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ABSTRACT 
 
While pseudo random number generators based on computational complexity are widely used for most of cryptographic 
applications and probabilistic simulations, the generation of true random numbers based on physical randomness is 
required to guarantee the advanced security of cryptographic systems. In this paper we present a method to exploit 
manufacturing variations, metastablity, and thermal noise in integrated circuits to generate random numbers. This 
metastability based physical random number generator provides a compact and low-power solution which can be 
fabricated using standard IC manufacturing processes. Test-chips were fabricated in TSMC 0.18um process and 
experimental results show that the generated random bits pass standard randomness tests successfully. The operation of 
the proposed scheme is robust against environmental changes since it can be re-calibrated to new environmental 
conditions such as temperature and power supply voltage.   
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1. INTRODUCTION 
 
Random number generators are important in a number of modelling and simulation applications. However, the most 
significant of which is their application in cryptography. The wide array of cryptographic applications employs secret 
keys that must be generated using a random process to ensure the security of the cryptographic system. Numerous 
cryptographic protocols also require random or pseudorandom inputs such as in the generation of digital signatures, or 
the generation of challenges in a challenge-response protocol [1]. Random numbers are also used in the selection of 
winning numbers for lotteries and the picking of premium bonds as in the United Kingdom. Cryptographic needs and 
large Monte Carlo computations continue to advance the development and research into truly random number generators. 
 
Random number generators can be broadly categorised as follows: 
 

1. Pseudorandom number generators 
2. Physical random number generators. 

 
The above types of generators are more specifically referred to as random bit generators when they are used to produce a 
stream of binary numbers. This stream can be subdivided into form blocks of random numbers of required block sizes 
such as 32 bits, 128 bits, or 1024 bits. 
 
Pseudorandom number generators are based on a computational algorithm that receives a random sequence of length l as 
an input and outputs a binary sequence of length lx >> which has the appearance of being random [1]. Such a generator 
employs the existence of a one-way function f that is based on the complexity of computations to make it irreversible. 
There are various algorithms for pseudorandom number generation (PRBG); ANSI X9.17 and FIPS 186 are examples of 
such generators [1,15]. The output of a PRBG is not random, but completely deterministic, while the number of possible 
output sequences is at most xl 22 / , of all possible bit sequences of length x.  
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While the output sequences of pseudo random number generators appear to be random, there is possibility for an 
adversary to predict random sequences by developing an equivalent algorithm or simply duplicating the generator 
hardware. To achieve unpredictable randomness, we can exploit the non-deterministic randomness in physical 
phenomena such as the decay of radioactive isotopes and laser scattering patterns through non-homogeneous materials to 
generate random numbers. Physical random number generators based on this physical randomness can be useful since 
there may not be an equivalent algorithm to simulate and predict the physical phenomena. However, exploiting this 
random source to produce a bit sequence that is both statistically independent and unbiased is not an effortless task. 
Random bit generators based on natural sources of randomness are exposed to environmental variations that can be 
sensitive to the generation of random sequences. Therefore, most physical random number generators should employ 
post processing units to compensate for the environmental variation and statistical defects of output sequences as shown 
in Figure 1. 
 

Random Bit 
Source

Post Processor 
(remove bias)x(i) z(i)

Random Bit Generator

Output

 
 

Figure 1: A random bit generator with a post processor 

1.1. Sources of Randomness 

Random sources can be constructed from dedicated hardware devices (Hardware based generators); such as oscillators 
with considerable jitter. A number of hardware random number generators can be found in [16], [17] and [18]. Random 
sources may also be extracted from software procedures using the platform on which the generator is implemented 
(Software based generators). For instance, event timing may provide sources for SWG, such as mouse clicks, key 
strokes, size of input and output buffers, or network access. 
 
Software based generators (SWG) are not based on very ideal sources, and it is difficult to properly evaluate and assess 
the robustness of the sources in regards to observations and possible manipulations. Thus software based generators use a 
combination of sources to obtain protection from one of its sources being manipulated. Raw bits generated from SWGs 
most often need to be heavily processed before a random sequence is obtained. 
 
Hardware based generators (HWG) have a number of advantages over software generators. Generally HWG can be 
implemented using common integrated technologies, they can be fabricated into tamper resistant devices to prevent an 
adversary from performing observations or manipulating the generator. Hardware based generators are also faster, and 
are capable of producing generators with high throughput. Commonly used sources for hardware generators are physical 
phenomena such as thermal noise, shot noise, avalanche noise, phase noise, cosmic radiation and atmospheric noise. 
 
In this article we present an assessment of the possibility of using metastability and thermal noise as a source for a 
hardware random number generator. The HWG presented in this paper is fully integrable using standard CMOS 
technology. 

1.2. Metastability 
When a signal violates a device’s signal setup and hold timing requirements of a latch, the output from the device 
becomes unstable [19]. In this case the observed output from a RS latch can be either high or low or it can even oscillate 
(see Figure 2). This widely undesirable phenomenon is known as metastability [22, 23] and circuit designers try to avoid 
this metastability as the final state of the device is unpredictable. A latch is such a bistable device that can enter into a 
metastable state. 
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Figure 2: RS Latch under a metastable condition: The oscillations of the latch output can be seen here on the simulation. The final 

stable output value of the latch varies with the operating temperature. This indicates the role played by thermal noise in determining 
the final output value of the latch. 

 
Figure 2 shows a HSPICE simulation of a metastable condition in a RS latch as the temperature is swept from -25 to 
125oC. The simulation results show that during the time period from 60 ns to 80 ns the latch is in a metastable condition 
where the output of the latch enters a state where it is neither a logic one nor a zero. Since the final output value can not 
be predicted due to thermal noise this metastability provides a source of randomness that can be used to construct a 
simple and efficient physical random number generator. There have been attempts to use this metastability as a source of 
randomness [25, 26, 27]. However, propagation delay variation by environmental changes such as temperature and 
power supply voltages makes the device difficult to stay in the metastable condition. In this paper, we propose an 
alternative method to keep the generator circuit in a metastable condition to produce random sequences in practical range 
of environmental changes. 

2. RANDOM NUMBER GENERATOR DESIGN 
 
A secret key extraction technique from the manufacturing variation in ICs [20,28] provides a suitable solution to create 
and keep the metastability on a recurring basis. The technique employs a PUF (Physically Unclonable Function) circuit 
which has an exponential number of delay path configurations determined by a challenge input. The observation of PUF 
results reveals that for certain challenges, the setup and hold time violation of an arbiter (D-latch) leads to unpredictable 
responses as the arbiter enters into a metastable condition. It is possible to identify and exploit the metastable challenges 
to obtain the metastability of the arbiter to produce random responses from the PUF. The transformed PUF will be 
referred to as PUF Random Number Generators (PUFRNGs) throughout this paper. 
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2.1. Circuit implementation 
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Figure 3:  PUFRNG based on an arbiter-based PUF circuit. 

 
The block diagram in Figure 3 depicts the structure of a PUFRNG circuit which is based on the arbiter-based PUF in 
[28]. The circuit accepts a n bit challenge b0, b2, b3, …, bn to form two delay paths in 2n different configurations. In order 
to generate a response bit, two delay paths are excited simultaneously to allow the transitions to race against each other. 
The arbiter block at the end of the delay paths determines which rising edge arrives first and sets its output to 0 or 1. The 
actual implementation of arbiter-based PUFs in [28] uses 64 bit challenges. For some challenges, the delays in the two 
paths are approximately identical. When two transitions violates the setup time of the arbiter, the arbiter becomes 
metastable and generates random responses. The details of the switch component are given in Figures 5. 
 
The switch component indicated in Figure 3 is implemented using a pair of two-to-one multiplexers (refer to Figure 4). 
Depending on the select bit Ci, the switch either allows the signal to travel straight through or swap the delay paths. The 
arbiter is constructed using a simple transparent latch with an active-low enable input. The arbiter favours the path to 
output zero since it is preset to zero and requires a setup time constraint to switch to a logic one. Fixing a small number 
of most significant challenge bits can compensate for this skew by effectively lengthen one delay path. The layout was 
carefully done to ensure that both paths are symmetrical and arbiter responses are not biased to 0 or 1. 
 

 
 

Figure 4: Switch component implemented using two-to-one multiplexers to swap two delay paths. 
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The chip used in testing was built in TSMC’s 0.18 µm, single poly, 6-level metal process with standard cells. The chip 
contains eight sets of the arbiter-based PUF circuits capable of generating an 8 bit response for a given challenge and a 
JTAG-like serial interface for communication. The total area of the eight PUF circuits is 1212 µm x 1212 µm and the 
chip can be operated 100 MHz. 

2.2. Design Analysis 
The PUFRNG exploits the metastability of D-latch outputs cased by approximate identical timing of data and gate 
inputs. The output of the latch is largely determined by thermal noise. Figure 5 shows the probability density of the 
random variable k, which is the number of 1s in 200 repeated measurements for a given random challenge. In the middle 
of the density function, there exist the challenges whose responses consist of approximately 50% logic ones and 50% 
logic zeros. Within a temperature tolerance of ±5oC from the operating temperature, the responses from these challenges 
can be used to generate a random bit stream. 
 
The responses from the PUFRNG are sensitive to environmental conditions such as temperature and power supply 
voltage.  In addition fabrication process variations will also influence the responses obtained from one PUFRNG to 
another for the same challenge. A challenge that generates an unreliable responses may not generate an unreliable 
responses if environmental conditions change beyond the tolerance level of 5oC from the original temperature. Hence, 
each time a PUF is used as a source of randomness, a number of random challenges must be tested to select a challenge 
that produces unstable responses. 
 
From experimental results, approximately 10 challenges out of 10,000 challenges (0.1%) produce unstable responses in a 
given environmental condition. Based on the performance of PUF circuits, it takes 0.5 seconds to test the randomness of 
10,000 challenges by 1000 repeated measurements [20]. Hence it is possible to complete the initialization of a PUF 
random number generator within a second. 
 
The input and output functions of the generator are responsible for most of the power consumption in the PUFRNG and 
the power consumption of the generator core is relatively small. The total power consumption of a PUFRNG circuit is 
about 130 µW in out implementation.  
 

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

Density of challenges

T
he

 n
um

be
r 

of
 o

ne
s 

ou
t o

f 5
00

 r
ep

et
iti

ve
 m

ea
su

re
m

en
ts

Challenges that produce unstable responses 

 
Figure 5: The density function of the random variable k, where k is the number of 1’s out of 200 repetitive measurements [20]. 
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2.3. Increasing the dynamic range of operation 

The generator is sensitive to the power supply voltage and the temperature of the surrounding environment [20]. 
However problems caused by operational voltage changes can be minimised by the fabrication of a voltage regulator on 
the PUFRNG. In the testing stage of the PUFRNG a simple mechanism was used to allow the generator to function 
correctly over a temperature range of 80oC by using eight different PUFRNG circuits each calibrated at intervals of 
approximately 10oC, in view of the fact that each PUFRNG provided a temperature tolerance of ±5oC. The experiments 
were run in an oven with thermostat control to provide cyclic temperature changes for the experimental collection of the 
random bit stream. The output bit stream was a result of an exclusive OR operation on each of the individual bit streams 
(as indicated in Figure 6). 
 

PUFRNG 1

PUFRNG 2

PUFRNG 3

PUFRNG 4

PUFRNG 5

PUFRNG 6

PUFRNG 7

PUFRNG 8

RESULT

 
 

Figure 6: Using eight PUFRNGs to compensate for variation in operating temperature 
 
The following section will examine the nature of the system used for generating random numbers and the randomness of 
generated bit sequence to evaluate the quality of randomness from the PUFRNG. 

3. THE EVALUATION OF THE GENERATOR 
In a true random number generator the probability of producing either a 1 or a 0 should be ½ where each bit is generated 
independently of any other bit in the bit stream. Hence it should not be possible to predict the value of a given bit with a 
probability greater than ½. These conditions form the framework of an ideal random number generator. 

3.1. Chaos Theory (Dynamic system analysis) 

It is possible to use chaos theory, a division of nonlinear system analysis, to analyse the complex system used for random 
number generation to investigate if the system exhibits behaviour that is neither random nor periodic. The chaos theory 
allows the characterization of the PUFRNG as a random, probabilistic (or chaotic) and deterministic systems. 
Furthermore the analysis can be used to discover underlying behaviour patterns, system information and dynamical 
system models that may render the generator deterministic without uncovering the laws and equations governing the 
dynamics of a given system.  
 
A technique for the analysis of chaotic data is based on Taken’s Embedding Theorem [32], which allows the 
reconstruction of the phase space of the system dynamics. The reconstruction of the phase space can be performed from a 
finite time series of observed random numbers (observation of a single variable). This method relies on the appropriate 
selection of the delay time and the embedding dimension. 
 
A phase space is a collection of possible states of a dynamical system. The elements of a phase space represent possible 
states of the system [34]. Implicit in the notion of phase space is that a particular state in phase space specifies the system 
completely; it is all the information needed to have complete knowledge of the immediate future of the system. Thus the 
phase space of the planar pendulum is two-dimensional, consisting of the position (angle) and velocity. According to 
Newton, specification of these two variables uniquely determines the subsequent motion of the pendulum. 
 
Chaotic systems are deterministic and the exact system state can be expressed as  
 

( )))((),...,(),(),(()( τττ 12 −−−−= kttttt xxxxX . (1) 
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where t is a scalar index for the data series and τ is the interval of observations [35]. Let F: Uk � Uk be the nonlinear 
function governing the system. Then the future state of the system at time t+τ can be determined, such that 
 

( ) )()()( tptt +=+ XFx τ  (2) 
 
There is relatively small, zero mean, probabilistic component p(t) added since real world systems are not completely 
deterministic. This term accounts for the random effects.  

3.1.1. Attractors 
An attractor is simply a state into which a system settles (thus dissipation is needed). Hence over time a dissipative 
dynamical system may settle into an attractor. The attractor may be a point, a closed path or a complex object on a phase 
space plot. The attractor is a geometric representation of Equation 1 for some large value of t where the effects of the 
transient have dissipated. 
 
However a formal definition of an attractor is a set in the phase space that has a neighbourhood in which every point 
stays nearby and approaches the attractor as time tends to infinity. For the general chaotic system given by Equations 2, 
the k-dimensional system will have a non-intersecting attractor with a bounded path of infinite length. However this 
attractor will be encapsulated in a finite k-dimensional volume. 

3.1.2. Phase space reconstruction 

Employing Taken’s theorem to reconstruct the phase space requires the determination of the delay τ and the embedding 
dimension d.  Choice of τ should provide low correlations between adjacent elements in the embedded vector so that the 
original data series is not reiterated. The popular average mutual information algorithms can be used to evaluate the lagτ. 
Hence the first minimum of I(τ) (average mutual information function) which measures the average amount of 
information (bits) shared by two measurements is used as the lag τ. 
 
Furthermore, the correct dimension d unfolds the attractor from the time series. The false nearest neighbour [35] 
algorithm can be used to evaluate the embedding dimension d. However [31] proposed a method for determining a good 
embedding dimension using the ideas behind false nearest neighbour algorithm. In [31] Cao proposed two metrics, E1(d) 
and E2(d). Here, E1(d) is used to discover a good embedding dimension, while E2(d) is used to determine whether the 
original data series is random. A suitable embedding dimension is given by the value of d where E1(d) stops changing. 
While random signals will exhibit a E2(d) that is close to unity for all values of d, while chaotic signal will have E2(d) 
values that is less than unity for small values of dimension d. 

3.2. Statistical testing 

Randomness is a property that can be characterized and described in terms of probability. The outcome of statistical tests 
applied to a random number sequence can be thus described in probabilistic terms. There is an array of statistical tests 
available to test the randomness of random and pseudorandom number generators. Even though these statistical tests do 
not provide definite results, it is possible to interpret these results with care and caution to determine the randomness of a 
generator. The general rule of thumb is “more tests the better”. The generator bit stream was subjected to a battery of 
statistical tests for randomness used by The National Institute of Standard and Technology (NIST; an agency of the U.S. 
Commerce Department’s Technology Administration [29]). A more detailed discussion of the tests and their 
interpretations can be found in [1]. It is however important to note that the test suite is suitable for identifying “deviations 
of binary sequences” from randomness. However factors contributing to these deviations are numerous and it is possible 
to expect a certain number of failures from a particular generator. 

3.2.1. Hypothesis testing 

Each NIST statistical test assesses a binary sequence to establish whether there is significant evidence to suggest that the 
null hypothesis (H0) should be rejected in favour of the alternative hypothesis. Here the null hypothesis H0 is that the 
sequence being tested is random, while the alternative hypothesis H1, is that the sequence being tested is not random. 
Thus for each applied test a decision is made to accept or reject the null hypothesis based on statistical evidence. 
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A statistical hypothesis, commonly denoted as H0 is an assertion about a distribution of one or more random variables 
[21]. This assertion can then be tested using a method based on the observations made on the random variables. The test 
can provide evidence to support or reject the hypothesis H0.  
 
Each test statistic obtained for each individual test is used to calculate a P-value that indicates the strength of the 
evidence against the null hypothesis. Thus for each test, the P-value is the probability that a perfect random number 
generator would have produced a sequence that is less random than the tested sequence, given the particular non-
randomness being gauged by that particular test. Hence to reject the null hypothesis Ho (that is fail a test) at a 95% 
confidence level would require a P-value < 0.05. The possible outcomes of the conclusions from a statistical test are 
outlined in Table 1. It is clear from Table 1 that P-value only asses the relative incidence of Type I errors. Hence, it is 
important to note here that the test only provides a measure of the strength of the evidence provided by the data against 
the hypothesis and that the deduction derived from the test is not irrefutable but rather probabilistic. 
  

Test Result Decision Correct 
Result Accept H0 Reject H0 

H0 True Correct Decision Type I error 
H1 True Type II error Correct 

 
Table 1: Matrix of possible conclusion derived from a statistical test’s hypothesis testing. 

3.2.2. Statistical Test Suite 
The statistical test suite employed (as detailed in [2]) is briefly described in Table 2. 
 

No Test Description 
1 The Frequency 

Test 
The test aims to determine whether the proportion of 1’s and 0’s in a given sequence is 
that expected from for a random sequence. [1, 2] 

2 Frequency Block 
Test 

Similar to the above test but the focus is now the M-bit blocks within a given sequence. 
The block size used was 128 bits [2] 

3 The Runs Test The purpose of the test is to determine whether the number of runs (either 0’s or 1’s) of 
various lengths in the given sequence is as expected from a random sequence [1,2,3, 4] 

4 Test for the 
Longest Run of 
Once in a Block 

The test examines if the length of the longest run of ones within the given sequence is 
consistent with the length of the longest run of ones that would be expected in a random 
sequence [1, 2, 3, 4, 5]. 

5 The Binary Matrix 
Rank Test 

The purpose of the test is to discover linear dependence among fixed length substrings of 
the original sequence [2, 6, 7]. 

6 The Discrete 
Fourier Transform 
Test 

This test is used to examine the peak heights in the Discrete Fourier Transform of a given 
sequence. The test is able to depict periodic features in the tested sequence by examining 
the number of peaks exceeding the 95% peak height threshold value. The number of 
peaks exceeding this threshold peak height is less than 5% for a random sequence [2, 8]. 

7  The Non-
overlapping 
Template 
Matching Test 

This test is designed to search for the number of occurrences of pre-specified bit patterns. 
The test is aimed at detecting generators that produce large occurrences of a certain 
aperiodic bit pattern. The size of the template used was 9 bits in length, which resulted in 
a total of 148 templates being applied to each of the sequences. The results from this test 
are similar to having applied 148 different tests on the sequence of numbers provided [2]. 

8 The Overlapping 
Template 
Matching Test 

Similar to the above test, with the exception that once a pattern is found the search 
window is now advanced only one bit instead of advancing the window to the end of the 
pattern as performed in the non-overlapping template matching test [2, 9]. 

9 The Serial Test The purpose of this test is to establish whether 2m m-bit overlapping patterns occurs as 
many times as expected from a random sequence. In a random sequence every m bit 
pattern has the same probability of appearing as every other m-bit pattern [1, 2, 10]. 

10 The Approximate 
Entropy Test 

The purpose of the entropy test is to compare the frequency of overlapping bit patterns of 
two consecutive lengths of m and m+1 bits with that expected from a random sequence 
[2, 11, 12, 13]. 
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11 The Cumulative 
Sums Test 

The Cumulative Sums (Cusum) test determines whether the cumulative sum of partial 
sequences occurring in a given bit string is that expected from a random sequence. The 
cumulative sum may be considered as a random walk and thus for a random sequence the 
deviation from the random walk should be near zero.  This test is performed once going 
forward in the sequence and then going in the reverse direction [2, 5]. 

 
Table 2: Description of the tests used from the NIST test suite 

4. ANALYSIS AND INTERPRETATION OF THE TEST RESULTS 
Fabricated PUF generators were mounted on a circuit board and interfaced to a PC using a JTAG interface. Each PUF 
generator was initialised using 10,000 random challenges to select challenges that produced an unstable responses at 
different temperatures (10, 20, 30, 40, 50, 55, 60, 70 ◦C). The challenge was repeatedly used to obtain 4.5 million random 
bits after post processing of the output sequence. 

4.1. Post Processing 

In order to make the stream of bits emanating from the PUFRNG uniformly distributed, it was necessary to pass the bits 
through an entropy distillation process [1]. Post processing is required to remove bias from an original bit stream at the 
expense of reducing the overall size of the original bit stream. The method adopted is detailed in [1] and is that of von 
Neumann [33], and it involves the parsing of bits generated from the random number generator in pairs, and then 
transforming them according to the scheme outlined in Table 3. This method resulted in a typical reduction in the 
original PUFRNG bit stream in the range of 65-75%. However this is only a general estimate as it is a variable parameter 
that tends to depend on the environmental conditions such at the device operating temperature. 
 
 
 
 
 
 

 
Table 3: Post processing transformations. The original bit stream from the PUFRNG is obtained as non-overlapping pairs (input bits). 

The corresponding new output is then depicted in the ‘output bit’ column, where ‘Ignore’ System Analysis 

4.2. System Analysis 
 

 
Figure 7 : Plot of E2(d) metric for the series of 32 bit random numbers 
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Figure 8: Mutual information function for the random data 

 
The Discrete Fourier Transform spectrum in Figure 11 shows a broadband spectrum. Both chaotic and random systems 
will exhibit such a spectrum. However Section 3 described the features of a chaotic system and the reconstruction of a 
phase space. This section shows the results from the analysis. All the calculations depicted here were performed using 

Input bits Output bit (transformation) 
10 1 
01 0 
11 Ignore (indicates that nothing is appended to the post processed bit stream) 
00 Ignore ( indicates that nothing is appended to the post processed bit stream ) 
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the TSTool add-on program for Matlab.  The bit stream subdivided into 32 bit blocks provided the random numbers for 
the following analysis.  
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Figure 9: 2-D phase space plot of the random numbers using a delay of one estimated from the average mutual information algorithm. 

The plot does not show an attractor, however strange attractor of a square shape is only an artefact of the use of 32 bit blocks to 
generate random numbers. 
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Figure 10: 3-D phase space plot of the random numbers using a delay variation of one estimated from the average mutual information 
algorithm. Again the plot does not depict an attractor; however the space of the plot is limited by the use of 32 bits of the random bit 

stream to generate data. 
 
Cao’s [31] E2(d) metric applied to identify whether the number sequence is random is shown in Figure 7. Here, E2(d) 
remains at unity for all values of d, suggesting a random system and hence the system is not chaotic. Nevertheless, this 
can be shown graphically for a two and a three dimensional phase space reconstruction by using the calculated lag. 
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Figure 8 shows the average mutual information plot, I(τ) to support the computation of lag time. The first minimum of 
the display is at lag one. This will be used as the delay coordinate in the phase space reconstruction. Figure 9 and Figure 
10 depicts the two dimensional and three dimensional phase space reconstruction.  

4.3. Statistical Testing 

4.3.1. Parameters used in the test suite 
Table 4 provides the test suite specific parameters for all the parameterised tests used during the analysis. 
 

No Test Parameter value 
2 Frequency Block Test The block size used was 128 bits. 
7 The Non-overlapping Template Matching Test Template length used was 9 bits. 
8 The Overlapping Template Matching Test Template length used was 9 bits. 
9 The Serial Test Block length used was 16 bits. 
10 The Approximate Entropy Test Block length used was 10 bits. 

 
Table 4: Test parameters used in the NIST test suite 

4.3.2. Evaluation of test results 

The guidelines in [2] can be used to interpret the test results. Details of these guidelines can be obtained from [2] and [1]. 
Table 5 gives a summary of the number of sequences that passed each of the tests performed using a P-value of 0.01 
(that is α = 0.01) as the significance level to reject or accept the null hypothesis. A pass in a test indicates that there is no 
significant evidence to reject the null hypothesis and thus the sequence can be considered to be random. 
 

Number Test Description 
1 The Frequency Tests PASS 
2 Frequency Block Test PASS 
3 The Runs Test PASS 
4 Test for the Longest-Run-of-Once in a Block PASS 
5 The Binary Matrix Rank Test PASS 
6 The Discrete Fourier Transform Test PASS 
7  The Non-overlapping Template Matching  PASS (except four templates failed) 
8 The Overlapping Template Matching Test PASS 
9 The Serial Test PASS  
10 The Approximate Entropy Test PASS 
11 The Cumulative Sums Test PASS  

 
Table 5: Test result summary  

 
Figure 11 shows the Discrete Fourier Transform of the random bit sequence. The sequence has a broadband spectrum 
and there is no significant frequency component in the spectrum. The spectrum shows that less than 5% of the peaks are 
below the 95% confidence level. The number of peaks exceeding this confidence level is less than 5% for a random 
sequence [2, 8]. 
 
The test results from the individual tests do not indicate a deviation from randomness. However, two recommended 
approaches by NIST to interpret the empirical results can be used to investigate the validity of the null hypothesis. The 
method adopted by NIST includes 
 

1. the examination of the proportion of sequences that pass a given statistic test and 
2. the estimation of the distribution of P-values to ensure that they are uniformly distributed. 
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If either of the above evaluations fails, the null hypothesis can be rejected. However, further testing on the generator 
should be performed to ensure that the conclusion was not due to a statistical irregularity. 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

M
ag

ni
tu

de

Index

 
95% Confidence Boundary

 
Figure 11: Discrete Fourier Transform test results of the random bit sequence. Measurement results show that only 4.5% of the 

spectral lines are above the 95% confidence boundary. 
 

4.3.2.1. Proportion of sequences passing a Test 
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Figure 12: Proportion of sequences passing each test based on their P-value. 
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The empirical results can be used to calculate the proportion of sequences that passes a given test. The range of 
acceptable proportions is given in [2] and evaluated using the confidence interval defined as 
 

,
)ˆ(ˆ

ˆ
m

pp
p

−± 1
3  (3) 

 
where α−=1p̂ and m is the number of sequences tested. 
 
Figure 12 is a graph of the proportion of sequences that passed each test, with the confidence intervals marked with 
dotted lines. It can be seen that there is an outlier below the lower limit of the confidence interval due to four templates 
from the template matching test failing to pass the expected proportion of passing sequences. 

 

4.3.2.2. Uniform distribution of P-values 

Evaluation of the uniformity of the distribution of P-values is discussed in detail in [28]. A P-value calculated on the 
distribution of P-values of a statistical test can be used to accept the distribution of P-values as being uniform or non-
uniform. 
  

A 2χ  test and a determination of a P-value that corresponds to the goodness-of-fit distributional test of the P-values can 
be used to evaluate the so called ‘P-value of P-values’. Thus using ten bins to analyse the distribution of P-values the 

2χ  statistic is given by [28]: 
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where Fi is the number of P-values in the bin i of Figure 16 and s is the sample size. The P-value of P-values is then 
given by the complemented incomplete gamma function: 
 

),( zaΓ−1  (5) 

where a = 9/2 and z = 2χ /2 [28]. The resulting calculation yields a mean 2χ  value for the distributions in Figure 16. 

 
A significance level of α = 0.0001 was used to assess the uniformity. Thus a P-value calculated on the distribution of P-
values  ≥ 0.0001 was considered to have a uniform distribution [28]. Table 6 summarises the assessment performed on 
the P-values obtained for each statistical test. 
 

Number Test Uniformity of P-value distribution  
1 The Frequency Tests PASS 
2 Frequency Block Test PASS 
3 The Runs Test PASS 
4 Test for the Longest-Run-of-Once in a Block PASS 
5 The Binary Matrix Rank Test PASS 
6 The Discrete Fourier Transform Test PASS 
7  The Non-overlapping Template Matching Test  PASS 
8 The Overlapping Template Matching Test PASS  
9 The Serial Test PASS  
10 The Approximate Entropy Test PASS 
11 The Cumulative Sums Test PASS 

 
Table 6: Results evaluating the uniform distribution of P-values 
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Figure 13: Histogram of the P-value distributions resulting from applying the eleven statistical tests from Table 2 to 108 bit stream of 

length 38912 bits. The graphed data show that all the distributions are approximately uniform 

5. CONCLUSION 
The system analysis showed that the random number generator based on an arbiter based PUF circuit is not deterministic 
but rather random. The analysis of the generated bit stream showed that the generator successfully passed the eleven tests 
used from the NIST test suite. This proves the quality of the randomness of the bit stream from a PUFRNG under 
varying environmental conditions. 
 
The PUFRNG provides a cost effective solution to produce millions of random bits in a very short time by fabricating a 
number of PUFRNGs on a single IC. This generator can be easily constructed using standard digital gates and layout 
tools. However, the PUFRNG requires some overhead such as post processing and calibration prior to its use. 
 
Nevertheless the ability to calibrate the PUFRNG very rapidly can be an advantage. This unique ability of the PUF 
random number generator allows the generator to adapt to external influences and to fine-tune the generator for greater 
performance. Compared to other physical random number generators, the PUF random number generator can be a 
compact and a low-power solution. A 64-stage PUF circuit costs only less than 1000 gates and the circuit can be 
implemented using standard IC manufacturing processes. Additionally, various kinds of low power techniques such as 
sub-threshold logic design and multi-thresholds CMOS design can be utilized to reduce the power consumption to make 
it suitable for use in devices sensitive to low power consumption.  
 
The effects of environmental conditions on the measurements obtained from a PUF are documented in [20], and the 
symmetrical nature of the circuit counter acts to reduce much of the variation provided otherwise. Changing temperature 
affects the propagation delays and the metastability window and thus the same unstable response producing challenge 
may not produce acceptable results if the operating temperature of the device changes drastically. The tolerance of 
performance and the calibration of PUFRNG to operate at a range of temperature provides to compensate for varying 
conditions of temperature. However effects of power supply voltage still need to be investigated to discover practical 
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performance boundaries such that the PUFRNGs do not need to be calibrated prior to its use on every occasion. 
Nevertheless it is possible to fabricate a voltage regulator onboard the PUFRNG to prevent effects from higher voltage 
variations, but it will not be able to counteract conditions induced by voltages below a calibrated power supply voltage. 
 
Future work will also involve the investigations into the effects of voltage on the performance of the PUFRNG. It may 
also be possible to avoid calibration by evaluating the performance of the circuits under different environmental 
conditions of varying voltage. It is also left to investigate whether the generator throughput can be improved. Although 
avoiding post processing would be the best means of improving the throughput of the generator. 
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