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Abstract

The intricate structure of the iris constitutes a powerful biomet-
ric utilized by iris recognition algorithms to extract discrimina-
tive biometric templates. In order to provide a rapid compari-
son of biometric templates the vast majority of feature extrac-
tion methods are designed to generate binary biometric tem-
plates, applying the Hamming distance as (dis-)similarity met-
ric. Based on this concept several feature extraction techniques
have been proposed in literature, while potential improvements
in comparison procedures are commonly neglected. In this pa-
per trade-off costs between the computational performance and
recognition accuracy of iris-biometric comparators are inves-
tigated. Different comparison techniques of binary biometric
templates, and a composition of these, are proposed, where
emphasis is put on the trade-off between computational cost
and improvement of recognition accuracy, i.e. recognition ac-
curacy is improved at minimal additional computational cost.
Experimental results confirm the soundness of the proposed ap-
proaches.

Keywords: Biometrics, iris recognition, iris biometric com-
parators, bit-reliability, score-level fusion.

1 Introduction

Iris recognition is gaining popularity as a robust and reliable
biometric technology. The iris’s complex texture and its appar-
ent stability hold tremendous promise for applying iris recog-
nition in diverse application scenarios, such as border control,
forensic investigations, as well as cryptosystems. Several ex-
isting approaches to iris recognition achieve auspicious perfor-
mance, reporting recognition rates above 99% and equal er-
ror rates of less than 1% on diverse data sets [1]. Generic iris
recognition systems comprise four key components: image ac-
quisition, pre-processing, feature extraction, and template com-
parison. In the acquisition step the image of a subject’s eye is
captured (e.g. using a near-infrared camera). At pre-processing
the iris is detected and prepared for subsequent feature extrac-
tion, which commonly involves an un-wrapping of the iris to a
rectangular image, as well as contrast enhancement. Based on
the resulting iris texture, feature extraction is applied in order to
generate a biometric template. The majority of iris recognition
algorithms extract binary templates, i.e. iris-codes, applying
the Hamming distance to calculate (dis-)similarity scores, pro-

viding (1) a rapid authentication (even in identification mode)
and (2) a compact storage of biometric templates. Alignment
of biometric templates is achieved by a circular bit-shift of iris-
codes (to some degree), where the minimum obtained Ham-
ming distance corresponds to an optimal alignment. Figure
1 illustrates the common processing chain of an iris recogni-
tion algorithm. While most approaches to iris recognition al-
gorithms focus on extracting highly discriminative iris-codes,
potential improvements within comparators are frequently ne-
glected.

The contribution of this work is the proposal of different
improved iris-biometric comparators. In order to maintain a
fast comparison and compact storage of biometric templates,
emphasis is put on trade-off costs between computational per-
formance, storage cost, and recognition accuracy. The aim is to
gain performance with respect to recognition accuracy at neg-
ligible cost of computational performance and template stor-
age. By introducing two different comparison techniques, and
a composition of these, the accuracy of different iris recogni-
tion systems is increased on diverse databases, confirming the
soundness of the proposed approaches.

This paper is organized as follows: related work regarding
iris-biometric template comparison is briefly summarized (Sec-
tion 2). Subsequently, different iris-biometric comparators are
proposed and described in detail (Section 3). A comprehensive
experimental evaluation of both methods and a composition of
these is presented (Section 4). Finally, a conclusion is given
(Section 5).

2 Template Comparison in Iris Recognition

Focusing on iris recognition, a binary representation of biomet-
ric features offers two major advantages:

1. Rapid authentication (even in identification mode).
2. Compact storage of biometric templates.

Comparisons between binary biometric feature vectors are
commonly implemented by the simple Boolean exclusive-OR
operator (XOR) applied to a pair of binary biometric fea-
ture vectors, masked (AND’ed) by both of their correspond-
ing mask templates to prevent occlusions caused by eyelids or
eyelashes from influencing comparisons. The XOR operator &
detects disagreement between any corresponding pair of bits,
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Figure 1. Iris recognition: (a) image of eye (b) detection of
pupil and iris (c) unrolled iris texture (d) preprocessed iris tex-
ture (e) sample iris-code.

while the AND operator N ensures that the compared bits are
both deemed to have been uncorrupted by noise. The norms
(|| - | of the resulting bit vector and of the AND’ed mask
template are then measured in order to compute a fractional
Hamming distance (HD) as a measure of the (dis-)similarity
between pairs of binary feature vectors {codeA, codeB} and
the according mask bit vectors {maskA, maskB} [2]:

||(codeA & codeB) N maskA N maskB||

HD =
||maskA N maskBl||

ey

Apart from the fractional Hamming distance several other
techniques of how to compare iris-codes have been proposed.
Table 1 summarizes proposed iris-biometric comparator with
respect to computational cost, obtained accuracy and the num-
ber of required enrollment samples. To obtain a representa-
tive user-specific iris template during enrollment Davida et al.
[3] and Ziauddin and Dailey [15] analyze several iris-codes.
Davida et al. propose a majority decoding where the majority
of bits is assigned to according bit positions in order to reduce
Hamming distances between genuine iris-codes. Experimen-
tal results are omitted. Ziauddin and Dailey suggest to assign
weights to each bit position, defining the stability of bits at ac-
cording positions. Hollingsworth et al. [6] examined the con-
sistency of bits in iris-codes resulting from different parts of the
iris texture. The authors suggest to mask out so-called “fragile”
bits for each user, where these bits are detected from several
iris-code samples. In experimental results the authors achieve
a significant performance gain. Obviously, applying more than
one enrollment sample yields better recognition performance
[4], however, commercial applications usually require single
sample enrollment. Rathgeb and Uhl [9] have demonstrated
that a context-based comparison of binary iris-codes increases

Ref. Approach Comp. Cost | Accuracy | Enroll. Sam.
2] HD Tow moderate I

[3] | Majority Decoding Tow - >1

[15] Weighted HD medium high >1

[6] “Best Bits” medium high >1

[9] Context-based high high 1

[13] | Levenshtein Distance | medium high 1

Table 1. Proposed iris-biometric comparators.

recognition rates as well. Based on the idea that large con-
nected matching parts of iris-codes indicate genuine samples
and non-genuine samples tend to cause more randomized dis-
tortions according context-based match scores are extracted.
Uhl and Wild [13] have proposed the use of a constrained ver-
sion of the Levenshtein distance to tolerate e.g. segmentation
inaccuracies or non-linear deformations by employing inexact
matching. The technique was reported to be 4-5 times slower
than the Hamming distance, but lied in same complexity class
and increased recognition accuracy. Typically, minor improve-
ments do not lead to significant performance gain with respect
to accuracy. On the other hand, more complex comparison
techniques do not provide a rapid comparison of biometric tem-
plates, yielding a trade-off between computational effort and
recognition accuracy.

3 Reliable Bits and Shifting Variation

The proposed approaches build upon and extend previous
works [11, 12]. In order to outperform traditional comparison
techniques based on the fractional Hamming distance as well
as approaches proposed in literature comparators have to fulfill
three major requirements:

1. Minimize additional computational and storage cost.
2. Maximize performance gain with respect to accuracy.
3. Single sample enrollment.

Two different iris-biometric comparators which are referred
to as bit reliability-driven template comparison (BRD) and
shifting score fusion (SSF') are proposed:

3.1 Bit-Reliability Driven Template Comparison

At the time of enrollment an iris-code Iy of length N is
obtained from subject K and stored as biometric template,
Ix € {0,1}V. Additionally, a user-specific reliability mask,
denoted by Wi, of length N of weights, which should indi-
cate the reliability at each bit position of Ik is stored. Initially,
each value of W is set to 1, i.e. all bits of I reveal the same
reliability. The fractional Hamming distance HD g, between
two iris-codes I and Iy, is calculated by,

i]\il I @I

HD(Ik,1I1) = 2 N ()
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Figure 2. Bit-reliability driven comparison: weighted compar-
ison of iris-codes is performed based on user-specific weights.

and if HD(Ik,I;) is below a predefined threshold ¢,
HD(Ik,I) < t, successful authentication is yielded. Addi-
tionally, bit-masking can be applied to mask out bits of iris-
codes which originate from parts of the iris which are oc-
cluded by eye lids or eye lashes (bit-masks need to be ex-
tracted at each feature extraction). In order to assign a de-
gree of reliability to each bit position a weighted Hamming dis-
tance WHD(Ik, I}, Wk) is estimated. The mask W of the
claimed identity K is applied to weight the comparison pro-
cess by summing up weights at bit positions of mis-matching
bits where the result is divided by the sum of all weights,

Zil(IKi ®In) Wk

WHD(Ic, I, W) = SV e

3

Initially ||Wg|| is N since each bit of Wi is 1, ie.
WHD(Ik,I1,,Wk) is equivalent to HD(Ik,I;). In case of
successful authentication (WHD(I, I, Wg) < t), for any
Ik ;, the ith bit of the stored mask W of user K is updated,

if WHD(I, I, Wg) <°t,

Wi, otherwise.

Wi, = {Wm + (i@ L),
“
Upon each successful authentication weights of Wi are in-
cremented at each position ¢ where I; is equal to I, resulting
in the updated mask W.. An example for the proposed com-
parison procedure is illustrated in Figure 2. The predefined de-
cision threshold ¢ has to be set up according to the applied iris
recognition algorithm (in generic iris recognition algorithms
this threshold is settled around HD = 0.4). The threshold ¢
remains unaltered for all subjects independent of the number
of authentications. Since the weighted Hamming distance is
calculated in relation to stored reliability masks inter-class dis-
tances are not expected to decrease, in contrast intra-class dis-
tances are expected to decrease due to the fact that unreliable
bits are weighted less.

Extracted weights are user-specific and after several suc-
cessful authentications the mask of each subject adapts to the
iris-code extracted during enrollment. Less reliable parts of the
iris-code, which result from parts of the iris texture which suf-
fer from occlusions, tend to reveal low weights while others
exhibit high weights. If a user-specific weighted comparison is
performed recognition rates are expected to improve [15].
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Figure 3. Shifting score fusion comparison: the variation of the
minimum and the maximum HD is tracked.

3.2 Shifting Score Fusion

In traditional iris comparison [1], in order to obtain a compari-
son score indicating the (dis-)similarity between two iris-codes,
the minimum fractional Hamming distance over different bit
shifts is calculated. The main reason for shifting one of the
two paired iris-codes is to obtain a perfect alignment, i.e. to
tolerate a certain amount of relative rotation between the two
iris textures. It is a very natural approach to preserve the best
match only, i.e. the minimum Hamming distance value over
different shifts, because this value most likely corresponds to
the best alignment of two codes. The impact of bit shifts on
inter-class comparisons has been shown to just skew the distri-
bution to the left and reduce its mean [2]. However, there is no
evidence, that the other computed Hamming distance scores
of less perfect alignments can not contribute to an improved
recognition accuracy. Since calculating Hamming distances at
different shifting positions is obligatory when comparing a sin-
gle pair of iris-codes, it is interesting to look at the shifting
variation, i.e. difference between maximum and minimum ob-
tained Hamming distance scores. Let s(I,m) denote an iris-
code I shifted by m € M,, = {z € Z : |z| < n} bits and
HD(Ik,I;,) be the Hamming distance of two iris-codes, then
the shifting variation (SV') score for two iris-codes Ik, I, is
defined as:

SV(Ix,I1) = maz (HD(IK,s(IL,m)))—

me My,

min (HD(IK,S(IL,m))>. 5)
meM,,

Since multiplication and addition with constant values does
not alter the receiver operation characteristic (ROC) behavior
of SV scores, we perform some trivial operations to illustrate
an interesting connection between SV and sum rule fusion:

SSF(I, 1) = ;((1 — maz (HD(]K,S(Ibm)))) +

me My,

man
meM,,

(HD(IK,S(Ibm)))). (6)



Approach Comp. Cost Storage Cost | Enroll. Sam.
BRD Comp. WHD Mask W I
SSF Comp. max(HD) - 1
BSF WHD + max(HD)| Mask W 1

Table 2. Proposed iris-biometric comparators.

That is, shifting variation corresponds to a score level fu-
sion of the minimum (i.e. best) Hamming distance and one mi-
nus the maximum (i.e. worst) Hamming distance using the sum
rule [5]. By combining “best” and “worst” observed Hamming
distance scores the variation between these scores is tracked,
which represents a good indicator for genuine and impostor
classes. The basic operation mode of the proposed technique is
illustrated in Figure 3.

3.3 Composition of BRD and SSF Comparator

A composition of the bit reliability-driven comparator and the
shifting score fusion comparator can be applied by fusing the
minimum and one minus the maximum obtained weighted
Hamming distance according to user-specific reliability masks.
The composition of both comparators is defined as:

BSF(Ix, I, Wi) = ;((1— maz (WHD (I, s(Ir,m), WK)))

meM,,

+ min
meMy,

(WHD(IK,S(IL,m),WK))>. )

In case the estimated score is below a predefined thresh-
old ¢ the according reliability mask is updated where matching
bits are obtained from the shifting position of the minimum ob-
tained Hamming distance.

3.4 Discussion

Focusing on the bit reliability-driven comparator additional
computational cost is caused calculating the weighted Ham-
ming distance according to a distinct reliability mask. How-
ever, the weighted Hamming distance can be efficiently esti-
mated by successively adding values of reliability masks after
bit-wise XORing iris-codes, i.e. the ones of the vector result-
ing from XORing a pair of iris-codes point at the positions of
reliability mask values which need to be summed up. Further-
more, additional storage is required for reliability masks. In
case bit-masks are applied it is suggested to integrate these to
reliability masks by setting weights of stored reliability masks
to zero, if bits of a bit-mask indicate that iris-code bits result
from parts of the iris texture where some kind of distortions
were detected. Thus, the comparison procedure does not need
to be modified further and a bit-mask could be stored within a
reliability mask.

Applying the shifting score fusion comparator improve-
ment with respect to recognition accuracy comes at almost no
additional computational cost, since a calculation of the min-
imum Hamming distance already involves a calculation of all
Hamming distances in a specified range. The only required
additional operation is a tracking of the maximum observed
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Figure 4. Sample images of a single class of the CASIAv3-
Interval database (above) and the IITDv1 database (below).

Data Set Persons | Classes | Images | Resolution
CASIAv3-Interval 250 396 2639 | 320x280
NTDv1 224 448 2240 | 320x240
Total 474 844 4879 —

Table 3. Databases applied in Experimental Evaluations.

Hamming Distance (besides the minimum Hamming Distance)
and an application of the fusion rule outlined before. Further-
more, this comparator does not require the storage of any ad-
ditional information. Table 2 summarizes additional computa-
tional costs and additional storage costs of the proposed com-
parators. Both techniques, as well as a fusion of these, can be
applied in a single sample enrollment scenario.

4 Experimental Evaluation
4.1 Experimental Setup

Experiments are carried out on the CASIAv3-Interval iris
database! and on the IIT Delhi Iris Database v12, two public
available iris datasets. Both databases consist of good qual-
ity NIR illuminated indoor images, sample images of both
databases are shown in Figure 4. These datasets are fused in
order to obtain one comprehensive test set. The resulting test
set consists of over 800 classes as shown in Table 3, allowing a
comprehensive evaluation of the proposed systems.

At pre-processing, the pupil and the iris of a given sample
are detected by applying Canny edge detection and Hough cir-
cle detection. Having localized the pupil and iris boundaries,
the area between them is transformed to a normalized rectan-
gular texture of 512 x 64 pixel, according to the “rubbersheet”
approach by Daugman. In a final step, lighting across the tex-
ture is normalized using block-wise brightness estimation, see
Figure 1. In the feature extraction stage we employ custom
implementations of two different algorithms used to extract bi-
nary iris-codes, which have been evaluated in previous work
[10]. The first feature extraction method follows an implemen-
tation by Masek [8] in which filters obtained from a Log-Gabor
function are applied. The second one was proposed by Ma et
al. [7]. Within this algorithm a dyadic wavelet transform is
performed on signals obtained from texture stripes, and local

!CASIA TIris Image Database, URL: http://www.idealtest.org
2IIT Delhi Iris Database version 1.0, URL:
http://www4.comp.polyu.edu.hk/"csajaykr/IITD/Database_Iris.htm
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Figure 5. Score distributions for the algorithm of (a) Masek
and (b) Ma et al. applying the fractional Hamming distance.

(b)
Figure 7. ROC curves for bit reliability-driven comparator after
all, 3 and 1 comp. for the algo. of (a) Masek and (b) Ma et al..
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Figure 6. Score distributions for the algorithm of (a) Masek
and (b) Ma et al. applying the bit reliability-driven comparator.
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minima and maxima of two fixed subbands are encoded. For
both feature extraction methods the final code is 10240 bit.

4.2 Performance Evaluation

Recognition accuracy is evaluated in terms of relations be-
tween genuine acceptance rate (GAR) and false acceptance
rate (FAR), i.e. GARs at certain FARs. The GAR defines the
“proportion of verification transactions with truthful claims of
identity that are correctly confirmed”, and the FAR defines the
“proportion of verification transactions with wrongful claims of
identity that are incorrectly confirmed” (ISO/IEC FDIS 19795-
1). As score distributions overlap the equal error rate (EER)
of the system is defined. At each authentication 8 circular bit-
shifts are performed in each direction for both feature extrac-
tion methods and proposed comparators.

The intra-class and inter-class score distributions for the
original algorithm of Masek and Ma et al. are plotted in Fig-
ure 5. At a FAR of 0.01% the algorithm of Masek results in
a GAR of 96.35% and the algorithm of Ma et al. results in
a GAR of 98.52% applying the minimum obtained Hamming
distance as (dis-)similarity metric. The corresponding EERs
are 1.04% and 0.69%, respectively. Receiver operation charac-
teristic (ROC) curves are plotted in Figure 8.

Obtained score distributions for the bit reliability-driven
comparator are shown in Figure 6. In order to provide a mean-
ingful performance evaluation inter-class comparisons are per-
formed between each authentication sequence of genuine sam-
ples, i.e. the impact of reliability masks to inter-class compar-
isons is estimated. While the comparator does not significantly
affect the inter-class score distribution, intra-class distances are
further reduced achieving GARs at 0.01% FARs of 97.46%
and 98.76% for both algorithms. Compared to the original
score distributions of Figure 5 probability densities of intra-
class distributions increase only slightly at high comparison

(a) (b)
Figure 8. ROC curves for the algorithm of (a) Masek and (b)
Ma et al. applying min(HD), 1 — max(HD) and SSF.

scores (approximately 40%) and, on the other hand, increase
at low scores (approximately 5%). Figure 7 illustrates, how
both systems reveal improved performance rates of 0.91% and
0.62% EER after several successful authentication sequences.
It is observed, that convergence is hit relatively fast, i.e. up-
dating reliability masks may be stopped at a certain bit depth,
reducing memory consumption (e.g. 2 or 3 bits per position).

For the proposed shifting score fusion comparator, score
distributions are plotted in Figure 9. Accumulations of intra-
class distributions at rather low scores result from the fact that
the IITDv1 database is acquired under very favorable condi-
tions (see Figure 4). Thus, small Hamming distance values
(~ 15-25%) between pairs of genuine subjects are further re-
duced through high variations of the minimum and maximum
obtained scores, for both feature extraction methods. At a FAR
of 0.01% GARs of 97.34% and 98.89% are obtained for the
feature extraction of Masek and Ma et al., while the one minus
maximum Hamming distance scores yield unpractical recogni-
tion rates for both algorithms. The ROC curves for the mini-
mum Hamming distance, one minus the maximum Hamming
distance and the proposed fusion of both metrics are plotted
in Figure 8 where the shifting score fusion comparator obtains
EERs of 0.93% and 0.59%, respectively.

Recognition rates can be further improved, in case both
comparators are composed. Figure 10 shows the score distri-
bution for intra-class and inter-class comparisons in the com-
position scenario. GARs of 97.77% and 98.91% are obtained

Algorithm GAR (FAR=0.01) (%) | EER (%)
min(HD) 96.35 1.04
1 —max(HD) 18.16 16.91
Bit Reliability-driven 97.46 0.91
Sifting Score Fusion 97.34 0.93
BSF 97.7T7 0.86

Table 4. Experimental results for the algorithm of Masek.
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Figure 9. Score distributions for the algorithm of (a) Masek and
(b) Ma et al. applying the shifting score fusion comparator.
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Figure 10. Score distributions for the algorithm of (a) Masek
and (b) Ma et al. applying the fusion of BRD and SSF.
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at 0.01% FAR. The according ROC curves are plotted in Fig-
ure 11 achieving EERs of 0.86% and 0.58%. Obtained perfor-
mance rates for the entire experimental evaluation for the fea-
ture extraction method of Masek and Ma et al. are summarized
in Tables 4 and 5. The bit reliability-driven comparator and
the shifting score fusion comparator significantly improve the
recognition accuracy of both feature extraction methods. Com-
pared to the minimum Hamming distance which exhibits EERs
of 1.04% and 0.69% a composition of both comparators im-
proved the recognition accuracy to EERs of 0.86% and 0.58%.

5 Conclusion

In this work two different iris-biometric comparison tech-
niques, which are referred to as bit reliability-driven (BRD)
and shifting score fusion (SSF') comparator, are proposed. In
experiments, which are carried out on a comprehensive data
set, both approaches (and a composition of these) significantly
improve the recognition accuracy of diverse iris recognition
systems based on binary iris-codes. In contrast to enhanced
comparison techniques proposed in literature emphasis is put
on trade-off costs between computational performance (as well
as storage cost) and recognition accuracy. Minimizing this
trade-off both of the presented comparators increase recogni-
tion accuracy at almost no additional computational and stor-
age cost providing single sample enrollment.

Algorithm GAR (FAR=0.01) (%) | EER (%)
min(HD) 98.52 0.69
1 — max(HD) 94.31 2.25
Bit Reliability-driven 98.76 0.62
Sifting Score Fusion 98.89 0.59
BSF 98.91 0.58

Table 5. Experimental results for the algorithm of Ma et al.

o1 10

T
False Acceptance Rate (%)

01 1
False Acceptance Rate (%)

10

(@ (b)
Figure 11. ROC curves for min(HD), 1 — max(HD) and SSF
for the algorithm of (a) Masek and (b) Ma et al. applying the
BRD comparator.
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