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Comparing Verification Performance of Kids and Adults for
Fingerprint, Palmprint, Hand-geometry and Digitprint Biometrics.

Andreas Uhl and Peter Wild

Abstract— With the large scale deployment of biometrics
for access control in private and public places, systems are
faced the challenge of processing a diverse range of people.
Most systems have been well evaluated for adults, however,
their application in schools, or for private door access control,
raises the question, whether there exists significant difference in
performance between age groups in general and between kids
and adults in particular. This paper targets an evaluation of the
impact of children as biometric users on recognition accuracy
for a series of hand-based modalities: Fingerprint, Palmprint,
Hand-geometry and Digitprint. Furthermore, we try to analyze
reasons for child-aging effects on performance at both feature
and instance level using our database of 301 kids and 86 adults.

I. INTRODUCTION

Biometric system performance based on child data is
not well reported in literature. Even for studies devoted
to assessing the impact of age on feature quality [1], [2],
the age group of people under 18 years has been largely
neglected so far. However, the use of biometric systems
for kids becomes more and more an important issue, since
many advantages of biometrics are even more pronounced for
the young generation [3]: (a) biometrics may neither easily
be lost without intention, nor forgotten like passwords; (b)
biometric systems enable large throughput for access control,
which is an important factor when applied in e.g. schools;
and (c) holding tokens or passwords does not necessarily
imply legal ownership, both theft and fraudulent passing of
tokens (such as entry tickets) or knowledge can be avoided.
Because of these and further reasons, biometric systems are
being increasingly adopted for applications where kids are at
least a part of the target user group. Fidelity of a biometric
system, which represents how closely samples from the same
individual match, might largely be affected by age. The
purpose of this work is to estimate and quantify differences
in performance of the observed modalities, when applied to
palmar hand images of children instead of adults.

The most frequently applied biometric modality according
to the Biometric Market Report conducted by the Interna-
tional Biometric Group is certainly the Fingerprint modality.
However, we do not restrict our survey to the impact of in-
fancy on recognition performance of fingerprints, but assess
several hand-based modalities because of the following rea-
sons: (a) recently the successful combination of fingerprints,
palmprints and hand geometry from single palmar images of
the human hand has been shown to increase recognition rates
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significantly [4], [5], an idea which is likely to be exploited
by future systems; and (b) Palmprint and Hand-geometry-
based modalities have itself a strong market presence.

By assessing the impact of child age on recognition accu-
racy, we extend previous work by Modi et al. [1], [2], who
compared different adult age groups in terms of fingerprint
quality - and therefore performance. According to [1], error
rates are typically increased in fingerprint systems, when
deployed for use by subjects from a senior (62 years or older)
age group. This primary study is extended in [2], showing,
that fingerprint image quality for four age groups (18-25, 26-
39, 40-62, and 62+) is significantly different and degrading
(most pronounced with the 62+ age group). A further result
in their work is the overall quality score degradation with
increasing variances as the age increases. As possible reasons
for the observed behaviour, decreased skin firmness (aging
due to loss of collagen) and medical sufferings (arthritis)
are given. Some of the acquisition problems, such as non-
uniform and irreproducible contact may be characteristic for
specific age groups, i.e. we expect a negative influence on
recognition accuracy not only by very old users as reported
in [2], but also for very young users. Of course, not all factors
may be reduced to age, such as e.g. injuries, disease, scars,
or genetical abnormalities as e.g. dermathopatia pigmentosa
causing a lack of fingerprints.

While quality metrics are certainly a good measure to
predict performance, we directly assess the impact on match-
ing scores in this work. We also focus on a comparison
of different hand regions with respect to their resistance
to aging affects for kids. Since this may also depend on
selected features (e.g. [6] show an increased impact of
quality degradation to minutiae-based matchers compared to
ridge-based fingerprint matchers), we also look at different
feature extraction algorithms related to the human hand as
a biometric trait. Main contributions of this work comprise:
(a) a comparison of verification performance of kids and
adults for Fingerprint, Palmprint, Hand-geometry and Digit-
print biometric modalities; (b) an assessment of performance
differences between different child age groups (3-10, 11-18);
(c) an intra-feature comparison of age impact on different
instances, i.e. regions of interest (thumb, index, middle, ring,
little finger and palm); and (d) an analysis of possible reasons
for performance differences and similarities.

This paper is structured as follows: the employed test
database of child and adult images is introduced in Sect.
II. Section III presents the employed biometric system in-
cluding an overview of implemented preprocessing methods
to extract and enhance single hand regions, as well as feature



TABLE I
DISTRIBUTION OF AGES 3 - 18 IN THE DATASET

Age 3 4 5 6 7 8 9 10
Users 1 0 10 10 19 26 37 42

Templates 1 0 16 17 35 45 66 69

Age 11 12 13 14 15 16 17 18
Users 49 51 16 18 15 6 0 1

Templates 84 72 29 29 25 9 0 1
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Fig. 1. Employed flatbed scanner solution with containment.

extraction and matching algorithms. Performance results
comparing kids and adults are discussed in Sect. IV. Finally,
Sect. V forms the conclusion.

II. DATABASE

We collected our database in two phases, starting with
a three-day capture of adult hands by volunteers (mainly
students) aged above 18 at our university. This dataset of 86
users and 443 templates has been reduced to 172 templates
by taking the first and last acquired template for each user in
order to conduct fair comparisons with respect to the number
of genuine comparisons and time span issues. Furthermore,
a separate small dataset of adults has been recorded for
training purposes (i.e. for the calculation of Eigenfingers and
Eigenpalms).

Data for the young age groups (18 or less years) were
collected on three days at an event called Uni:Hautnah,
where a public audience (mainly children at school age) gets
in touch with local research conducted at the University of
Salzburg by visiting research booths in a shopping center.
After single enrollment, users could re-visit the booth on the
same day at any time (a minimum time lapse of 30 minutes
was encouraged) for identification. A total number of 498
images of 301 young volunteers aged from 3 to 18 were
acquired, see Tab. I (some users did not re-visit the booth,
very few re-visited the booth more than once).

Both data series were recorded with the same optical
scanning device, a HP 3500c flatbed scanner recording a
216 × 297 millimeters image at 500 dpi. For image ac-
quisition, the scanner is contained in a box in order to
control environmental light, see Fig. 1. While this scanner
is able to acquire FBI-recommended 500 dpi resolution,
still acquisition time is rather high with this model, i.e. 95

seconds on average (this can be reduced with newer models
to, e.g., 43 sec. using HP G3010, see [5]).

III. SYSTEM

In order to evaluate the performance of different modali-
ties, we employed a multibiometric hand-based system able
to extract minutiae, hand geometry information, palmprint
and digitprint features from a single palmar scan of the
human hand [5]. Each modality is extracted from its region
of interest and matched independently of the other features
in the system.

A. Preprocessing

The employed system is peg-free and allows users to
choose an arbitrary placement of the hand on the sensor as
long as fingers do not touch each other. In order to obtain
rotational and translational invariance, several preprocessing
steps are applied, which will be outlined in this section. For
a more detailed description of employed algorithms, we refer
to [5], [7]. In a first step, the 4250 × 5850 input image is
segmented using Otsu’s thresholding and visible arm parts
are removed iteratively using best-ellipse fitting. For the
extraction of regions of interest for single features, additional
alignment steps are executed. The following regions of
interest are extracted: (a) high-resolution fingerprint images
(size depends on the actual finger length), (b) digitprint
images using best-ellipse fitting of individual fingers, (c)
palmprint image located by means of a palm coordinate
system centered in the valley between middle and ring
fingers.

B. Feature extraction and matching

We employ five different geometric and texture-based
algorithms (see also [7]):

• Minutiae: identifies minutiae points within a finger-axis-
aligned rectangle at finger tips using NIST’s minutiae
extraction software [8].

• Eigenpalms and Eigenfingers: projects each finger and
palm onto the eigenspace spanned by the most signifi-
cant principal components (see [9]).

• Geometry: identifies finger parts (proximal, intermediate
and distal phalanx) and keeps track of individual length
and width (see e.g. [10]).

• Shape: divides each finger into slices of equal height
and keeps track of the local finger width for each slice.

• Palmprint: extracts variances of 144 overlapping blocks
in the palmprint image after edge detection (method
introduced by Kumar et al. [11]).

Information of the corresponding features can be expected
to be largely independent, since employed algorithms operate
at:

• different resolutions: Shape, Minutiae, Palmprint and
Geometry require the full 500 dpi input signal, Eigen-
palms and Eigenfingers are extracted at 100 dpi.

• different parts of the hand: Minutiae operates on each
of the five finger tips, Eigenpalms and Palmprint extract



Fig. 2. Fingerprint of 5-year-old boy (left) vs. adult (right).

information from the textural palm area while Eigenfin-
gers, Shape and Geometry concentrate on fingers.

1) Minutiae: We extract position, orientation and qual-
ity of termination and bifurcation points in the outermost
structural part of the epidermis employing the NFIS2 [8]
extraction software mindtct on the enhanced fingerprint
image. While sensing regions may also be defined for other
parts of the human hand (see [4] for results on metacarpal
skin), we extract each fingerprint image as a w × h

3 (and
w × h

2 for the thumb, respectively) rectangular area aligned
with respect to the major axis of the finger circumscribed by
its w × h sized bounding box. Since flatbed optical images
exhibit low contrast between ridges and valleys, Contrast-
Limited Histogram Equalisation described in [12] has been
employed. Minutiae pairing and matching is executed us-
ing the NFIS2 bozorth3 matcher. Examples of extracted
minutiae from child and adult data are illustrated in Fig. 2.

2) Eigenpalms and Eigenfingers: Eigenpalms and Eigen-
fingers are derived from Eigenfaces introduced by Turk
and Pentland [13] and are based on the Karhunen-Loeve
transform converting image vectors of single fingers or palms
into a space spanned by the most significant components
calculated from a set of training images. After subtracting
the average image vector a for each type of training image
(256×256 palm images, 128×384 index, middle, ring fingers
and 128 × 256 thumb and little finger images) resulting in
normalised samples ni, the l = 25 eigenvectors uj with
largest eigenvalues are computed from covariance matrix C:

C =
1

x

x∑
i=1

nin
T
i = AAT ; (1)

For each image type feature extraction corresponds to (a)
extraction of finger or palm image n; (b) normalisation with
respect to the average image vector a and; (c) projection
onto the corresponding space spanned by uj and storage of
projection coefficients as feature components, see Fig. 3. The
corresponding matcher is based on Manhattan metric.

3) Geometry feature: This simple geometric feature esti-
mates the length of proximal, intermediate and distal phalanx
by searching the normalised finger within certain windows
for the vertical slice of height h = 30 with the lowest median
of pixel intensities using the local image histogram. The
feature vector is composed of the height of each found finger
part and average left and right width of the extracted finger,

Fig. 3. Eigenfingers and Eigenpalm of 11-year-old girl (left) vs. adult
(right).

Fig. 4. Geometry feature for 5-year-old boy (left) vs. adult (right).

see Fig. 4. Matching involves the calculation of a simple
distance metric.

4) Shape feature: The Shape feature targets hand geom-
etry measurements extracting local finger widths from the
hand contour, see Fig. 5. Each finger is rotated upright using
moments and cropped at the adjacent finger valley closer to
the tip. For each of three slices of equal height covering the
finger we determine the object’s average width with respect
to the y-monotone contour extracted with a left-right scan
method. Matching is based on Manhattan metric.

5) Palmprint feature: After localisation of the hand-axis-
aligned square palmprint region of size t (being the average
finger length) centered in P = (0,−1.2 · t) with respect
to an introduced hand coordinate system [7], edges are
detected using a 7 × 7-Prewitt filter, see Fig 6. Features
are extracted as variances within blocks of size 24 × 24

Fig. 5. Shape feature for 15-year-old child (left) vs. adult (right).



Fig. 6. Palmprint of 9-year-old girl (left) vs. adult (right).

TABLE II
COMPARISON OF KIDS AND ADULT AGE GROUPS WITH RESPECT TO EER

(MEASURED IN PERCENT)

Feature Age 3-10 Age 11-18 Age 19+
Thumb 2.8 2.4 2.3

IndexFinger 1.6 1.6 1.2
MiddleFinger 2.5 1.2 0.6
RingFinger 4.4 1.6 1.2
LittleFinger 11.2 4.5 5.5

EThumb 10.3 8.8 10.1
EIndexFinger 6.8 8.2 7.1

EMiddleFinger 4.5 4 2.3
ERingFinger 4.8 4 3.3
ELittleFinger 5.8 5.4 5.3

EPalm 10 7.2 8.1
Palmprint 5.6 5.3 3

Shape 3.6 2 3.7
Geometry 4 4.4 6.4

pixels within a downscaled and normalised 300×300 version
of the palm, as proposed in [11]. The Palmprint matcher
computes a normalised squared Euclidian distance between
feature vectors.

IV. EXPERIMENTS

In order to assess performance differences between dif-
ferent child age groups (ages 3-10, 11-18) and an adult age
group (19+), we compare verification accuracy by employing
the following performance indicators with respect to cross-
comparisons of templates within sets introduced in Sect. II:
(a) equal error rate (EER), defined as the error where false
match rate (FMR) and false non-match rate (FNMR) are
equal (see Tab. II); and (b) receiver operating characteristics
(ROC) plotting pairs of FMR and FNMR values for all
possible thresholds. In order to get a more diversified picture
of relative performance with respect to individual instances,
we do not combine different fingers in our evaluation, like
[2], but evaluate instances (fingers) and features individually.

A. Impact of age on Minutiae

Generally, age group 3-10 exhibits lower performance with
respect to EER compared to the groups 11-18 and 19+, see
Figs. 7-11. Performance differences between age 11-18 and
age 19+ are less pronounced, but still visible. Contributing

factors for a degradation in performance were observed
interaction issues, such as inconsistent finger placement, see
Fig. 2. As can also be seen in this figure, due to the smaller
fingerprint area in kids’ hand images, the number of found
minutiae is obviously reduced. When comparing differences
between single instances, we find the following:

• Thumb: almost no significant differences in perfor-
mance between all three age groups can be identified.
This is plausible, since it already has bad performance
compared to other fingers in age group 19+, accuracy
differences to other fingers becomes less visible for kids.

• Index: little differences exist, slightly better perfor-
mance of age 19+ especially for requested low FMR
is observed. Since young children early develop coor-
dination abilities of their index finger, we found rather
good placements on the sensor, which contributes to
better minutiae extraction and might explain, why there
is less visible difference between age groups.

• Middle: age group 3-10 shows significantly worse
performance compared to the other age groups. This
might be caused by the size of the fingerprint region
(depending on the finger length), which is critical for
good performance.

• Ring: we found clearly different performance for all
3 age groups, i.e. the performance of the Ring finger
minutiae feature increases up to adult age. A possible
explanation of this behaviour is the region size men-
tioned before.

• Little: unlike the other Minutiae instances, we observe
the best performance with age group 11-18 followed
by age group 19+ and age 3-10. While the worse
performance of age group 3-10 is easily explained
by the smallest fingerprint size and weak coordination
abilities as outlined before, the better performance of
the youth age 11-18 group might be caused by less
worn fingerprint texture compared to adults, who are
less using this finger and sometimes have difficulties to
achieve perfect sensor contact.

B. Impact of age on Eigenfinger and Eigenpalm

Age seems to have less impact on Eigenfingers as can
be seen from Figs. 12-16. For some instances, age group
19+ tends to deliver better results, which might generally
be caused by the employed model (all Eigenfingers were
calculated from a separate training set of people in this age
group).

• Thumb: considering the rather high error rate of the
Eigenfingers feature on the Thumb instance, perfor-
mance differences are not very pronounced with a slight
better behaviour of the age group 11-18. A possible
reason may be given as follows: this instance is highly
affected by different pose, while for young children the
model might be less accurate, adults exhibit higher intra
person variability.

• Index: ROC curves are quite close indicating no signif-
icant differences between age groups.
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Fig. 7. ROC of Thumb (Minutiae).
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Fig. 8. ROC of Index finger (Minutiae).
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Fig. 9. ROC of Middle finger (Minutiae).
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Fig. 10. ROC of Ring finger (Minutiae).
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Fig. 11. ROC of Little finger (Minutiae).
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Fig. 12. ROC of Thumb (Eigenfinger).
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Fig. 13. ROC of Index finger (Eigenfinger).
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Fig. 14. ROC of Middle finger (Eigenfinger).
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Fig. 15. ROC of Ring finger (Eigenfinger).
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Fig. 16. ROC of Little finger (Eigenfinger).
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Fig. 17. ROC of Palm (Eigenpalm).
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Fig. 18. ROC of Palm (Palmprint).
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Fig. 19. ROC of Geometry.
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Fig. 20. ROC of Shape.

• Middle: age group 19+ shows better performance than
other tested groups. As a reason for this behaviour we
again refer to the argument, that the employed model
was designed for this group. Middle fingers of children
are much shorter, thus not well represented.

• Ring: similar performance of all age groups.
• Little: very little differences between age groups.

For the Eigenpalm feature, we found age group 11-18
outperforming age 19+ and age 3-10. In contrast to fingers,
palm texture of persons belonging to age group 11-18 is
expected to perform well, since it exhibits less wrinkles and
creases, and thus lower intra-personal variance, at still being
well-represented in the employed model.

C. Impact of age on Palmprint

Again, age group 19+ performs clearly better than other
groups with the Palmprint feature. Employed edge detection
methods are sensitive to the smoothness of the edges to be
detected. Smaller palms cause smoother edges in the rescaled
image (all images are rescaled to a specific resolution), i.e.
the problem is an insufficient model.

D. Impact of age on Shape

Age group 11-18 is the best performing age group for
Shape, followed by age 3-10 and age 19+. However, this
is plausible since a rather high inter class variance for age
group 11-18 due to varying growth effects, and thus higher
accuracy can be expected.

E. Impact of age on Geometry

Age group 19+ performs worse than the other two age
groups for Geometry. A plausible reason may be explained
as follows: finger and segment length detection might be
affected by wrinkles. Longer fingers tend to have more
segmentation errors.

V. CONCLUSIONS AND FUTURE WORKS
We have examined verification performance of two dif-

ferent age groups of children (3-10,11-18) with respect to
Fingerprint, Eigenfinger, Palmprint and Digitprint biomet-
rics and compared results with an adult age group (19+).
Significantly worse performance of the youngest age group
(3-10) was observed for the Middle, Ring and Little fingers in
case of fingerprint (minutiae), and for the Palmprint feature.

An inverse behaviour (best performance of age group 3-10)
was reported for Geometry. For the youth group (age 11-
18), differences to the other two groups are less pronounced,
interestingly for Shape this feature clearly outperforms the
other features. Adults (19+) are generally best-represented,
with few exceptions. Furthermore, this work tried to identify
possible explanations for the observed behaviour by visual
inspection. Future topics of interest comprise the adaption of
employed models (e.g. Eigenfingers) to better fit child data.
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