up with a discussion on the
verification of network properties (such as reachability, isola-
tion, absence of loop, etc.). We will thereafter discuss network
configuration management and network security. A discussion
on techniques for formal specification and synthesis of protocol
follows. We will follow it with a discussion of using formal
methods for verifying implementations and hardware. Finally,
we will discuss the SDN architecture, and how its emergence
is acting as a boon to the adoption of formal methods in
networking. A summary of the following discussion is tabulated
in Table V for easy reference.

A. Formal Specification

There are many benefits in formally specification including
the clarity accompanying rigorous specification of high-level
specification of the target networking problem along with the
ability to employ mechanized correctness checking to weed out
trivial mistakes through techniques such type-checking. It has
been shown in research that informal specification of protocols

can lead to incorrect reasoning and implementation [20] and
ambiguity [175].

In networking protocols, it is important that protocols are
defined unambiguously. Traditionally, the specification process
adopted by Internet Engineering Task Force (IETF) is based
largely on specification through informal English prose, with
implementations also serving as an informal specification sur-
rogate. Although in the early 1980s, various IETF standards
have been formally specified by various academics (including
an Estelle [201] description of Transport Control Protocol,
TCP), the IETF has not embraced the use of formal description
techniques and continues to specify protocols informally rely-
ing primarily on the implementation as the specification. The
tendency to use the implementation as the specification has the
drawback of not cleanly separating what is part of the protocol
and must be conformed to and what is system and implemen-
tation dependent. The lack of the emphasis on formal specifi-
cations for Internet protocols has created a problem where it
is considered acceptable to create software without fully un-
derstanding the implications leading to an ad-hoc hit-and-trial
based software development culture [144]. Experience with
Internet protocols has shown that simple informal English prose
is insufficient for specifying and communicating protocols [10].
Many of the problems that arise due to informal specifications
can be redressed through formal methods for specification
which aid not only in verification and communication, but also
in analysis [1]. In particular, analytical tools can analyze the
formal description to ensure that absence of protocol deadlock,
data loss, races, hazards, and other pathological behaviors.

There are many standard formal description languages for
protocols [27]. The Estelle language [201] and the SDL lan-
guage [217], specified by CCITT/ITU, are based on a extended
state model. The LOTOS language [218], on the other hand,
is based on a temporal logic model. The Z (pronounced Zed)
language [144] is a popular formal specification language use-
ful for describing transformational systems such as sequen-
tial programs in Hoare style using pre- and post-conditions.
PROMELA is a specification language used for specifying
LTL formulas that can be used for validation of reactive sys-
tems with the SPIN model checker. The interested reader is
referred to a tutorial article [27] for more details about formal
description and specification techniques such as SDL, Estelle,
PROMELA, LOTOS, etc.

In order to create a correctly performing implementation,
it is worthwhile to invest time and effort in design verifica-
tion. Various approaches can be explored including specialized
meta-theories specific to routing and forwarding [189], ax-
iomatic logic-based formalisms [219], or declarative program-
ming frameworks [220], [221], to specify the design. These
formalisms can then be analyzed used methods like theorem
provers, model checking, SAT/SMT solvers, lightweight formal
methods etc. to verify the correctness of the design and thereby
guide the implementation.

B. Protocol Verification

In layered communication networks, protocols define the set
of rules governing exchange of messages between interacting

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 275

TABLE V
SUMMARY OF APPLICATION OF FORMAL METHODS IN NETWORKING CATEGORIZED ON THE BASIS OF APPLICATION DOMAINS

processes which serve two related goals: firstly, to provide
service to the local protocol layers above, secondly, to interact
according to a defined protocol with remote peer partners on
other machines. In terms of specification, the former goal is
defined through service specification, while the latter is defined
through protocol specification. Both these specifications—
service-specification and protocol-specification—can be veri-
fied against their design or implementation. Verification at the
design stage is more useful as it can avoid unnecessary incorrect
implementation [222].

There are three main ways in which protocols can fail
[13], [223]: deadlocks—when all the protocols stall waiting

for conditions that can never be fulfilled; livelocks—when
execution sequences keep getting repeated indefinitely with-
out the protocol making any effective progress, and improper
terminations—when the protocol completes execution without
satisfying the proper terminating conditions. The general prob-
lem of finding deadlocks in protocols is known to be complex,
i.e., PSPACE-complete at best which makes it undecidable
for unbounded message queues. Thus any method that relies
exclusively on an exhaustive search of state space method
is bound to fail, thus prompting much research on alternate
non-exhaustive methods that exploit symmetry and abstraction.
Also, due to the inherent complexity of the problem, we set a

276 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

TABLE VI
REPRESENTATIVE SUMMARY OF PROTOCOL VERIFICATION EFFORTS

more conservative target in protocol verification of detecting the
presence of errors—should they exist—with high probability
instead of striving to prove the absence of errors with certainty.

Various works have been proposed for protocol verification
and a representative summary is presented in Table VI. As noted
in Table VI, while certain works have focused on protocols
in narrowly specified networking environments such as wire-
less LANs (WLANs) [137], wireless sensor networks (WSNs)
[202], [203], wireless mesh networks (WMNs) [208], mobile
ad-hoc networks (MANETs) [205], [207], modern data centers
and clouds [176], [204] etc., most of the formal verification
work in networking applies generally to all kinds of networks.
There also has been work on verification of protocols across
the layered TCP/IP networking stack as can be seen in Table VI
including work at the link-layer, network-layer, transport-layer,
and application-layer.

Many formal verification works [209], [211], [224] have
prototyped their modeling and verification work on a simple
reliability protocol known as the “alternating bit protocol”
(ABP) [210] which was designed to provide reliable full-
duplex data transfer over an unreliable half-duplex physical
transmission line over which messages may be lost or corrupted
in a detectable way but may not be duplicated or reordered.
Amongst other work for the link-layer, there also has been
a lot of work on the formal verification of medium access
control (MAC) protocols. Kwiatkowska et al. have utilized the
probabilistic model checking tool PRISM for the verification of
the IEEE 802.11 DCF protocol [137]. Fehnker et al. [202] have
utilized the UPPAAL model checking tool for the verification
of LMAC protocol proposed for WSNs. Ballarini et al. have
also utilized the technique of model checking (using the tool

PRISM) for verification of the S-MAC protocol proposed for
WSNs [203].

There also has been work on verifying network layer pro-
tocols. Bhargavan et al. [14] have utilized the techniques of
interactive theorem proving and model checking (using the
tool HOL and SPIN) for verifying the RIP and AODV routing
protocols. Malik et al. [204] have utilized SMT/SAT solvers
for verifying the OSPF routing protocol in data center envi-
ronments. In other works of verification of routing protocols,
various researchers have used the technique of model checking.
De Renesse et al. [205] have used the model checking tool SPIN
for verifying the wireless adaptive routing protocol (WARP)
routing protocol. Fehnker et al. [206] have utilized the model
checking tool UPPAAL for verifying the AODV protocol which
is very popular in WMN and MANETs. Hofner et al. [208] have
utilized the statistical model checking tool SMC-UPPAAL for
verifying AODV and DYMO (AODV v2).

Petri Nets (including Colored Petri Nets or CPNs) are pop-
ular modeling tools for protocols. CPNs and the tool occ-CPN
has been used by Xiong et al. [207] for analyzing the AODV
routing protocol. CPNs, and the tool DesignCPN, have been
used by Billington for verifying the stop-and-wait (SWP) and
TCP transport layer protocols. Petri Nets have also been used
by Vsimovnak et al. using the tools ACP2Petri and PATool for
verifying the application layer protocol TFTP.

A lot of work has also focused on verifying transport
layer protocols including work on stop and wait protocols
(SWPs) [212], general ARQ techniques including go-back-N
and sliding window protocols [214] and on the TCP protocol
[184], [190], [213]. A variety of techniques have been used for
verifying transport layer protocols including modeling with

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 277

Petri Nets with hand proofs and automated techniques [212],
[213], interactive theorem proving using higher-order logic
[214], and symbolic model checking and execution [184].
There also has been work on formally verifying application
layer protocols with work being done on modeling and ver-
ifying various properties of (boundedness, liveness, deadlock
freeness) of trivial FTP protocol (TFTP) [215] and SIP [175].
The techniques and tools used by these works is summarized in
Table VI.

In addition, there has been significant research in the field of
security protocol verification. Security protocols are defined as
a protocol/program which aims to secure communications on
insecure networks utilizing cryptographic primitives and find
ubiquitous use in modern networks (with an example being
the TLS protocol used for secure communication using the
HTTPS protocol). Security protocols verification is especially
challenging and can evade functional software tests since many
security errors arise when a malicious adversary abuses the
protocol. Automatic tools for security protocol verification
is thus highly desirable and this is an actively researched
area [225].

There are various security related properties with secrecy
and authentication representing two key properties that are
required by most security protocols. Secrecy, or confidentiality,
implies that an adversary cannot obtain any information on
data manipulated by the protocol, while authentication implies
that two participants A and B talking to each other apparently
share the same values of a protocols parameters [225]. In order
to prove the correctness of security protocols, two security
protocol models are used (the details of which are outside the
scope of this paper). The symbolic model is the simpler model
which is amenable to relatively easy automatic proofs, while
the computational model is much more realistic, and more
commonly used by cryptographers, but its proofs have been
limited to being manual until recently. Numerous verification
techniques exist for automatic verification of security protocols
in the symbolic model including model checking, SAT-based
model checking [225]. Various techniques have been proposed
for modeling security protocols (such as through model extrac-
tion [95]) and for verifying security protocols (such as through
SAT-based model checking [216]).

As depicted in Fig. 4, the techniques of automated theo-
rem proving (including SAT/SMT solvers), interactive theorem
proving and model checking, are all well suited to the task
of protocol verification. As can be seen in Table VI, protocol
verification work has been done across the TCP/IP layering
stack with a wide variety of formal verification techniques
being used (including model checking, symbolic evaluation,
interactive theorem proving such as HOL, and SAT/SMT
solvers).

There have been a few survey papers written focusing on
communication protocols [12], [226], including a FSM-based
protocol verification survey [222] and a survey documenting
experience with protocol description [10]. Various tools have
been used for protocol verification including the theorem prov-
ing tool Isabelle [112] for BGP policy verification and the proof
assistant Coq tool [115] for creating a featherweight version of
the OpenFlow protocol [163].

C. Network Property Verification

There is great interest and intent in the research community
to develop technological support for automatic verification of
various properties of protocols and systems. When we are
verifying the property of a system, we are essentially interested
in two kinds of properties: i) Safety property where we are
mainly interested that “bad” things will not occur, ii) Liveness
property where we are mainly interested in that “good” things
will eventually occur [97]. In general, safety property bugs are
easier to discover by finding a counterexample, while liveness
property violations are difficult to obtain—in particular, a live-
ness violation example would require finding an infinitely long
execution trace in which the desired “good” property never
happens [177]. Recent works such as Anteater [161], Header
Space Analysis (HSA) [61], FlowChecker [160], VeriFlow
[192] use an automatic solver to check properties of a logical
representation of switch configurations.

In the remainder of this section, we will cover example
properties of reachability analysis, loop detection, and isolation
verification, packet destination control.

a) Reachability analysis: Reachability analysis is a pow-
erful method widely used for formal verification of proto-
cols [77] and concurrent distributed systems. Unfortunately,
reachability analysis suffers, like all methods based on finite
state machines, from the state-explosion problems. Reachabil-
ity analysis can benefit from symbolic methods which work
without inspecting all the reachable states of the system to
scale to large networks—e.g., BDD-based symbolic traversals
have been proposed for reachability analysis of large finite state
machines [227]. An example work that utilizes BDD-based
symbolic model checking for reachability analysis is the Con-
figChecker tool proposed as part of the “Network configuration
in a box” project by Al-Shaer et al. [91].

There is a well-developed theory for verification of FSMs:
e.g., reachable states, and equivalence, etc., that can readily be
exploited for network verification tasks. In particular, reacha-
bility of states is very relevant in a networking context. The
FSM formalism has been extensively used in formal verification
works for networking [61], [91], [160], [178]—in these works,
the packet is considered as an FSM. Many network verifica-
tion projects model the network as a large state machine (see
description in [29] and [30]).

In a networking context, reachability analysis was first pro-
posed for IP networks by Xie et al. [162]. The technique pro-
posed utilized a static snapshot of network configuration, culled
from configuration state from each of the network routers, for
determining reachability between applications running on end-
hosts. This reachability information is very useful in network
troubleshooting and management for verifying the implementa-
tion of the intent of the network designer, and for troubleshoot-
ing reachability problems. Xie et al. reduced the reachability
problem to a classical graph theoretic problem of computing the
transitive closure which can be solved in polynomial time. Tran-
sitive closure is a standard graph-theoretic technique which,
intuitive speaking, provides an efficient method for answering
the reachability question “where can we get from here?”. A
non-formal intuitive depiction of the transitive closure problem

278 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

Fig. 5. Reachability analysis performed by a graph theoretic transitive closure
algorithm such as Warshall’s algorithm. (a) Input graph connecting directly
reachable nodes. (b) output graph connecting directly or indirectly reachable
nodes.

Fig. 6. The geometric transformation of a packet’s header in header space
analysis by network boxes from one geometrical point to another in the header
space [173].

is presented in Fig. 5. The input graph is shown in Fig. 5(a)
which is a network graph with edges connecting two directly
connected nodes (with the associated matrix incorporating the
same information by showing its i, jth element as a 1 if i
can reach j directly or 0 otherwise). We are interested in
computing reachability from various nodes: i.e., which of the
other nodes can a node reach directly or indirectly. A transitive
closure algorithm like the Warshall’s algorithm can solve this
problem in polynomial time to provide a graph like the one
shown in Fig. 5(b) which is connecting every node to all nodes
reachable from it (directly or indirectly). Recently, advances in
SAT technology have popularized the use of transitive closure
algorithm for reachability analysis problems [30], [167].

Kazemian et al. have proposed a general protocol-agnostic
static checking framework for networks based on header space
analysis (HSA) [173]. The basic insight of HSA is to model a
packet by its header by treating the entire header field as a con-
catenation of bits without any associated semantics—instead,
the packet may be considered as a (geometric) point in the
{0, 1}L geometric space where L is the maximum length of the
packet header. The network is then modeled as being composed
of network boxes (such as routers, switches, etc.) that transform
packets from one point to another point, or possibly set of
points (assuming multicast). This transformation from a point
in header space to another point in header space is represented
in Fig. 6. This geometric approach taken by HSA (i.e., of rep-
resenting the packet as a point in a subspace) allows the Hassel
tools to check for a variety of failure conditions (reachability
failures, forwarding loops, and traffic isolation failures) in a

protocol-agnostic way. Using HSA, we can easily i) find all
packets that can reach from a point A to another point B,
ii) find loops regardless of the protocol/layer, iii) prove that two
sites are isolated. Unlike model checking, HSA is not limited to
providing a single counterexample in case of a failure detection,
but can importantly provide information about the full set of
failed packets.

Tracking the transformation of every possible packet (there
are 2L possible headers) sounds complicated; fortunately, group
of packets tend to have the same behavior—e.g., all the traffic
destined to port 80 gets dropped, or all packets going to a par-
ticular destination go through a particular next hop, etc.—thus
reducing the number of geometric transformations that we need
to track making header space analysis tractable. The grouping
of the packets can be done in HSA without knowing packet
semantics or prior knowledge about packet fields. In HSA, the
processing by network boxes is modeled through box transfer
functions that transform subspaces of the L-dimensional space
to other subspaces. The changes to a packet enroute its flow
through the network is captured by composing transfer func-
tions along the path. In addition to modeling individual network
boxes, HSA also uses a network transfer function Ψ (which
combines individual box functions into a single integrated
function representing the network behavior) and a topology
transfer function Γ (which models the links that connects ports
together). HSA provides an interesting abstract forwarding
model that is independent of the protocol and can seamlessly
incorporate new protocols and technologies. By providing al-
gebraic support for basic set operations (intersection, union,
complementation, difference, etc.) on the header space, HSA
can act as a foundation over which reachability analysis, loop
detection tools can be easily built.

Lopes et al. [30] have recently proposed extending the reach-
ability predicate (“Can a packet from node A reach node B?”)
to a generalized abstraction of reachability set (“What are all
the packets that can reach node B from node A?”). It is high-
lighted in [30] that reachability sets are useful for two reasons:
incremental computation and intelligibility. In general, the tools
for calculating reachability sets are less developed, although
some languages like Datalog provide out of the box support for
computation of reachability sets. The technique of incremental
computation is useful for dynamic verification (i.e., when a
new rule is being added) and has been recently proposed for
real-time verification of SDN networks [61], [192]. The main
insight underlying such an approach is the realization that a
single rule change is unlikely to change the underlying network
state machine drastically. Therefore, small modifications are
necessary to the “reachability set” to incorporate the changes
introduced by the addition of the new rule. Reachability set
is also more intelligible as it produces a more general counter
example—e.g., it can provide a set of packets being dropped.

In a promising recently proposed work [90], Yang and Lam
present “Atomic Predicate (AP) Verifier,” which reduces the
set of predicates representing network packet filters to a set of
atomic predicates that is provably both minimum and unique,
which can be used to dramatically improve the computation
of network reachability. The basic insight of this work is that
atomic predicates have the following key property: Any given

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 279

predicate is equal to the disjunction of the a subset of atomic
predicates, and thus can be stored and represented as a set of
integers identifying the atomic predicate. The conjunction (or
the disjunction) of two predicates can be computed quickly
as the intersection (or union) of two sets of integers. As an
example, Yang and Lam show that while the Stanford network
has 71 ACLs and 1584 rules, there were only 21 atomic
predicates for these ACLs and rules (due to great redundancy
in the forwarding and ACL rules). By encoding the rules in
terms of atomic predicates (in the form of BDDs which can be
manipulated through well-known graph BDD algorithms), this
unnecessary redundancy is removed leading to much greater
space and time efficiency. In their performance evaluation,
Yang and Lam compare AP Verifier with Hassel in C and
NetPlumber to demonstrate that AP verifier is significantly
more time and space efficient [90].

Property verification also includes questions about packet
destination control: can a packet i) get out of the network,
ii) get dropped, iii) go through certain switches, or iv) never
pass through certain links. Model checking as well as ternary
symbolic simulation techniques can be used for packet destina-
tion control [29].

b) Loop detection: Header Space Analysis (HSA) [173]
defines a “network algebra” which captures the manipulation
of packet headers by network routers and switches. In the HSA
framework, packet headers, represented as n-dimensional bit
fields, are operated upon by the function defined by routers and
switches which effectively transform the packet headers. HSA,
in addition to doing reachability analysis, can also pinpoint all
packet headers that will loop. Given a network transfer function,
loops are detected by injecting a special packet header (all of
whose bits are wild-carded) from each port in the network with
a loop being reported if the packet returns to the original port it
was injected from [173]. HSA can verify a range of properties
such as connectivity, reachability between ports, absence of any
loops, and isolation between groups, etc.

Various other approaches have been proposed in literature for
loop detection including ConfigChecker [91], AP Verifier [90],
etc. In recent work, the NetPlumber tool [61] (which is based
on HSA [173]) and the VeriFlow tool [192] (which is based on
verification of network invariants) can also be used for detection
of routing loops in real time.

c) Isolation verification: For various reasons (such as se-
curity, confidentiality, etc.), it is sometimes desirable to ensure
that certain kinds of traffic are isolated from each other. In
current Internet, this is managed by various ad-hoc mechanisms
often requiring manual intervention. For example, techniques
used for ensuring isolation include: i) low level mechanisms
such as VLANs or ACLs requiring configuration, ii) special
purpose devices such as firewalls, iii) or complex hypervisors
such as the FlowVisor system [228] for OpenFlow networks.
It is desirable to have more fundamental abstractions that can
be exploited to provide verifiable isolation between traffic as
desired.

Header space analysis [173] can be used to help create
network slices that are guaranteed to be isolated. Alternatively,
header space analysis can also be used for diagnostic purposes
for detecting slices that should be isolated but are leaking

traffic. Another work in this regard geared towards SDNs in the
“splendid isolation” project [193] proposed as part of the Fre-
netic project [229]. In this work, a slice abstraction is presented
and algorithms for compiling slices is presented along with a
tool for automatic verification of formal isolation properties.
In other works, AP Verifier can also verify slice isolation as
reported in [90].

D. Network Configuration Management

Configuration errors can create numerous connectivity, secu-
rity, performance, and reliability problems. It has been pointed
out in literature that the bulk of network downtime is in fact
due to manual errors [230] and misconfiguration of devices
[29]. The problem is especially acute since it is not far fetched
for a misconfiguration of a single device to cripple an entire
network. Various problems can arise from bugs due to miscon-
figuration including access control failures, isolation guarantee
failures, routing loops, reachability failures, blackholes, etc.
The presence of such problems can have debilitating effect on
network performance and efficiency, thus motivating a more
rigorous and formal management of network configuration. In
configuration management, we would like to have multiple ab-
stractions, incorporating correctness checks, between the high-
level global end-to-end requirements and low-level distributed
configuration at individual devices.

Static analysis has been used extensively for detecting con-
figuration faults. Feamster et al. proposed a static analysis
tool rcc for detecting BGP configuration faults [148]. The
rcc tool allowed proactive analysis of network configurations
before deployment in an operational network by checking
that BGP configuration satisfies a set of constraints, based on
the correctness specification. The rcc tool, like most practical
static analysis tools, is neither complete nor sound—i.e., it
can miss problematic configurations, and may complain about
harmless deviations from the best practices. Nevertheless, rcc
was able to find many important classes of errors to make
it useful in practice. Qie et al. [183] proposed an approach
based on “service grammar” for BGP which incorporated a
requirements language using which the network operator can
specify high-level requirements against which the system may
be checked. Unfortunately, the proposed grammar was rather
low-level thus having possibilities of erroneous specification.
In another work, Narain et al. proposed managing network
configuration through model finding [157] while using the
Alloy analyzer [54]. In yet other work, ConfigChecker [91]
performs firewall verification with BDD-based model checking
to perform symbolic reachability analysis. Configuration man-
agement has been a fertile area for application for formal verifi-
cation methods with various proposals in literature [157], [160],
[161], [231].

E. Network Debugging

As mentioned before, networks are composed of both hard-
ware and software components and are managed in many cases
manually. Due to this reason, networks can fail in a variety
of ways making the job of debugging and troubleshooting a

280 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

network very complex. Traditionally, networking has a very
primitive toolset for troubleshooting comprising few ad-hoc
tools such as ping, traceroute, etc. usually complemented by
the painstaking manual process of inspecting log files. Broadly
speaking, debugging can take place either statically or dy-
namically. Static debugging—akin to compile-time checking—
works by inspecting network configuration and settings through
static analysis tools, model checking, SAT solvers, etc. Dy-
namic checking—similar to run-time checking—works by
checking if the data plane is behaving as it should (tech-
niques for data plane verification have earlier been discussed in
Section VII-E). Dynamic checking can catch errors that arise
from reasons other that erroneous configurations, e.g., it
can help in the case of i) hardware errors, ii) link failure,
iii) congestion, iv) intermittent problems, etc. Heller et al. have
proposed systematic troubleshooting of SDNs by establishing
equivalence of network views at different layers [232]. In
particular, Heller et al. proposed comparing i) actual network
behavior vs. policy, ii) the policy vs. device state, iii) the device
state vs. the hardware state, etc. By comparing these diverse
network views systematically, more efficient troubleshooting
can be performed which will allow identification of faults and
systematic tracking down root causes.

Handigol et al. [233] have proposed the ndb (network de-
bugger) tool, analogous to the software debugging gdb tool, that
aims to capture and reconstruct the sequence of events that leads
to buggy behavior. In particular, it allows users to define a “net-
work breakpoint” in the form of (header, switch) filter to iden-
tify the errant behavior, and then produces a packet backtrace,
which includes historical information about the path taken by
the packet as well as the state of the flow tables at each switch,
to aid in troubleshooting of networks [234]. In a similar vein,
Wundsam et al. [235] have proposed the OFRewind framework
which is useful for capturing and reproducing the sequence of
problematic OpenFlow command sequence. In another work,
Scott et al. have proposed using correspondence checking and
simulation based causal inferencing to isolate and localize
software faults in SDN [236]. In networked systems, erroneous
behavior can manifest itself due to the various issues related
to distributed computing such as asynchrony, concurrency,
and partial failures leading to time-consuming troubleshooting
and considerable angst [237]. Various debugging tools have
been proposed for debugging general distributed systems: e.g.,
Pip [238], etc., and automatic debugging techniques specific to
SDN have been proposed in [239].

F. Network Security

The domain of network security is a very broad area which
deals with ensuring that networks, and the programs that utilize
the network, work securely as desired by the network operator
and the network users. In this context, it is important that
security properties such as secrecy, isolation, and authentication
can be verified. Ensuring secure functioning of programs, espe-
cially when they communicate over a network, is an important
aspect of ensuring network security. As discussed earlier in
Section VI-B, security protocol verification is an extremely
important and active area of research. The readers are referred

to Section VI-B for a broad overview of the field of security
protocol verification.

Designing an error-free security protocol is very challeng-
ing and many security protocols have been implemented and
deployed with a design flaw being discovered years later. For
example, the Needham–Schroeder authentication protocol was
found vulnerable 17 years after being proposed [240]. Even
discounting attacks that depend on breaking cryptography,
security protocols can have other sources of errors that arise
due to complex interleaving of protocol sessions and the pres-
ence/interference of malicious adversaries. Since these errors
are hard to find just by inspecting protocol specification or by
testing, there is a strong motivation of using formal methods for
verification of security protocols. With security protocols being
at the heart of security-sensitive applications in a variety of
settings (e.g., e-banking, e-governance, etc.), security protocol
verification serves as a strong example of an application that
can benefit from the use of formal methods (in contrast to
non-formal techniques) to fix the problems that non-formal
techniques cannot solve.

There has been a lot of work in firewall verification and syn-
thesis and vulnerability analysis. There are various important
subproblems of firewall verification and synthesis [168]. Firstly,
the firewall equivalence checking problem focuses on determin-
ing if two firewalls have identical behavior—i.e., they drop and
permit the same set of packets. Secondly, the firewall inclusion
checking problem compares two firewall policies and can verify
that one policy is inclusive, i.e., more strict, than the other
policy. Thirdly, the firewall rule redundancy checking problem
focuses on determining redundant rules—i.e., rules that can be
deleted without affecting the behavior of the firewall. Lastly,
the firewall synthesis problem focuses on synthesizing a firewall
with minimum number of rules install that matches exactly the
behavior of another given firewall.

A variety of techniques have been utilized for firewall verifi-
cation and synthesis and vulnerability analysis including static
analysis [241], model based analysis [242], [243], logic-based
analysis [194], SAT solvers, model checking [158], [166], new
abstractions (e.g., firewall decision diagrams or FDD [197],
atomic predicates (AP) verifier [90], etc.). While a compre-
hensive review of these techniques is outside the scope of this
paper, we will provide a high level overview of three sample
works in this domain next. The interested reader is referred to a
detailed description of related work in [172] and [197].

Gouda et al. [197] presented a structured firewall design
ensuring consistency, completeness and compactness, and also
proposed firewall decision diagrams (FDD) as a formalism
for modeling firewall specification. The proposed structured
firewall design consists of two steps. Firstly, instead of defining
firewall configuration as a sequence of possibly conflicting
rules, the design is specified using the FDD. Secondly, the FDD
is converted into a functionally-equivalent compact sequence of
rules (using combination rules such as FDD deduction and FDD
marking as well as a firewall compaction algorithm). Since
FDDs are designed to be conflict-free, the method of structured
firewall design ensures consistency. The formalism of FDD also
enforces completeness because of its syntactic requirements.
In another important recent work, Margave tool [172] provides

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 281

powerful features for firewall analysis, verification against se-
curity goals, and detection of overlaps and conflicts. Margrave’s
modus operandi is scenario finding: when a user inputs a query,
Margrave returns the (typically exhaustive) set of scenarios
that witness the queried behavior. Margrave models policies
in first order logic with Margrave’s backend producing sets of
solutions to first-order logic formulae using the SAT-solving
based Kodkod tool [55]. Lastly, the Datalog based MulVAL tool
[194] models a network system to perform automatic network
vulnerability analysis. MulVAL can incorporate bug databases
into its framework using Datalog and can perform “what-if”
analysis using Prolog programs.

G. Formal Synthesis

There also has been work in synthesizing protocol implemen-
tations from formal specifications. An example work in this
regard is the “formally verifiable networking” (FVN) project
[198]. In another work, the synthesis of network updates have
been proposed [199]. Recently Lopes et al. [30] have indicated
building a synthesis tool for Microsoft Azure firewalls as their
future work—such a tool can enable synthesis of low-level
rules from a high-level specification and thus network operators
can forego the error-prone access control list (ACL) configura-
tion CLI.

H. Implementation Verification

Having studied techniques that can be used to verify design
in previous subsections, we will now see that a variety of
techniques, described earlier in Section IV, can be used to
verify implementations. In particular, we can make use of static
checking as well as dynamic checking. In static validation,
correctness properties are defined as invariants or constraints
which are then checked to find out any system faults. In certain
cases, a pre-processing stage may be necessary to transform
the real system into an intermediate more checkable form.
Static analysis and model checking are static validation tools.
While most model checking tools work with specification
models, some model checking tools (such as MaceMC [177],
VeriSoft [17], and CMC [96]) can work directly with im-
plementation code making them very valuable for verifying
implementations. In dynamic validation, on the other hand,
we rely on runtime verification and testing—which per se are
not really formal verification tools but nonetheless perform a
complementary role.

I. Hardware Verification

Formal verification methods have been used for hardware
verification of networking devices. Some sample works in hard-
ware verification in networking include verification of: i) the
lookup machine of a hardware router [244], ii) the Fairisle ATM
switching element [245], iii) network-on-chip [246], [247]. A
more detailed treatment of this topic survey application of
formal verification techniques in hardware design can be found
at [11].

VII. APPLICATIONS OF FORMAL METHODS IN SDN

In this section, we will discuss new opportunities offered
for incorporating programming and verification advances into
the networking context by the SDN architecture. We will ini-
tially provide some necessary background on programming lan-
guages and verification in Section VII-A. We will then discuss
the applications of logic and programming languages in the
context of networking in Section VII-B. We will then discuss
new degrees of freedom offered by SDN in Section VII-C. We
will discuss SDN programming languages in Section VII-D
and will thereafter talk about data plane and control plane
verification in Sections VII-E and F, respectively. A tabulated
summary of the application of formal methods in SDN is
presented in Section VII for quick reference.

A. Background: Programming Languages and Verification

In recent times, the networking industry is observing a pro-
found paradigm shift driven by the “software defined network-
ing” (SDN) architecture which promises to bring programming
and software to the very heart of networking. With software tak-
ing a central role in future networking, as foreseen by leading
networking experts [31], there is a great upsurge in the interest
of applying formal methods to networking and exploiting the
vast amount of formal verification work done in the domain of
programming languages (particularly for declarative program-
ming, logic programming, and functional programming). In
the remainder of this section, we will introduce the necessary
background regarding the grammar of languages, declarative
programming, logic programming, and functional program-
ming in Section VII-A1, A2, A2a, and A2b, respectively. We
will discuss the applications of these programming styles in the
context of networking later on in Section VII-B.

Before delving into the other topics, we will provide a
brief introduction to the semantics of computer programs.
Broadly speaking, there are three ways to establish the mean-
ing, or semantics, of computer programs [60]. In operational
semantics, the program is modeled by execution on an ab-
stract machine—this interpretation is useful for implementing
compilers and interpreters. In axiomatic semantics, pioneered
by Hoare and Floyd, the program is modeled by the logical
formulas it obeys—this interpretation is useful for proving
program correctness. In denotational semantics, the program is
modeled by mathematical objects—this interpretation is useful
for developing theoretical foundations of programming.

1) Grammar of Languages: The most common type of
grammar used for specifying languages is known as the context-
free grammar, which is expressive enough to capture the re-
cursive syntactic structure of most languages of our interest.
The core component of a context-free grammar is a set of rules
where a rule typically defines a name and an expansion for that
name. The Backus–Naur form (BNF) is a formal notation used
for encoding the grammar of a language in a form amenable
to human consumption. The BNF notation is used by many
programming languages, protocols or formats in their specifi-
cation. A rule of the BNF notation has the following structure:
“name ::= expansion” where the symbol ::= means “expands

282 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

to” or “may be replaced with.” Every name in BNF is enclosed
in angle brackets, 〈 〉. Choice is indicated by a vertical bar, |.
For more details about the BNF format, the interested reader is
referred to [36]. In the context of networking, the BNF format
has been used to specify network programming languages in
FlowExp (short for Flow Expression) [61], NetCoreLib for
Frenetic [62], [63], etc.

2) Declarative Programming: Declarative programming is
a programming style in which we specify what the program
must do without specifying how to do it. The imperative pro-
gramming style adopted by imperative languages such as C,
Java, etc., in contradistinction, focuses on specifying algorith-
mically how the computer must do its job. It may be highlighted
that the imperative programming style harmonizes with the
imperative procedural (how to) approach typically adopted
in computer science while the declarative programming style
dovetails with a mathematical or logic-based approach which
emphasized declarative (what is) knowledge [64]. Imperative
programming style involves the use of mutable state variables
which makes reasoning and verification a difficult task. Declar-
ative programming style, in contrast, eschews maintenance
of state variables and avoids invisible side-effects and relies
instead of mathematical logic and evaluation of mathematical
functions and logic formulae. Declarative programming is in-
timately tied to mathematical logic—programs in a declarative
frameworks can be thought of as theories of formal logic, and
computations as deductions in that logic space. Examples of
declarative languages include SQL, frameworks such as: func-
tional programming languages, logic programming languages,
constraint logic programming, etc. In recent times, there has
been a lot of interest in declarative languages, and in their use in
networking especially cloud networking [65], since declarative
languages are well-suited to parallel programming12 [67].

a) Logic programming: Logic programming provides
many advantages including programmability at a very high
level and natural support for formal semantics. Logic lan-
guages, such as Prolog, Lisp, have been very popular in the
AI community for knowledge representation and automated
reasoning. Prolog, an example declarative logic programming
language designed primarily for AI based systems, works by
stating and querying the logical relations between entities.
Prolog like languages are also useful in formal verification for
automated theorem proving. Logic programming languages are
also popular in the databases community of computer science
due to their support for declarative querying and symbolic ma-
nipulation. Datalog, an example database-based logic program-
ming language, facilitates declarative definition of properties
and relationships between objects with the language framework
providing support for computing with these objects (including
querying about objects declaratively).

The declarative programming style is superior to the proce-
dural style in some significant ways—especially, in the context
of formal verification [68]. The declarative style emphasizes the

12Almost every successful large-scale application of parallelism, e.g., SQL
server, LINQ, MapReduce, etc., has been declarative and value-oriented [66].
This trend bodes well for the use of declarative programming, especially
functional programming, in parallel computing.

intent of a program and the static description of relationships
and properties that hold in a program regardless of the comput-
ing context, thus easing understanding a computer program and
reasoning about it. Unlike procedural languages, the effect of
logic programming statements is not dependent on the context
(i.e., the state of the computer when the preceding statements
were executed).

b) Functional programming: The functional program-
ming paradigm considers computation to be the evaluation
of mathematical functions—that are not dependent on state
and will always provide the same output for the same input.
The main reason for the importance of functional programs is
due to their direct correspondence with mathematical objects,
which makes it easier to reason about them [69]. The func-
tional paradigm avoids variables, or more technically—mutable
state (i.e., variables whose values can be changed), and en-
courages a function-based programming worldview instead.
By avoiding mutable state, the source of numerous subtle
bugs in imperative-style programming languages, verification
of programs become more simple. In functional programming,
execution of a program means evaluation of the expression
represented by the functional program. The functional pro-
gramming style makes no use of variables. Instead of loops,
the functional program makes use of recursive functions (i.e.,
functions that are defined in terms of themselves).

The main downfall of imperative programming is in race
conditions when concurrency is supported. Race conditions are
much harder to detect and fix since they may arise of non-
deterministic interleavings of concurrent threads (which may
interleave in a myriad different ways). Imperative programming
is always vulnerable to race conditions since it relies on mutable
state. Functional programming puts up much better with such
race conditions since a pure functional language has no mutable
state. Since the future of programming is in concurrency and
parallelism, functional programming is increasingly migrating
from fringes of the programming world to the mainstream [66].
In summary, mutations allowed in the imperative programming
paradigm severely limit any opportunities for automatic paral-
lel execution, while the lack of dependencies in the (purely)
functional paradigm presents great opportunities for automatic
parallel execution.

The functional programming is based on the theoretical
underpinnings of Alonzo Church’s lambda calculus [70], pro-
posed in the 1930’s, which defines rules about using un-
named functions for representing and evaluating expressions.
Lambda calculus, although originally intended as a formal
logical system for mathematics is in fact a completely general
programming language and defines a family of prototype pro-
gramming languages. Many modern programming languages
C++, Python, JavaScript, Ruby, Java 8, etc. borrow from the
programming style of lambda calculus, following the lead of the
Lisp programming language—which was the first mainstream
language to include anonymous functions known as lambda
functions. Two important features of lambda calculus is that
it is functional—i.e., it is based on the concept of a mathe-
matical function and include notation for function application
and abstraction—and that is higher-order—i.e., it provides a
systematic formalism and notation to deal with operators whose

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 283

input and output may be other operators. The lambda calculus
model significantly differs from the Turing model of a store
with evolving state [71]. Interestingly, the Turing model and
lambda calculus were invented in the same year, 1936. Turing
showed in 1937 that both these models were equivalent and
in fact defined the same class of computable functions. In any
case, computer programs and mathematical proofs are directly
related as the system of formal logic and computational calculi
are analogous—the famous “Curry–Howard correspondence”
expresses the isomorphism between proof structures and func-
tional spaces [72].

Popular functional programming languages include Lisp,
invented by the AI pioneer John McCarthy, Haskell [73], Caml,
OCaml, Scala, etc. Historically, most successful languages have
been written for specific purposes—e.g., Lisp was created for
artificial intelligence, Fortran for numerical computation, and
Prolog for natural language processing. The raison d’etre for
ML has been the need of an efficient language for theorem
proving [74]. ML originated as the metalanguage (thus its name
ML) of the famous theorem proving system called Edinburgh
LCF [75] for writing theorem proving algorithms in formal
deductive calculus. ML was designed to have the full power
of higher-order functional programming so that it could rep-
resent necessary inference rules and proof strategies. Since
early time, functional languages and theorem proving (and
formal verification in general) have been intimately intertwined.
(Edinburgh) ML has spawned a wide range of ML-based de-
scendant languages including Standard ML (SML) and OCaml.
OCaml is a programming language specifically designed for
writing theorem provers, with numerous major systems being
written in it (e.g., SLAM verification system from Microsoft,
HOL Light theorem prover, etc.). The OCaml language, being
perfectly suited for symbolic manipulations, is used exten-
sively by the Coq proof assistant which is used extensively
for the verification of purely functional programs. Similarly,
the SLAM verification system, proposed by Microsoft, also
used OCaml programming language. The ACL2 (“A Compu-
tational Logic for Applicative Common Lisp”) theorem prover
is also composed of a first-order, purely functional subset of
Common Lisp.

B. Application of Logic and Programming Languages
in Networking

1) Algebra and Logic in Networking: In networking con-
text, algebra can be viewed as a concise language useful for
describing combinatorial problems. Researchers have applied
algebraic ideas to network routing through algebraic path
finding methods that exploit the fact that numerous practical
network problems are in fact instances of the same abstract
“algebraic path problem” (e.g., a classical example of an ab-
stract algebraic path problem is shortest path routing) [248].
Routing algebra meta-language (RAML), which builds upon
Sobrinho’s Routing algebra [249], was proposed by Griffin in
the “metarouting” project [189]. Metarouting aims at equipping
network operators with the ability to define their own routing
protocols in a high-level declarative manner using a domain-
specific language customized for specification, verification, and

implementation of routing path metrics. Sobrinho’s Routing
algebra [249], which can be understood as generalization of
shortest path routing, is expressive enough to adequately model
complex policy-based routing typified by ubiquitous the Border
Gateway Protocol (BGP) routing protocol. A key feature of
the metalanguage proposed for metarouting, which is espe-
cially relevant to our subject topic, is that algebraic properties
required for guaranteeing correctness can be automatically
derived.

2) Declarative Programming in Networking: Adoption of
declarative programming languages is a manifestation of a
contemporary trend in networking, brought on by the need to
fix an ailing inflexible network architecture—and by software
defined networking in particular, in which advanced program-
ming techniques and database techniques are increasingly being
applied to networking [220]. We present two examples of SDN
declarative languages: i) the flow management language (FML)
is a declarative language for SDN [250] designed for network
operators so that static network policies may be written and
maintained more efficiently; ii) the NetCore language [63]
is a high-level declarative language proposed for SDN that
allows programmer to describe what behavior is desired and
not necessarily describe how to realize the implementation of
that behavior. We will discuss SDN programming languages in
more detail in Section VII-D.

a) Logic programming in networking: There has been
a lot of interest in using declarative logic programming lan-
guages for simplifying the implementation of Internet proto-
cols. They have been previously used for writing parsers (like
the “yet another compiler-compiler” (yacc) parser tool [251])
for application layer protocols [252], declarative routing [253],
and declarative networking [220]. The basic insight behind
declarative networking is the realization that recursive query
languages are a natural fit for network protocols which essen-
tially deal with computing and maintaining distributed state
(such as information about routes, sessions, etc.) across the
network. Network Datalog (NDlog) is a data and query model
that has been proposed for declarative networking. NDlog,
which implements a network specific subset of Datalog and
supports distributed programming, exposes the partitioning of
data across nodes and the link graph of the network. This
makes the implementation much more amenable to static anal-
ysis and verifiable using other formal verification techniques
such as general-purpose theorem provers. It has been shown
that declarative implementations of popular protocols can be
done much more concisely and efficiently while also allowing
extensibility and safety [220]. Logic programming languages
have recently been proposed for SDNs [254], FlowLog: [255],
with researchers also exploring declarative network verification
[256]. In another work, Kazemian et al. have implemented
a FML-like language in a Prolog frontend to enable network
administrators to specify high-level policies [61].

b) Functional programming in networking: With the re-
cent paradigm shift in networking brought on by SDN, a clear
trend of preferring high-level declarative languages, domain-
specific languages (DSL), functional languages—and more
specifically, functional reactive programming (FRP)—for pro-
gramming SDNs (both the SDN controller as well as SDN

284 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

applications) is emerging. Much of the recent work in SDN
programming has followed the declarative programming cou-
pled with the FRP paradigm [62], [257], [258]. This trend is
helped by ample foundational research in these fields in the
programming and databases community, and by the verifiability
properties of functional languages. Nettle [221] is a SDN
specific language implemented as a domain-specific language
in the functional programming language Haskell. Nettle adopts
the design methodology of domain-specific languages (DSL)
research, and is built in the paradigm of FRP [259]. Nettle
has been used for providing a comprehensive abstraction cal-
culation constructs for configuring BGP policies. In a similar
work, Procera [257] is a domain-specific language embedded
in Haskell that can be used to specify high-level dynamic
reactive network control policies. In other work, the Frenetic
project [229] defines a family of domain-specific languages for
specifying high-level network policies. In the initial work in the
Frenetic project [62], two sub-languages were proposed: i) a
high-level declarative network query language—which enable
Frenetic programs to read the network state using constructs
for filtering, grouping, splitting, limiting, aggregating, etc., and
ii) a general purpose FRP-based network policy management
library—using which the policy to govern the forwarding of
packets through the network can be defined. The Frenetic
framework borrows extensively from the FRP languages like
Yampa [260], etc., and reuses many of the proposed primitives.
In more recent work, Pyretic [258] is an example DSL in
the Frenetic family which supports composable policies con-
structed from a set of fundamental constructs such as basic
policies and combinators along with associated techniques for
compiling these techniques to OpenFlow switches.

C. What is New About SDN

In traditional networking, the complex intricacies of a ver-
tically integrated network architecture largely ruled out appli-
cations of formal methods to the domain of networking. This
resulted in ad-hoc management of networks by “masters of
complexity” [31]—network administrators who kept networks
running mainly through intuition and judgment honed through
experience with a very limited tool-set. Fortunately, the re-
cent SDN architecture is much cleaner and offers an opportu-
nity at rethinking networking management and troubleshooting
[232]. There are three reasons for the optimistic evaluation
of verification prospects of SDNs: firstly, the control plane
that previously ran as distributed algorithms across individual
devices has now been refactored into a single program that
runs on the controller; secondly, the heterogeneity in traditional
networking—in devices, configuration interfaces, vendors, and
softwares—has given way to stock programmable switches
supporting standard interfaces with precise semantics [63];
lastly, it is envisioned that the core network, or the fabric, in
the new SDN architecture will be purely hardware (finite state)
and is thus amenable to efficient application of verification tech-
niques [29]. These new degrees of freedom enabled by SDN
have ignited a renewed resolve in the networking community of
applying formal methods to networking and to put networking
on a solid theoretical foundation [163], [263], [264].

D. SDN Programming Languages

As pointed out earlier, there is an increasing trend in using
declarative programming techniques, and techniques that have
been successful in deductive databases community, in network-
ing. The use of such techniques also enables importantly the
ability to perform network verification. There has been some
work in this regard [256] in which the task of formal specifica-
tion is performed through declarative networking code, using
Network Datalog (NDLog), a distributed variant of Datalog,
while verification is done through a general-purpose theorem
prover.

Various SDN specific programming languages have been
proposed recently (e.g., Frenetic [229], NetCore [63], [265],
Pyretic [258], and NetKat [58], etc.). These network program-
ming languages enable programmers, in line with the vision
of software defined networks, to define the desired network
behavior at a high-level and the compiler then translates the
high level abstract description to rules that are installed on
the underlying hardware devices. The NetCore language [265]
was initially designed to provide support for parallel compo-
sition and was later extended by Pyretic [258] for sequential
composition. NetCore provides a rich set of programming
primitives including predicates for filtering packets, actions
for modifying and forwarding packets, and (parallel and se-
quential) composition operators for building elaborate policies
from simpler ones. NetCore has even been formalized in Coq.
NetKat is similar to NetCore and Pyretic, but additionally
provides formal axiomatic semantics and a compiler based on
an equational theory for reasoning about programs. NetKat
is based on Kleene algebra with tests which is a mature
framework that combines Kleene algebra—useful for reason-
ing about network structure—and Boolean algebra which is
useful for reasoning about the predicates that define switch
behavior. NetKat provides consistent reasoning principles that
other network programming languages lack. In contrast to
fore-mentioned languages, which have a functional bent and
are suited for programming of centralized controllers, the
DataLog13 based declarative network programming language
NDLog [220], [253] is a logic programming language suited
to distributed programming.

E. Data Plane Verification

Various approaches have been proposed for data plane veri-
fication including i) static checking—in which the correctness
is verified independently, ii) dynamic checking—in which new
forwarding state is checked before being added, iii) automatic
testing—where the correct behavior of the dataplane is checked
automatically, and iv) interactive debugging—which aims at
finding bugs in operational networks. The Anteater [161],
FlowChecker [160], and Hassell [173] tools are example static
checking tools. Various real-time dynamic checking tools have
been proposed in literature including NetPlumber [61] and
VeriFlow [192]. The NetPlumber tool uses a novel header space

13Datalog is a declarative logic programming language used as a query
language for deductive databases. It is a simplified form of Prolog, and can
be envisioned as a subset of Prolog sans the complex terms allowed by Prolog.

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 285

TABLE VII
SUMMARY OF APPLICATION OF FORMAL METHODS CATALYZED BY EMERGENCE OF SOFTWARE DEFINED NETWORKING (SDN)

analysis for performing a real time network policy check, while
the VeriFlow tool verifies network invariants—e.g., lack of
access control violations, absence of routing loops, blackholes,
etc.—in real time and presents a diagnostic report in case of a
violation. The Automatic Test Packet Generation (ATPG) tool
is an automatic testing tool that automatically generates test
packets [261]. The ATPG verifies full reachability in a network,
using minimal network of test packets by using a heuristic
solver for the min-set-cover problem, and detects anomalies
by looking for persistent packet drops that are indicative of
some software or hardware errors. Finally, the NetSigtht and
the Network Debugger (ndb) tools are interactive debugging
tools that operate passively without generating any new packets
unlike the ATPG tool. The ndb tool [233]—the analogue of gdb
debugger for programming—is like a network-wide path-aware
tcpdump that builds packet histories which can be exploited by
network analysis applications to verify the policy compliance
of network data plane behavior.

F. Control Plane Verification

Various projects have aimed at verification of the control
plane functionality of SDNs. In the SDN architecture, it is
envisioned that network programs will run as SDN applications
on top of a northbound API exposed by SDN controller. This
will allow SDN applications to leverage the services of the
SDN controller, which will be responsible for managing the
distributed state through a southbound API like OpenFlow,
while the SDN application can focus on using the state for the
task it wishes to perform. It is anticipated that this architecture
will allow innovation to flourish and the development of nu-
merous network based applications. In such an environment, it
is necessary to ensure that we have tools available for testing
and verifying such SDN applications. Canini et al. present
their NICE framework for testing OpenFlow applications [159].
Kuzniar et al. have proposed another framework, named SOFT,
for verifying OpenFLow switch interoperability. There also has
been work on computationally verifying network programs in
the Coq mechanical proof tool [266].

There also has been work on isolating fault inducing in-
puts to SDN control software [237], controller verification

[63], and ensuring per-packet and per-flow consistency of
network updates [178]. The problem of verifying a generic
SDN controller—which in its general setting is Turing com-
plete (e.g., NOX, Floodlight, etc.)—is undecidable. Guha et al.
have proposed a method of using for machine verification of
network controllers [63]. FlowLog [255] is a declarative, finite-
state, language for programming SDN controllers that balances
expressiveness and analysis and is amenable to model checking.
In another model checking based work, Sethi et al. [262] have
proposed new data state and network state abstractions that can
be used for model checking SDN controllers more efficiently.
The Frenetic framework [229] incorporates features to help
achieve per-packet and per-flow consistency during network
updates [178]. The safe update protocol proposed in [178]
builds upon approaches that use incremental recomputation
(e.g., Anteater [161], VeriFlow [192], etc.), which may have
a transient stage in which the property to be verified may be
violated, by ensuring that the property under check also holds
during the transient stage.

A representative summary of the applications of formal veri-
fication techniques for data plane and control plane verification
is presented separately in Table VII.

VIII. OPEN ISSUES AND FUTURE WORK

The area of formal methods and verification is vast with
various mature tools and techniques available. With networking
being fundamentally important to all aspects of life including
government, defence, industry, finance, etc., networks are in
dire need of provably correct mechanisms. Notwithstanding the
lack of any major breakthroughs made by formal methods in
traditional networking, architectural support from SDN along
with its clean abstractions provide a source of optimism for
the future of formal methods in networking. The nascent field
of network verification is wide open and is ripe for further
exploration. In this section, we will point a few important open
issues and highlight possible future work.

A. Scalable Formal Verification for Large Networks

Advanced in technologies such as BDDs and SAT solvers
have extended the state of the art considerably in recent years.

286 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

However, more work needs to be done for current formal
verification techniques to scale to large networks and to ver-
ify large software systems (such as network applications and
protocol implementations). An approach that has been proposed
in literature for scaling to large networks is to utilize incre-
mental recomputation thereby avoiding the overhead of redoing
expensive static calculations. For example, NetPlumber [173]
improves HSA [173], and Veriflow [192] improves Anteater
[161], by supporting incremental computation. The incorpo-
ration of incremental recomputations techniques have allowed
these tools to scale to reasonably large networks. In recent
work, Yang and Lam have proposed an efficient real-time
verifier of network properties using atomic predicates [90].
More work is needed in this area to exploit these recent works
so that network verification for large networks can become both
practical and efficient.

B. Automated Synthesis of Protocols and Configuration

Synthesis which promises to automatically derive implemen-
tations from specifications is an extremely important future
goal that can improve programmer productivity. The problem
of automated synthesis is at the frontier of verification research
today [30]. Some important works in this regard include synthe-
sis of network updates [199], synthesis of network controllers
[200], synthesis of finite state controllers from temporal logic
specifications, and synthesis of programs from examples by
exploiting domain specific knowledge, etc. [138]. In the context
of networking, more work needs to be done so that subsystems
such as protocols, configurations, hardware may be synthesized
through a high-level formal specification only in a user-friendly
manner.

C. Specialized Network Verification Tools

In contrast to sophisticated well-honed design automation
tools that are available for general hardware14 and software
industries, networking industry has almost no rigorous tools
for verification. The vision of building a network CAD was
articulated by McKeown. Encouragingly, as the SDN archi-
tecture is becoming mainstream, there is renewed interest in
building specialized tools that will allow automated debugging,
verification, and analysis. Some important issues that need to
be addressed before such a vision can be realized are [232]:
i) incorporating program semantics into network troubleshoot-
ing tools; ii) improved techniques for checking invariants;
iii) development of new abstractions, especially in the SDN
context, to facilitate troubleshooting.

D. Verification Abstractions for Modern Architectures

With the emergence of data centers and cloud computing,
the programming world is undergoing a silent revolution with a
growing trend towards parallel programming. Although, there
are various approaches that have been proposed to support
verification of concurrent programs, more research needs to be

14The electronic design automation (EDA) industry in hardware design is a
big market catering to a multi-billion dollar industry.

done to propose new clean simplified abstractions for building
verified concurrently executing programs that can exploit mod-
ern multi-core and multi-processor architectures, and parallel
programming style suited to data centers and cloud computing.

IX. CONCLUSION

We are in an exciting time in the networking world with
recent innovations such as software defined networking and
cloud computing fundamentally altering the landscape of the
networking world. Keeping in mind the criticality of the In-
ternet infrastructure, assuring the correct behavior of various
subsystems of the Internet has become essential. There is great
interest in applying the vast amount of work that has been done
in the community of formal methods and verification to net-
works. The work in formal methods draws upon many diverse
fields such as logic, theoretical computer science, programming
languages, mathematics, etc., and hence appears daunting to a
non-specialist. In this work, we present a detailed description of
the various techniques used in formal methods and verification
while providing necessary background and references to impor-
tant works. We also present a detailed survey of the application
of formal methods in the networking context. Finally, we have
also identified some important research directions that can be
pursued in future work.

REFERENCES

[1] J. Day, Patterns in Network Architecture: A Return to Fundamentals.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2007.

[2] S. Garfinkel, “History’s worst software bugs,” Wired News, Nov. 2005.
[3] G. Tassey, “The economic impacts of inadequate infrastructure for soft-

ware testing,” National Inst. Std. Technol., Gaithersburg, MD, USA,
2002, vol. 7007, RTI Project.

[4] S. U. Malik and S. U. Khan, “Formal methods in large-scale computing
systems,” ITNOW, vol. 55, no. 2, pp. 52–53, 2013.

[5] HD Moore, Security Flaws in Universal Plug and Play: Unplug, Don’t
Play, Jan. 2013. [Online]. Available: https://community.rapid7.com/
community/infosec/blog/2013/01/29/security-flaws-in-universal-plug-
and-play-unplug-dont-play

[6] C. Barker, “The top 10 IT disasters of all time,” [Online]. Available:
http://www.zdnet.com/news/the-top-10-it-disasters-of-all-time/
177729. Accessed: 2013-02-21.

[7] M. Cabural, “Facebook Inc (FB) Awards Biggest Bug Bounty To Brazil-
ian Engineer,” [Online]. Available: http://www.valuewalk.com/2014/01/
facebook-inc-fb-awards-biggest-bug-bounty/. Accessed: 2013-02-21.

[8] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do Internet
services fail, and what can be done about it?” in Proc. USENIX Symp.
Internet Technol. Syst., Seattle, WA, USA, 2003, vol. 4, pp. 1–15.

[9] J. Rexford and P. Zave, “Report of the DIMACS working group on
abstractions for network services, architecture, and implementation,”
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 1, pp. 56–59,
Jan. 2012.

[10] P. Zave, “Experiences with protocol description,” in Proc. WRIPE, 2011,
pp. 1–6.

[11] C. Kern and M. R. Greenstreet, “Formal verification in hardware de-
sign: A survey,” ACM Trans. Des. Autom. Electron. Syst., vol. 4, no. 2,
pp. 123–193, Apr. 1999.

[12] G. Bochmann and C. Sunshine, “Formal methods in communication
protocol design,” IEEE Trans. Commun., vol. COM-28, no. 4, pp. 624–
631, Apr. 1980.

[13] G. J. Holzmann, “Design and validation of protocols: A tutorial,” Com-
put. Netw. ISDN Syst., vol. 25, no. 9, pp. 981–1017, Apr. 1993.

[14] K. Bhargavan, D. Obradovic, and C. A. Gunter, “Formal verification of
standards for distance vector routing protocols,” J. ACM, vol. 49, no. 4,
pp. 538–576, Jul. 2002.

[15] J. Jürjens, Secure Systems Development With UML. Berlin, Germany:
Springer-Verlag, 2005.

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 287

[16] D. M. Buede, The Engineering Design of Systems: Models and Methods,
vol. 55. Hoboken, NJ, USA: Wiley, 2011.

[17] P. Godefroid, “Model checking for programming languages using
VeriSoft,” in Proc. 24th ACM SIGPLAN-SIGACT Symp. Principles Pro-
gram. Lang., 1997, pp. 174–186.

[18] K. Bhargavan et al., “Verisim: Formal analysis of network simulations,”
IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 129–145, Feb. 2002.

[19] H. Chen, D. Dean, and D. Wagner, “Model checking one million lines of
C code,” in Proc. NDSS, 2004, vol. 4, pp. 171–185.

[20] P. Zave, “Using lightweight modeling to understand chord,” SIGCOMM
Comput. Commun. Rev., vol. 42, no. 2, pp. 49–57, Apr. 2012.

[21] A. Sobeih, M. Viswanathan, D. Marinov, and J. Hou, “Finding bugs in
network protocols using simulation code and protocol-specific heuris-
tics,” in Formal Methods and Software Engineering, vol. 3785, Lecture
Notes in Computer Science. Berlin, Germany: Springer-Verlag, 2005,
pp. 235–250.

[22] Z. Lu, C. Steinmuller, and S. Mukhopadhyay, “Towards formal verifi-
cation of a commercial wireless router firmware,” in Proc. IEEE 37th
Annu. COMPSAC, Jul. 2013, pp. 639–647.

[23] “Running code vs. formal testing methods,” [Online]. Available: http://
www.ietf.org/mail-archive/web/ietf/current/msg10577.html. Accessed:
2013-09-30.

[24] G. Holzmann, “OOPSLA keynote: Scrub and SPIN: Stealth use of for-
mal methods in software development,” in Proc. 24th ACM SIGPLAN
Conf. Companion Obj. Orient. Program. Syst. Lang. Appl., 2009, p. 4.

[25] “International Conference on Formal Techniques for Networked
and Distributed Systems,” [Online]. Available: http://www.informatik.
unitrier.de/~ley/db/conf/forte/. Accessed: 2013-09-12.

[26] [Online]. Available: http://www.cs.cornell.edu/conferences/
formalnetworks/. Accessed: 2013-10-1.

[27] F. Babich and L. Deotto, “Formal methods for specification and analysis
of communication protocols,” IEEE Commun. Surveys Tuts., vol. 4,
no. 1, pp. 2–20, 2002.

[28] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” Proc. ACM CSUR, vol. 41, no. 4,
p. 19, Oct. 2009.

[29] S. Zhang, S. Malik, and R. McGeer, “Verification of computer switching
networks: An overview,” in Automated Technology for Verification and
Analysis. Berlin, Germany: Springer-Verlag, 2012, pp. 1–16.

[30] N. Lopes, N. Bjørner, P. Godefroid, and G. Varghese, “Network verifica-
tion in the light of program verification,” 2013.

[31] “Scott Shenker’s talk at Stanford,” 2013. [Online]. Available: http://
www.youtube.com/watch?v=WabdXYzCAOU. Accessed: 2013-09-12.

[32] H. Scholz, Concise History of Logic, vol. 94. New York, NY, USA:
Philosophical Library, 1961.

[33] M. Ben-Ari, Mathematical Logic for Computer Science. New York,
NY, USA: Springer-Verlag, 2012.

[34] A. R. Bradley and Z. Manna, The Calculus of Computation: Deci-
sion Procedures With Applications to Verification. Berlin, Germany:
Springer-Verlag, 2007.

[35] J. Y. Halpern et al., “On the unusual effectiveness of logic in computer
science,” Bull. Symbolic Logic, vol. 7, no. 2, pp. 213–236, Jan. 2001.

[36] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Rea-
soning About Systems. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[37] S. Russell, Artificial Intelligence: A Modern Approach, 2/E. Chennai,
India: Pearson Education India, 2003.

[38] K. J. Devlin, Logic and Information. Cambridge, U.K.: Cambridge
Univ. Press, 1995.

[39] J. Franco and J. Martin, “A history of satisfiability,” in Handbook
Satisfiability, vol. 185. Amsterdam, The Netherlands: IOS Press, 2009,
pp. 3–74.

[40] D. Makinson, Sets, Logic and Maths for Computing. London, U.K.:
Springer-Verlag, 2012.

[41] K. Devlin, Sets Functions, and Logic: An Introduction to Abstract Math-
ematics. Boca Raton, FL, USA: CRC Press, 2003.

[42] O. Strichman, Decision Procedures: An Algorithmic Point of View.
Berlin, Germany: Springer-Verlag, 2010.

[43] J. Harrison, “The HOL light theory of Euclidean space,” J. Autom.
Reason., vol. 50, no. 2, pp. 173–190, Feb. 2013.

[44] T. Mhamdi, O. Hasan, and S. Tahar, “Formalization of measure the-
ory and Lebesgue integration for probabilistic analysis in HOL,” Proc.
ACM Trans. Embedded Comput. Syst., vol. 12, no. 1, pp. 13:1–13:23,
Jan. 2013.

[45] C. A. R. Hoare, “An axiomatic basis for computer programming,” Com-
mun. ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.

[46] K. R. Apt, “Ten years of Hoare’s logic: A survey—Part I,” ACM Trans.
Programm. Lang. Syst., vol. 3, no. 4, pp. 431–483, Oct. 1981.

[47] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoret-
ical Computer Science, Volume B: Formal Models and Sematics (B).
Cambridge, MA, USA: MIT Press, 1990, pp. 995–1072.

[48] A. Pnueli, “The temporal logic of programs,” in Proc. IEEE 18th Annu.
Symp. Found. Comput. Sci., 1977, pp. 46–57.

[49] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifica-
tions,” ACM Trans. Programm. Lang. Syst., vol. 8, no. 2, pp. 244–263,
Apr. 1986.

[50] L. Lamport, “What good is temporal logic?” in Proc. IFIP Congr., 1983,
vol. 83, pp. 657–668.

[51] D. M. Gabbay, I. Hodkinson, M. Reynolds, and M. Finger, Tem-
poral Logic: Mathematical Foundations and Computational Aspects.
Oxford, U.K.: Clarendon, 2000.

[52] Z. Manna and A. Pnueli, Temporal Logic. Berlin, Germany: Springer-
Verlag, 1992.

[53] L. Lamport, “The temporal logic of actions,” ACM Trans. Programm.
Lang. Syst., vol. 16, no. 3, pp. 872–923, May 1994.

[54] D. Jackson, “Software abstractions: Logic,” in Language, and Analysis.
Cambridge, MA, USA: MIT Press, 2006.

[55] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in Tools
and Algorithms for the Construction and Analysis of Systems. Berlin,
Germany: Springer-Verlag, 2007, pp. 632–647.

[56] N. Feamster and H. Balakrishnan, “Towards a logic for wide-area Inter-
net routing,” in Proc. ACM SIGCOMM Comput. Commun. Rev., 2003,
vol. 33, pp. 289–300.

[57] D. Kozen, “Kleene algebra with tests,” ACM Trans. Programm. Lang.
Syst., vol. 19, no. 3, pp. 427–443, May 1997.

[58] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,” in
Proc. 34th Annu. ACM SIGPLAN Conf. Programm. Lang. Des. Imple-
mentation, Seattle, WA, USA, 2013, pp. 113–126.

[59] J. C. Baeten, T. Basten, T. Basten, and M. Reniers, Process Algebra:
Equational Theories of Communicating Processes, vol. 50. Cambridge,
U.K.: Cambridge Univ. Press, 2010.

[60] H. R. Nielson and F. Nielson, Semantics With Applications: An Appe-
tizer. London, U.K.: Springer-Verlag, 2007.

[61] P. Kazemian et al., “Real time network policy checking using header
space analysis,” in Proc. USENIX Symp. NSDI, 2013, pp. 99–112.

[62] N. Foster et al., “Frenetic: A network programming language,” ACM
SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, Sep. 2011.

[63] A. Guha, M. Reitblatt, and N. Foster, “Machine-verified network con-
trollers,” in Proc. PLDI, 2013, pp. 483–494.

[64] H. Abelson, G. Sussman, and J. Sussman, Structure and Interpre-
tation of Computer Programs. Cambridge, MA, USA: MIT Press,
1985.

[65] P. Alvaro et al., “Boom analytics: Exploring data-centric, declarative
programming for the cloud,” in Proc. 5th Eur. Conf. Comput. Syst., 2010,
pp. 223–236.

[66] S. P. Jones, “The future is parallel, the future of parallel is declarative,”
2012.

[67] J. M. Hellerstein, “The declarative imperative: Experiences and conjec-
tures in distributed logic,” ACM SIGMOD Rec., vol. 39, no. 1, pp. 5–19,
Mar. 2010.

[68] D. Maier and D. Warren, Computing With Logic. Redwood City, CA,
USA: Benjamin Cummings, 1988.

[69] J. Harrison, “Introduction to Functional Programming,” Univ. Cam-
bridge, Cambridge, U.K., 1997, Lecture Notes.

[70] D. S. Scott, “ λ-calculus: Then & now,” in Proc. ACM Turing Centenary
Celebration, 2012, pp. 1–33.

[71] R. Herken, The Universal Turing Machine: A Half-Century Survey,
vol. 2. New York, NY, USA: Springer-Verlag, 1995.

[72] Z. Luo, Computation and Reasoning: A Type Theory for Computer Sci-
ence. London, U.K.: Oxford Univ. Press, 1994.

[73] S. Thompson, Haskell: The Craft of Functional Programming, vol. 2.
Reading, MA, USA: Addison-Wesley, 1999.

[74] L. C. Paulson, ML for the Working Programmer. Cambridge, U.K.:
Cambridge Univ. Press, 1996.

[75] M. J. Gordon, R. Milner, and C. P. Wadsworth, Edinburgh LCF: A Mech-
anised Logic of Computation, vol. 78. New York, NY, USA: Springer-
Verlag, 1979.

[76] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines—A survey,” Proc. IEEE, vol. 84, no. 8, pp. 1090–1123,
Aug. 1996.

[77] G. J. Holzmann, “An improved protocol reachability analysis technique,”
Softw. Pract. Exp., vol. 18, no. 2, pp. 137–161, Feb. 1988.

[78] J. E. Hopcroft, Introduction to Automata Theory, Languages, and Com-
putation. Chennai, India: Pearson Education, 2008.

288 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

[79] R. Alur, “Timed automata,” in Computer Aided Verification. Berlin,
Germany: Springer-Verlag, 1999, pp. 8–22.

[80] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[81] J. Billington, M. Diaz, and G. Rozenberg, Application of Petri Nets to
Communication Networks: Advances in Petri Nets, vol. 1605. Berlin,
Germany: Springer-Verlag, 1999.

[82] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” Int. J.
Softw. Tools Technol. Transf., vol. 1, no. 1/2, pp. 134–152, Dec. 1997.

[83] C. Wang, G. D. Hachtel, and F. Somenzi, Abstraction Refinement for
Large Scale Model Checking. New York, NY, USA: Springer-Verlag,
2006.

[84] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[85] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary
decision diagrams,” ACM Comput. Surveys, vol. 24, no. 3, pp. 293–318,
Sep. 1992.

[86] H. R. Andersen, “An introduction to binary decision diagrams,” IT Univ.
Copenhagen, Copenhagen, Germany, 1997, Lecture Notes, Available
Online.

[87] D. Knuth, The Art of Computer Programming: Bitwise Tricks & Tech-
niques; Binary Decision Diagrams, Volume 4, Fascicle 1. Reading,
MA, USA: Addison-Wesley, 2009.

[88] R. E. Bryant, “Binary decision diagrams and beyond: Enabling tech-
nologies for formal verification,” in Proc. IEEE/ACM ICCAD Dig. Tech.
Papers, 1995, pp. 236–243.

[89] R. McGeer, “New results on BDD sizes and implications for verifi-
cation,” in Proc. Int. Workshop Logic Synthesis, Berkeley, CA, USA,
Jun. 2012. [Online]. Available: http://www.iwls.org/iwls2012/program.
html

[90] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” in Proc. IEEE ICNP, 2013, pp. 1–11.

[91] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Net-
work configuration in a box: Towards end-to-end verification of net-
work reachability and security,” in Proc. 17th IEEE ICNP, 2009,
pp. 123–132.

[92] G. J. Holzmann and M. H. Smith, “Automating software fea-
ture verification,” Bell Labs Tech. J., vol. 5, no. 2, pp. 72–87,
Apr.–Jun. 2000.

[93] T. Ball and S. K. Rajamani, “The SLAM toolkit,” in Computer Aided
Verification. Berlin, Germany: Springer-Verlag, 2001, pp. 260–264.

[94] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” in Proc. ACM SIGPLAN Notices,
2001, vol. 36, pp. 203–213.

[95] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, “Cryptograph-
ically verified implementations for TLS,” in Proc. 15th ACM Conf.
Comput. Commun. Security, 2008, pp. 459–468.

[96] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill, “CMC:
A pragmatic approach to model checking real code,” ACM SIGOPS
Operat. Syst. Rev., vol. 36, no. SI, pp. 75–88, 2002.

[97] P. Camurati and P. Prinetto, “Formal verification of hardware correct-
ness: Introduction and survey of current research,” Computer, vol. 21,
no. 7, pp. 8–19, Jul. 1988.

[98] A. Biere, Handbook of Satisfiability, vol. 185. Amsterdam,
The Netherlands: IOS Press, 2009.

[99] L. Bordeaux, Y. Hamadi, and L. Zhang, “Propositional satisfiability and
constraint programming: A comparative survey,” ACM Comput. Surveys,
vol. 38, no. 4, p. 12, 2006.

[100] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, Algorithms for the
Satisfiability (SAT) Problem. New York, NY, USA: Springer-Verlag,
1999.

[101] M. R. Prasad, A. Biere, and A. Gupta, “A survey of recent advances
in SAT-based formal verification,” Int. J. Softw. Tools Technol. Transf.,
vol. 7, no. 2, pp. 156–173, Apr. 2005.

[102] M. K. Ganai and A. Gupta, “SAT-based verification framework,” in SAT-
Based Scalable Formal Verification Solutions. New York, NY, USA:
Springer-Verlag, 2007, pp. 247–261.

[103] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Intro-
duction and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77,
Sep. 2011.

[104] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook Satisfiability, vol. 185. Amsterdam,
The Netherlands: IOS Press, 2009, pp. 825–885.

[105] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfiability
solvers,” in Handbook of Knowledge Representation. Foundations of
Artificial Intelligence, vol. 3. New York, NY, USA: Elsevier, 2008,
pp. 89–134.

[106] N. Een and N. Sörensson, “Minisat: A SAT solver with conflict-clause
minimization,” in Proc. SAT , 2005, vol. 5, pp. 1–2.

[107] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proc. 38th Annu. Design
Autom. Conf., 2001, pp. 530–535.

[108] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Berlin,
Germany: Springer-Verlag, 2008, pp. 337–340.

[109] C.-L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical Theorem
Proving, vol. 67. New York, NY, USA: Academic, 1973.

[110] M. Davis, G. Logemann, and D. Loveland, “A machine program
for theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397,
Jul. 1962.

[111] B. Brock, M. Kaufmann, and J. S. Moore, “ACL2 theorems about
commercial microprocessors,” in Formal Methods in Computer-Aided
Design. Berlin, Germany: Springer-Verlag, 1996, pp. 275–293.

[112] L. C. Paulson and M. Wenzel, Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Berlin, Germany: Springer-Verlag,
2002.

[113] M. J. Gordon, HOL: A Proof Generating System for Higher-Order Logic.
New York, NY, USA: Springer-Verlag, 1987.

[114] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verifi-
cation system,” in Automated DeductionCADE-11. Berlin, Germany:
Springer-Verlag, 1992, pp. 748–752.

[115] Y. Bertot and P. Castèran, Interactive Theorem Proving and Pro-
gram Development: Coq’Art: The Calculus of Inductive Constructions.
New York, NY, USA: Springer-Verlag, 2004.

[116] O. Grumberg and H. Veith, 25 Years of Model Checking: History,
Achievements, Perspectives, vol. 5000. Berlin, Germany: Springer-
Verlag, 2008.

[117] E. A. Emerson, “The beginning of model checking: A personal per-
spective,” in 25 Years of Model Checking. Berlin, Germany: Springer-
Verlag, 2008, pp. 27–45.

[118] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model
checking for real-time systems,” in Proc. 7th Annu. IEEE Symp. LICS,
1992, pp. 394–406.

[119] C. Baier et al., Principles of Model Checking. Cambridge, MA, USA:
MIT Press, 2008.

[120] E. M. Clarke, “The birth of model checking,” in 25 Years of Model
Checking. Berlin, Germany: Springer-Verlag, 2008, pp. 1–26.

[121] “Webpage on ‘Model Theory’ in Stanford’s Encyclopedia of Phi-
losophy,” [Online]. Available: http://plato.stanford.edu/entries/model-
theory/. Accessed: 2013-10-3.

[122] D. Marker, Model Theory: An Introduction. New York, NY, USA:
Springer-Verlag, 2002.

[123] K. L. McMillan, Symbolic Model Checking. New York, NY, USA:
Springer-Verlag, 1993.

[124] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen,
“Symbolic model checking,” in Computer Aided Verification. Berlin,
Germany: Springer-Verlag, 1996, pp. 419–422.

[125] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Inf. Comput.,
vol. 98, no. 2, pp. 142–170, Jun. 1992.

[126] K. L. McMillan, “The SMV system, symbolic model checking-an
approach,” Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.
CMU-CS-92-131, 1992.

[127] A. Cimatti et al., “NuSMV 2: An opensource tool for symbolic model
checking,” in Computer Aided Verification. Berlin, Germany: Springer-
Verlag, 2002, pp. 359–364.

[128] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic Model Checking
Without BDDs. Berlin, Germany: Springer-Verlag, 1999.

[129] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods Syst. Des., vol. 19, no. 1,
pp. 7–34, Jul. 2001.

[130] A. Armando, J. Mantovani, and L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT solvers,”
Int. J. Softw. Tools Technol. Transf., vol. 11, no. 1, pp. 69–83,
Jan. 2009.

[131] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and
Analysis of Systems. Berlin, Germany: Springer-Verlag, 2004, pp. 168–
176.

[132] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model checking:
An overview,” in Runtime Verification. Berlin, Germany: Springer-
Verlag, 2010, pp. 122–135.

[133] R. Fagin and J. Y. Halpern, “Reasoning about knowledge and probabil-
ity,” J. ACM, vol. 41, no. 2, pp. 340–367, Mar. 1994.

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 289

[134] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Modelcheck-
ing algorithms for continuous-time Markov chains,” IEEE Trans. Softw.
Eng., vol. 29, no. 6, pp. 524–541, Jun. 2003.

[135] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Formal Methods for Performance Evaluation. Berlin,
Germany: Springer-Verlag, 2007, pp. 220–270.

[136] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic
model checking for performance and reliability analysis,” ACM SIG-
METRICS Perform. Eval. Rev., vol. 36, no. 4, pp. 40–45, Mar. 2009.

[137] M. Kwiatkowska, G. Norman, and J. Sproston, Probabilistic Model
Checking of the IEEE 802.11 Wireless Local Area Network Protocol.
Berlin, Germany: Springer-Verlag, 2002.

[138] R. Alur, T. A. Henzinger, I. Austria, and M. Y. Vardi, “Theory in Practice
for System Design and Verification,” 2013.

[139] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surveys, vol. 41, no. 4, p. 21, Oct. 2009.

[140] K. Havelund and T. Pressburger, “Model checking Java programs using
Java Pathfinder,” Int. J. Softw. Tools Technol. Transf., vol. 2, no. 4,
pp. 366–381, Mar. 2000.

[141] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software veri-
fication with BLAST,” in Model Checking Software. Berlin, Germany:
Springer-Verlag, 2003, pp. 235–239.

[142] S. Agerholm and P. G. Larsen, “A lightweight approach to formal
methods,” in Applied Formal Methods—FM-Trends 98. London, U.K.:
Springer-Verlag, 1999, pp. 168–183.

[143] D. Jackson, “Lightweight formal methods,” in FME 2001: Formal Meth-
ods for Increasing Software Productivity. Berlin, Germany: Springer-
Verlag, 2001, pp. 1–1.

[144] J. Jacky, The Way of Z: Practical Programming With Formal Methods.
Cambridge, U.K.: Cambridge Univ. Press, 1996.

[145] D. Jackson, “Dependable software by design,” Sci. Amer., vol. 294, no. 6,
pp. 68–75, Jun. 2006.

[146] Y. Xie, M. Naik, B. Hackett, and A. Aiken, “Soundness and its role in
bug detection systems,” in Proc. Workshop Eval. Softw. Defect Detection
Tools, Chicago, IL, USA, 2005. [Online]. Available: http://www.cs.umd.
edu/~pugh/SoftwareDefectWorkshop05/BugWorkshop05.pdf

[147] D. Engler and M. Musuvathi, “Static analysis versus software
model checking for bug finding,” in Verification, Model Checking,
Abstract Interpretation. Berlin, Germany: Springer-Verlag, 2004,
pp. 191–210.

[148] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” in Proc. 2nd Conf. Symp. Netw. Syst. Design Imple-
mentation, 2005, vol. 2, pp. 43–56.

[149] A. Bessey et al., “A few billion lines of code later: Using static analysis
to find bugs in the real world,” Commun. ACM, vol. 53, no. 2, pp. 66–75,
Feb. 2010.

[150] K. R. M. Leino, “Extended static checking: A ten-year perspective,” in
Informatics. Berlin, Germany: Springer-Verlag, 2001, pp. 157–175.

[151] C. Flanagan et al., “Extended static checking for Java,” ACM Sigplan
Notices, vol. 37, no. 5, pp. 234–245, May 2002.

[152] C. Cadar and K. Sen, “Symbolic execution for software testing:
Three decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90,
Feb. 2013.

[153] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[154] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan Notices, vol. 42, no. 6,
pp. 89–100, Jun. 2007.

[155] R. E. Bryant, “Symbolic simulation—Techniques and applications,” in
Proc. 27th ACM/IEEE Design Autom. Conf., 1991, pp. 517–521.

[156] R. E. Bryant and C.-J. H. Seger, “Formal verification of digital circuits
using symbolic ternary system models,” in Computer-Aided Verification.
Berlin, Germany: Springer-Verlag, 1991, pp. 33–43.

[157] S. Narain, “Network configuration management via model finding,” in
Proc. LISA, 2005, vol. 5, pp. 15–15.

[158] R. W. Ritchey and P. Ammann, “Using model checking to analyze net-
work vulnerabilities,” in Proc. IEEE Symp. S P, 2000, pp. 156–165.

[159] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A nice
way to test openflow applications,” in Proc. NSDI, Apr. 2012, p. 10.

[160] E. Al-Shaer and S. Al-Haj, “Flowchecker: Configuration analysis and
verification of federated openflow infrastructures,” in Proc. 3rd ACM
Workshop Assurable Usable Security Config., 2010, pp. 37–44.

[161] H. Mai et al., “Debugging the data plane with anteater,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 290–301,
Aug. 2011.

[162] G. G. Xie et al., “On static reachability analysis of IP networks,” in Proc.
IEEE 24th Annu. Joint INFOCOM, 2005, vol. 3, pp. 2170–2183.

[163] A. Guha, M. Reitblatt, and N. Foster, “Formal foundations for software
defined networks,” presented at the Open Net Summit, Santa Clara, CA,
USA, 2013.

[164] O. Hasan and S. Tahar, “Performance analysis and functional verification
of the stop-and-wait protocol in HOL,” J. Autom. Reason., vol. 42, no. 1,
pp. 1–33, Jan. 2009.

[165] M. Elleuch, O. Hasan, S. Tahar, and M. Abid, “Formal analysis of a
scheduling algorithm for wireless sensor networks,” in Formal Engi-
neering Methods, vol. 6991, LNCS. Berlin, Germany: Springer-Verlag,
2011, pp. 388–403.

[166] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model checking
invariant security properties in openflow,” in Proc. IEEE ICC, 2013,
pp. 1974–1979.

[167] S. Zhang and S. Malik, “SAT based verification of network data
planes,” in Automated Technology for Verification and Analysis.
Zürich, Switzerland: Springer-Verlag, 2013, pp. 496–505.

[168] S. Zhang, A. Mahmoud, S. Malik, and S. Narain, “Verification and
synthesis of firewalls using SAT and QBF,” in Proc. 20th IEEE ICNP,
2012, pp. 1–6.

[169] B. Dutertre and L. De Moura, “The YICES SMT solver,” vol. 2, p. 2,
2006. [Online]. Available: http://yices.csl.sri.com/tool-paper.pdf

[170] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[171] P. Bulychev et al., “UPPAAL-SMC: Statistical model checking for
priced timed automata,” arXiv preprint arXiv:1207.1272, 2012.

[172] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The Margrave tool for firewall analysis,” in Proc. USENIX Large In-
stall. Syst. Admin. Conf., 2010, pp. 1–115.

[173] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. NSDI, Apr. 2012, p. 9.

[174] M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, and
M. Ouenzar, “Comparison of model checking tools for informa-
tion systems,” in Formal Methods and Software Engineering. Berlin,
Germany: Springer-Verlag, 2010, pp. 581–596.

[175] P. Zave, “Understanding SIP through model-checking,” in Principles,
Systems and Applications of IP Telecommunications. Services and Secu-
rity for Next Generation Networks. Berlin, Germany: Springer-Verlag,
2008, pp. 256–279.

[176] S. Malik, S. Khan, and S. Srinivasan, “Modeling and analysis of state-
of-the-art VM-based cloud management platforms,” IEEE Trans. Cloud
Comput., vol. 1, no. 1, pp. 1–1, Jan.–Jun. 2013.

[177] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat, “Life, death, the crit-
ical transition: Finding liveness bugs in systems code,” in Proc. NSDI,
2007, pp. 243–256.

[178] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM Conf.
Appl., Technol., Architect., Protocols for Comput. Commun., 2012,
pp. 323–334.

[179] L. Liu, O. Hasan, and S. Tahar, “Formal reasoning about finite-state
discrete-time Markov chains in HOL,” J. Comput. Sci. Technol., vol. 28,
no. 2, pp. 217–231, Mar. 2013.

[180] L. Liu, O. Hasan, and S. Tahar, “Formal analysis of memory contention
in a multiprocessor system,” in Formal Methods: Foundations and
Applications, vol. 8195, Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag, 2013, pp. 195–210.

[181] T. Mhamdi, O. Hasan, and S. Tahar, “Quantitative analysis of infor-
mation flow using theorem proving,” in Formal Methods and Software
Engineering, vol. 7635, Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag, 2012, pp. 119–134.

[182] P. Zave, Formal Methods and Networking: Former Success, Current
Failure 2012.

[183] X. Qie and S. Narain, “Using service grammar to diagnose BGP con-
figuration errors,” Sci. Comput. Programm., vol. 53, no. 2, pp. 125–141,
Nov. 2004.

[184] S. Bishop et al., “Engineering with logic: HOL specification and
symbolic-evaluation testing for TCP implementations,” ACM SIGPLAN
Notices, vol. 41, no. 1, pp. 55–66, Jan. 2006.

[185] S. Keshav, “Editor’s message: Modeling,” Comput. Commun. Rev.,
vol. 42, no. 3, p. 3, Jul. 2012.

[186] J. P. Bowen and M. G. Hinchey, “Ten commandments of formal meth-
ods,” Computer, vol. 28, no. 4, pp. 56–63, Apr. 1995.

[187] P. Zave, “A practical comparison of alloy and SPIN,” in Proc. IFIP
Working Group 2.3 Programm. Methodol., 2012, pp. 1–9.

[188] M. Handley, “Why the Internet only just works,” BT Technol. J., vol. 24,
no. 3, pp. 119–129, Jul. 2006.

[189] T. G. Griffin and J. L. Sobrinho, “Metarouting,” in Proc. ACM SIG-
COMM Comput. Commun. Rev., 2005, vol. 35, pp. 1–12.

290 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015

[190] T. Ridge, M. Norrish, and P. Sewell, “A rigorous approach to
networking: TCP, from implementation to protocol to service,” in
FM 2008: Formal Methods. Berlin, Germany: Springer-Verlag, 2008,
pp. 294–309.

[191] A. R. Khakpour and A. X. Liu, “Quantifying and querying network
reachability,” in Proc. IEEE 30th ICDCS, 2010, pp. 817–826.

[192] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 42, no. 4, pp. 467–472, Sep. 2012.

[193] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation: A
slice abstraction for software-defined networks,” in Proc. 1st Workshop
Hot Topics Softw. Defined Netw., 2012, pp. 79–84.

[194] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: A logic-based
network security analyzer,” in Proc. 14th USENIX Security Symp., 2005,
pp. 1–16.

[195] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy anomalies in
distributed firewalls,” in Proc. IEEE 23rd Annu. Joint Conf. INFOCOM,
2004, vol. 4, pp. 2605–2616.

[196] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi,
“Finding protocol manipulation attacks,” SIGCOMM–Comput. Com-
mun. Rev., vol. 41, no. 4, pp. 26–37, Aug. 2011.

[197] M. G. Gouda and A. X. Liu, “Structured firewall design,” Compu. Netw.,
vol. 51, no. 4, pp. 1106–1120, Mar. 2007.

[198] A. Wang et al., “Formally verifiable networking,” in Proc. HotNets ACM
SIGCOMM, 2009, pp. 1–42.

[199] A. Noyes, T. Warszawski, and N. Foster, “Toward synthesis of network
updates,” in Proc. Workshop SYNT , 2013, pp. 1–16.

[200] A. Wang, S. Moarref, U. Topcu, B. T. Loo, and A. Scedrov, “Automated
synthesis of reactive controllers for software-defined networks,” in Proc.
3rd Int. WRIPE, 2013, pp. 1–6.

[201] S. Budkowski and P. Dembinski, “An introduction to Estelle: A spec-
ification language for distributed systems,” Comput. Netw. ISDN Syst.,
vol. 14, no. 1, pp. 3–23, Mar. 1987.

[202] A. Fehnker, L. Van Hoesel, and A. Mader, “Modelling and verification of
the LMAC protocol for wireless sensor networks,” in Integrated Formal
Methods. Berlin, Germany: Springer-Verlag, 2007, pp. 253–272.

[203] P. Ballarini and A. Miller, “Model checking medium access control for
sensor networks,” in Proc. IEEE 2nd ISoLA, Verification Validation,
2006, pp. 255–262.

[204] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang, “A method-
ology for OSPF routing protocol verification,” in Proc. 12th Int. Conf.
ScalCom, Changzhou, China, 2012, pp. 1–5.

[205] F. De Renesse and A. Aghvami, “Formal verification of ad-hoc routing
protocols using SPIN model checker,” in Proc. 12th IEEE MELECON,
2004, vol. 3, pp. 1177–1182.

[206] A. Fehnker et al., “Automated analysis of AODV using UPPAAL,” in
Tools and Algorithms for the Construction and Analysis of Systems.
Berlin, Germany: Springer-Verlag, 2012, pp. 173–187.

[207] C. Xiong, T. Murata, and J. Leigh, “An approach for verifying routing
protocols in mobile ad hoc networks using Petri nets,” in Proc. IEEE
6th Circuits Syst. Symp. Emerging Technol.—Frontiers Mobile Wireless
Commun., 2004, vol. 2, pp. 537–540.

[208] P. Höfner and A. McIver, “Statistical model checking of wireless
mesh routing protocols,” in NASA Formal Methods. Berlin, Germany:
Springer-Verlag, 2013, pp. 322–336.

[209] J. A. Bergstra and J. W. Klop, “Verification of an alternating bit protocol
by means of process algebra protocol,” in Mathematical Methods of
Specification and Synthesis of Software Systems’85. Berlin, Germany:
Springer-Verlag, 1986, ser. Proceedings of the International Spring
School Wendisch-Rietz, GDR, April 22–26, 1985, pp. 9–23.

[210] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, “A note on re-
liable full-duplex transmission over half-duplex links,” Commun. ACM,
vol. 12, no. 5, pp. 260–261, May 1969.

[211] I. Suzuki, “Formal analysis of the alternating bit protocol by temporal
Petri nets,” IEEE Trans. Softw. Eng., vol. 16, no. 11, pp. 1273–1281,
Nov. 1990.

[212] J. Billington and G. E. Gallasch, How Stop and Wait Protocols Can Fail
Over the Internet. Berlin, Germany: Springer-Verlag, 2003.

[213] J. Billington and B. Han, “Modelling and analysing the func-
tional behaviour of TCPs connection management procedures,” Int.
J. Softw. Tools Technol. Transf., vol. 9, no. 3/4, pp. 269–304,
May 2007.

[214] O. Hasan and S. Tahar, “Performance analysis of ARQ protocols using a
theorem prover,” in Proc. IEEE ISPASS, 2008, pp. 85–94.

[215] S. Šimoňák, “Verification of communication protocols based on formal
methods integration,” Acta Polytech. Hungarica, vol. 9, no. 4, pp. 117–
128, 2012.

[216] A. Armando and L. Compagna, “Automatic sat-compilation of protocol
insecurity problems via reduction to planning,” in Formal Techniques
for Networked and Distributed Sytems—FORTE 2002. London, U.K.:
Springer-Verlag, 2002, pp. 210–225.

[217] F. Belina and D. Hogrefe, “The CCITT-specification and description
language SDL,” Comput. Netw. ISDN Syst., vol. 16, no. 4, pp. 311–341,
Mar. 1989.

[218] T. Bolognesi and E. Brinksma, “Introduction to the ISO specification
language LOTOS,” Comput. Netw. ISDN Syst., vol. 14, no. 1, pp. 25–59,
Mar. 1987.

[219] M. Karsten, S. Keshav, S. Prasad, and M. Beg, “An axiomatic basis
for communication,” ACM SIGCOMM Comput. Commun. Rev., vol. 37,
no. 4, pp. 217–228, Oct. 2007.

[220] B. T. Loo et al., “Declarative networking,” Commun. ACM, vol. 52,
no. 11, pp. 87–95, Nov. 2009.

[221] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of program-
ming network routers,” in Practical Aspects of Declarative Languages.
Berlin, Germany: Springer-Verlag, 2011, pp. 235–249.

[222] M. C. Yuang, “Survey of protocol verification techniques based on
finite state machine models,” in Proc. Comput. Netw. Symp., 1988,
pp. 164–172.

[223] G. J. Holzmann, Design and Validation of Computer Protocols.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1991.

[224] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent
systems in CESAR,” in Proc. Int. Symp. Programm., 1982, pp. 337–351.

[225] B. Blanchet, “Security protocol verification: Symbolic and computa-
tional models,” in Proc. 1st Int. Conf. POST , 2012, pp. 3–29.

[226] R. Lai, “A survey of communication protocol testing,” J. Syst. Softw.,
vol. 62, no. 1, pp. 21–46, May 2002.

[227] G. Cabodi, P. Camurati, and S. Quer, “Improved reachability analysis of
large finite state machines,” in Proc. IEEE/ACM Int. Conf. Computer-
Aided Design, 1997, pp. 354–360.

[228] R. Sherwood et al., “Carving research slices out of your production
networks with openflow,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 129–130, Jan. 2010.

[229] “The Frenetic Research Project,” [Online]. Available: http://www.
frenetic-lang.org. Accessed: 2013-09-12.

[230] “What’s Behind Network Downtime?—IBM,” [Online]. Available:
www-05.ibm.com/uk/juniper/pdf/200249.pdf. Accessed: 2013-09-30.

[231] N. Feamster, “Practical verification techniques for wide-area routing,”
ACM Sigcomm Comput. Commun. Rev., vol. 34, no. 1, pp. 87–92,
Jan. 2004.

[232] B. Heller et al., “Leveraging SDN layering to systematically trou-
bleshoot networks,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw., 2013, pp. 37–42.

[233] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proc. 1st
Workshop Hot Topics Softw. Defined Netw., 2012, pp. 55–60.

[234] N. A. Handigol, “Using packet histories to troubleshoot networks,”
Ph.D. dissertations, Stanford Univ., Stanford, CA, USA, 2013.

[235] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “Ofrewind:
Enabling record and replay troubleshooting for networks,” in Proc.
USENIX ATC, 2011, p. 29.

[236] R. C. Scott, A. Wundsam, K. Zarifis, and S. Shenker, “What, where,
when: software fault localization for SDN,” EECS Dept., Univ.
California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2012-178,
2012.

[237] C. Scott et al., “How did we get into this mess? Isolating fault-
inducing inputs to SDN control software,” EECS Dept., Univ. California,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2013-8, 2013.

[238] P. Reynolds et al., “PIP: Detecting the unexpected in distributed sys-
tems,” in Proc. NSDI, 2006, vol. 6, pp. 115–128.

[239] C. Scott et al., “Automatic troubleshooting for SDN control software,”
2013.

[240] G. Lowe, “Breaking and fixing the Needham–Schroeder public-key
protocol using FDR,” in Tools and Algorithms for the Construction
and Analysis of Systems. Berlin, Germany: Springer-Verlag, 1996,
pp. 147–166.

[241] B. Chess and J. West, Secure Programming With Static Analysis. Boca
Raton, FL, USA: Pearson Education, 2007.

[242] C. Ramakrishnan and R. Sekar, “Model-based analysis of configuration
vulnerabilities,” J. Comput. Security, vol. 10, no. 1/2, pp. 189–209, 2002.

[243] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-based evalua-
tion: From dependability to security,” IEEE Trans. Dependable Secure
Comput., vol. 1, no. 1, pp. 48–65, Jan.–Mar. 2004.

[244] D. Antoš, V. Rehak, and J. Korenek, “Hardware router’s lookup machine
and its formal verification,” in Proc. ICN, 2004, vol. 2, pp. 1–002.

QADIR AND HASAN: APPLYING FORMAL METHODS TO NETWORKING 291

[245] P. Curzon, The Formal Verification of the Fairisle ATM Switching Ele-
ment 1994.

[246] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz, “A formal approach
to the verification of networks on chip,” EURASIP J. Embedded Syst.,
vol. 2009, p. 2, 2009.

[247] T. van den Broek and J. Schmaltz, “Towards a formally verified network-
on-chip,” in Proc. FMCAD, 2009, pp. 184–187.

[248] J. S. Baras and G. Theodorakopoulos, “Path problems in networks,”
Synthesis Lect. Commun. Netw., vol. 3, no. 1, pp. 1–77, 2010.

[249] J. L. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, Oct. 2005.

[250] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. 1st ACM Work-
shop Res. Enterprise Netw., 2009, pp. 1–10.

[251] S. C. Johnson, “YACC: Yet another compiler-compiler,” Bell Lab.,
Murray Hill, NJ, USA, 1975, vol. 32.

[252] R. Pang, V. Paxson, R. Sommer, and L. Peterson, “binpac: A yacc for
writing application protocol parsers,” in Proc. 6th ACM SIGCOMM
Conf. Internet Meas., 2006, pp. 289–300.

[253] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan, “Declarative
routing: Extensible routing with declarative queries,” ACM SIGCOMM
Comput. Commun. Rev., vol. 35, no. 4, pp. 289–300, Oct. 2005.

[254] N. P. Katta, J. Rexford, and D. Walker, “Logic programming for
software-defined networks,” in Proc. Workshop Cross-Model Design
Validation (XLDI), 2012, pp. 1–3.

[255] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “A
balance of power: Expressive, analyzable controller programming,” in
Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw.,
2013, pp. 79–84.

[256] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky, “Declarative network
verification,” in Practical Aspects of Declarative Languages. Berlin,
Germany: Springer-Verlag, 2009, pp. 61–75.

[257] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-
level reactive network control,” in Proc. 1st Workshop Hot Topics Softw.
Defined Netw., 2012, pp. 43–48.

[258] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing
software defined networks,” in Proc. NSDI, Apr. 2013, pp. 1–14.

[259] Z. Wan and P. Hudak, “Functional reactive programming from first
principles,” ACM SIGPLAN Notices, vol. 35, no. 5, pp. 242–252,
May 2000.

[260] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows, robots,
functional reactive programming,” in Advanced Functional Program-
ming. Berlin, Germany: Springer-Verlag, 2003, pp. 159–187.

[261] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in Proc. 8th Int. Conf. Emerging Netw. Exp. Technol.,
2012, pp. 241–252.

[262] D. Sethi, S. Narayana, and S. Malik, “Abstractions for model checking
SDN controllers,” in Proc. Formal Methods Comput. Aided Design,
2013, pp. 145–148.

[263] M.-K. Shin, K.-H. Nam, M. Kang, and J.-Y. Choi, “Formal specification
and programming for SDN,” in Proc. IETF 84, 2012, pp. 1–19.

[264] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, “Verifiably-safe
software-defined networks for CPS,” in Proc. 2nd ACM Int. Conf. High
Confidence Netw. Syst., 2013, pp. 101–110.

[265] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” ACM SIGPLAN
Notices, vol. 47, no. 1, pp. 217–230, Jan. 2012.

[266] G. Stewart, “Computational verification of network programs in coq,”
Certified Programs and Proofs 2013.

Junaid Qadir received the B.S. degree in electrical
engineering from the University of Engineering and
Technology, Lahore, Pakistan, and the Ph.D. degree
in 2008 from the University of New South Wales,
Sydney, Australia. He is currently an Assistant Pro-
fessor at the School of Electrical Engineering and
Computer Sciences (SEECS), National University
of Sciences and Technology, Islamabad, Pakistan.
He leads the Cognet Lab, SEECS, which is focused
on solving algorithmic/networking problems in the
domain of cognitive radio networks, wireless net-

works, and software-defined networks. His research interests span the fields
of networking, algorithms, artificial intelligence, machine learning, and formal
methods.

Osman Hasan received the Ph.D. degree from Con-
cordia University, Montreal, QC, Canada. He is an
Assistant Professor at the School of Electrical Engi-
neering and Computer Sciences (SEECS), National
University of Sciences and Technology (NUST),
Islamabad, Pakistan. He is the Lab Director of
the System Analysis and Verification (SAVE) Lab,
SEECS. Prior to joining SEECS, NUST, he did his
post-doctoral fellowship from the Hardware Verifica-
tion Group, Concordia University. His main research
interests include formal verification, interactive the-

orem proving, and higher-order logic.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

