
UML-AOF: A Profile for Modeling Aspect-Oriented
Frameworks

José Uetanabara Júnior¹
Centro Universitário Eurípedes de

Marília - Univem
Marília, São Paulo, Brasil

CEP 17.525-901

miklotovx@gmail.com

Valter Vieira de Camargo²
Universidade Federal de São Carlos –

UFSCar
São Carlos, São Paulo, Brasil

CEP 13.565-905

valtercamargo@hotmail.com

Christina Von Flach
Universidade Federal da Bahia

– UFBA
Salvador, Bahia, Brasil

CEP 40.170-110

christina.flach@gmail.com

ABSTRACT

The design model of an application that was developed with
support of frameworks involves both the framework and the
application design. This results in complex architectures
represented by design models that are difficult to understand;
because there are many framework characteristics which are not
evident when plain UML is used. The same problem occurs with
Aspect-Oriented Frameworks (AOF). In AOF-based
development there are units which deserve attention from
different developers – application engineers and framework
engineers. Besides, there are a number of architectural
characteristics in AOFs which do not appear in Object-Oriented
Frameworks. So, in order to make these specific characteristics
clearer in the models we propose UML-AOF, an UML profile
for designing AOFs. UML-AOF was created based on an
existing UML profile for aspect-oriented programming and takes
into consideration some AspectJ idioms, patterns and also
stereotypes from a profile for object-oriented frameworks called
UML-F. UML-AOF was evaluated by means of its application
in the design of a persistence and security AOF. We observe that
UML-AOF makes some specific AOF architectural
characteristics clearer in design models, improving the
understandability of the architecture as well as the behavior.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – Representation;
D.2.11 [Software Engineering]: Software Architectures –
Patterns.

General Terms
Design, Management.

Keywords
Aspect-Oriented Frameworks, Aspect-Oriented Modeling.

¹ This research is supported by CAPES.

² This research is partially supported by CNPq: Projeto Latin-
AOSD - PROSUL-Proc. no. 490478/2006-9.

1. INTRODUCTION
After the emerging of Aspect-Oriented Programming (AOP) [9],
several frameworks begin to use it to modularize crosscutting
concerns in their architecture [3][5][10] leading to the appearing of
Aspect-Oriented Frameworks (AOF). In this paper, we use the term
“Crosscutting Framework” (CF) as a kind of AOF which
encapsulates just one crosscutting concern. CFs are used to support
the development of non-functional parts of an application [3].

Despite all of the well-known reuse benefits promoted by
framework-based development, applications that are developed
with their support have a three-layer complex architecture, which
results in complex design models. The first layer encapsulates
abstract and concrete modular units of the framework and it is of
interest to the framework engineers; the second layer is responsible
for putting together the first and the third layers by creating
concrete modular units extending the abstract ones available in the
framework (first layer) and it is of interest to the application
engineers; and the third layer is the application itself and also it is
the application engineer that is in charge of it. In the context of
CFs, the problem is worse than with conventional frameworks, as
the development of an application may be based on several CFs,
and each of them addresses just one crosscutting concern. The final
design models are complex and make comprehension, reuse, and
maintenance very difficult tasks [3].

Another problem is that CF design models have a lot of
architectural and design details not present in standard frameworks,
such as: hook methods, hook pointcuts, join points, variabilities,
patterns/idioms to abstract behaviors, features, etc. Some authors
have presented some idioms [8] and patterns [3] to modularize
these frameworks in order to reach good levels of maintainability.
These idioms/patterns have been extensively used in the
“implementation” of these frameworks [3][5][10] , but they are not
present at the design level, as the plain UML does not provide
support to make these characteristics evident.

In this paper we present UML-AOF, an UML profile for modeling
CFs. The proposed profile uses the Evermann´s profile [4] as base
AOP profile and also some concepts already defined in UML-F [6].
Besides, four idioms proposed by Hanenberg [8] are represented as
stereotypes. The Data Catcher Pattern proposed by Camargo and
Masiero [3] is also used in the profile as stereotypes and tagged
values. The aim is to bring to the level of detailed design the main
CFs characteristics. As a case study, we apply our proposed profile
in a Security and Persistence CF [3]. We have noticed an explicit
separation among layers that compose the detailed design,
enhancing comprehension, reuse and maintenance tasks. Another

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOM’09, March 2, 2009, Charlottesville, VA, USA.
Copyright 2009 ACM 978-1-60558-451-5/09/03…$5.00.

contribution is that the profile can be used as a guide to develop
good architectural designs, as it incorporates idioms and
patterns.

This paper is structured as follows: basic concepts are presented
in Section 2; the UML profile for design CFs is presented in
Section 3; the persistence and security CFs used as case study
are presented in Section 4; the related works are presented in
Section 5; and the conclusion and future work are presented in
Section 6.

2. BASIC CONCEPTS

2.1 Evermann´s Profile
Evermann [4] developed a profile for AOP adherent to AspectJ
concepts. The authors have chosen this language because of its
maturity to implement aspects. The gray meta-classes in Figure 1
present Evermann´s profile along with the additions
(stereotypes, tagged values, etc.) performed by us. Rather than

specializing meta-classes, Evermann extended the existing UML
meta-classes through the creation of stereotypes [4]. So, each class
in Figure 1 is a stereotype that may be applied in model level. The
extension relationship is depicted by brackets ([]). For example, the
Aspect stereotype has the word Class between brackets, indicating
that this stereotype extends the Class meta-class.

We have chosen this profile because of the following reasons: it is
adherent to AspectJ language - which is the same language used to
implement the CFs and it is a light-weight profile, which guarantees
that many available tools can be used to implement it.

2.2 Hanenberg´s Idioms
Hanenberg et al. [8], proposed a set of eight idioms for AspectJ
aiming at structuring the code to reach good levels of reuse and
abstraction. Although the idioms can be used for developing
conventional software, their main application is in framework
development [8], since they aim to abstract the application details,
in order to make the code more generic and independent.

Figure 1 – Adaptation of Evermann´s meta-model.

Each of these idioms provides roles that must be played by
classes/aspects in order to structure the code, as each role
provides a well defined responsibility/behavior. Four of eight
idioms have been used in this work: Container Introduction,
Marker Interface, Composite Pointcut and Abstract Pointcut.
They were chosen because they are recurring implementation
strategies in CFs found in the literature [3][5][10]. Due to this,
we argue that they must be represented in design models.

2.3 UML-F Profile
UML-F [6] provides notational elements describing basic
characteristics of OOF (Object-Oriented Frameworks). In this
profile both stereotypes and tagged values have been grouped

into an element called “UML-F tag”. The use of this tag is the same
as a UML stereotype, however it can have a value, like tagged
values.

There are two categories of tags: tags for modeling frameworks
(<<application>> and <<framework>>), and tags for essential
principles of OOF development (<<template>> and <<hook>>).
The first category has tags that give support for the framework
documentation, mostly for the application designer/developer.
These tags allow differentiating between modular units belonging to
the framework from modular units belonging to the application.
The second category has tags representing two roles imposed by the
template method design pattern, template method, and the hook

method. These tags make the identification of the framework
instantiation points easier; and they are used in the profile
proposed by the authors.

2.4 Data Catcher Pattern
Camargo and Masiero [3] proposed a pattern for modeling CFs,
called Data Catcher, aiming at providing composition
alternatives to compose a CF with a base code (application).
Each composition alternative is a different manner of catching
data from the base code. There are six composition alternatives:
1) With Return; 2) This; 3) Target; 4) Args; 5) With Parameters;
and 6) One Argument. Each of these composition alternatives is
represented by one abstract aspect which may be specialized
through a concrete aspect in order to weave the CF with a base
code. In the concrete aspect, the application engineer must
provide a concrete pointcut with join points of a specific base
code. Depending on the aspect chosen, the framework will catch
the object/value using different mechanisms.

The use of such pattern increases the reuse levels of the
framework and splits its structure into two distinct parts. The
first part deals with variabilities of the crosscutting concern, and
the second deals with the composition part. This separation
enables the framework and application engineers to concentrate
on tasks and problems inherent to each part separately.

3. A PROFILE FOR DESIGNING CFs
Figure 1 presents the proposed profile. We had the concern of
extending the Evermann’s profile and UML meta-model without
inserting inconsistencies; so all modifications were validated in
the Magic Draw modeling tool. This tool complies with the
UML 2.0 meta-model.

The <<instantiationAspect>> and <<aspect-F>>
stereotypes have been created to represent if the aspect belongs
to instantiation layer or to the framework layer. The framework
layer is the portion of the final design model that framework
engineers are interested in; mainly because this part is where the
framework maintenance and evolution tasks occur. The
instantiation layer is the portion of the final design model that is
in charge of application engineers, as they must create concrete
units to reuse the framework. These kind of stereotypes allow an
easier identification of the modular units in charge of both
developers, allowing each one to concentrate on his part.

The <<instantiationAspect>> and <<aspect-F>>
stereotypes extend the <<Aspect>> stereotype from Everman’s
profile. The <<interface-F>> and <<instantiation
Interface>> stereotypes are similar, but they extend the
<<Interface>> meta-class. The same reasoning is applied for
the <<instantiationClass>> and <<class-F>> stereotypes,
but they extend the Class meta-class. The <<pointCutHook>>
stereotype was created to indicate which pointcut is a variability
that can be concretized by the application engineer. The last
stereotype, <<hook>>, has been inherited from UML-F, and
denotes that the method is a hook method, i.e., a method that can
be concretized by the application engineer. These stereotypes are
not related to implementation details and code organization; they
are just representative and must be used for documentation.

The enumerations and stereotypes shown below are related to
implementation details and code organization as they represent
idioms and patterns found in the literature. These stereotypes have a
richer semantic than those shown above because they need a better
definition from which class they extend. The stereotypes that are
based on idioms and patterns can aid developers in structuring the
design reaching good reuse and maintenance levels.

The set of stereotypes <<markerInterface>>,
<<markerSticker>> and <<aspectSpecification>> represent
the Marker Interface idiom [8]. The stereotype
<<markerInterface>> is used to specify which interface is being
used as base type for some application classes so that an aspect,
playing the role of “aspect specification”, can be previously
designed to crosscut all of the interface subtypes. The aspect that
connects the marker interface with the subtypes is another aspect
playing the role of “marker sticker”.

The set of stereotypes <<container>>, <<container
Connector>> and <<containerLoader>> represent the
Container Loader idiom. The stereotype <<container>> is used to
mark which interface is being used as a base type for some
application classes; as is in the Marker Interface idiom. However,
the aim is to introduce a number of extrinsic characteristics in this
interface to be inherited by its subtypes. This is done thought inter-
type declarations by an aspect playing the role of “container
loader”. The aspect responsible for connecting the “container” to
“container loader” plays the role of “container connector”.

The enumerations Target, This, Args, WithParameters,
WithReturn, and OneArgument specify respectively the
composition types of Data Catcher Pattern [3].

4. CASE STUDY
In this section we present the case study that we have developed to
analyze the applicability of our proposed profile. The application is
a web personnel system and the system is a framework-based
system, as it was developed based on two CFs; Persistence and
Security. The whole system has twenty seven aspects, twenty one
classes and two interfaces, but only pieces of the final design model
are shown in Figure 2 because of space limitations.

Each class, aspect, and interface in Figure 2 has below its name, in
parentheses, the name of the package that it belongs to. For
example, PersistentRoot interface has the word (Persistence).
So, this interface belongs to the Persistence framework (notice that
each framework is encapsulated in a package). The abstract aspect
LogingLog has the word (Security), so it belongs to the Security
Framework. The same reasoning is valid for the other units that
have the word (Instantiation) and (Application). This division aids
the engineers to concentrate on what they are interested in.

The PersistentEntities abstract aspect (letter “a”) aims at
introducing a set of persistence methods into the PersistentRoot
interface (letter “d”). These methods can be seen through the
<<staticCrosscuttingFeature>> stereotype proposed by
Evermann. This stereotype has a tag called onType whose value is
the unit which will receive the methods. The PersistentRoot
interface must be used as a base type for all application classes
which need to have their objects stored in a database. The
MyPersistentEntities concrete aspect (letter “f”) aims at
declaring which are the application classes which need to have their

objects persisted. The PersistentEntities abstract aspect
plays the role of “container loader” and therefore it is
stereotyped as <<containerLoader>>. The PersistentRoot
interface plays the role of “container”, so it is stereotyped as
<<container>> and the MyPersistentEntities concrete
aspect has the role of “container connector”, so it is stereotyped
as <<containerConnector>>. These stereotypes makes the
use of the Container Introduction idiom evident.

The OORelationalMapping (letter “b”) aspect must crosscut
all of the sub-types of PersistentRoot interface,
characterizing these units as the application of the Marker
Interface idiom. So, the OORelationalMapping aspect is
stereotyped as <<aspectSpecification>>, the
PersistentRoot interface is stereotyped as
<<markerInterface>> and SecurityPersistentEntities
concrete aspect (letter “g”) is stereotyped as
<<markerSticker>>, since the “marker sticker” role connects
the interface PersistentRoot with the application classes. The
usage of these stereotypes makes evident the use of the idiom
Marker Interface in the framework project.

As the Container Introduction and Marker Interface idioms are
composed by three roles each of them, sometimes it is difficult
to found in the model the units playing the other roles of the
idiom. To improve this search process, we have created some
tags, for example, the aspects stereotyped with
<<containerLoader>> and <<aspectSpecification>>
have the tags container and markerInterface. The
performed extension can also be seen in Figure 1. We have
incorporated container and markerInterface attributes into
the <<containerLoader>> and <<aspectSpeficiation>>
stereotypes, the aspectSpecification, markerSticker
attributes into <<markerInterface>> stereotype and the
containerConnector and containerLoader into the
<<container>> stereotype. These tags allow identifying the
interface each aspect affects and vice versa. For example, the tag
container in the PersistentEntities abstract aspect (letter
“e”), receives the value PersistentRoot, as
PersistentRoot is the interface that will encapsulate all the
methods insert by PersistentEntities. Also, the tags
containerLoader and containerConnector in the
PersistentRoot interface (letter “h”), allows identifying the
aspects that plays these roles: PersistentEntities and
MyPersistentEntities. These tags are optional and must be
used when the same idiom is applied more than once.

The <<LoginLog>> and <<LoginLogWithParameters>>
aspects correspond to the Data Catcher Pattern [3]. The former
aspect <<LoginLogWithParameters>> (letter “c”) is one of
the composition alternatives provided by this pattern, so it is
stereotyped as <<DataCatcherPattern>>. This means that the
Data Catcher Pattern [3] is being used in the design. The
{compositionPattern = WithParameters} tagged value
indicates the composition type provided by this aspect (in this
case, WithParameters). The same reasoning is valid for the
other ways of composition (Target, This, Args, etc).

The getAttributeToBeFoundInTheSession() abstract
method is an example of a method that must be concretized by

the application engineer. For these kind of methods the stereotype
<<hook>> must used in order to make clear the extension points of
the framework. The LoginLog() abstract pointcut is an example of
an abstract pointcut that must be concretized by the application
engineer in order to define in which execution points (join points)
the Log concern must be applied In that case the
<<PointCutHook>> stereotype is applied. An example of both
stereotypes can be seen in letter (i) and (c) on Figure 2.

After CFs have been modeled with our proposed profile we have
noticed the following advantages: 1) The model becomes more
organized, as the three layers can be easily identified, propitiating
software engineers to concentrate themselves on their specific parts;
2) The communication about design decisions and maintenance
tasks is improved when the idioms and patterns are known among
developers; and 3) The CF reuse process is facilitated because the
variabilities and hooks are much clearer than the design model
without our stereotypes.

5. RELATED WORK
Many researchers have proposed profiles for AOP [1][2][4][7].
However, only one of them [11] has proposed a profile specific for
CFs, like the one presented in this work. Rausch [11] proposed
models to be used in requirements and design levels for AOF.
Besides, a technique for gluing models was developed. This
technique uses bidirectional arrows and notes with OCL (Object
Constraint Language). Each hook is specified inside the notes.
Through the OCL, the application elements are linked with the
hooks in the framework. Rausch´s work has some deficiencies that
must be improved. It does not have a meta-model. It has large and
complex OCL statements because there is not a specific language
for the aspect binding [11]. Therefore, a complete profile of the
UML needs to be developed [11].

6. CONCLUSION
The notational elements created in this work aim at providing
support for framework and application engineers evidencing the
most important characteristics of the framework development and
reuse process. For framework engineers, the proposed profile
presents stereotypes/tagged values that represent idioms and
patterns usually applied during AOF development. Besides, some
stereotypes allow distinguishing clearly the modular units of the
framework layer, application layer, and instantiation layer. With
this separation, each engineer can easily find the elements that need
to be modified. Also, the stereotypes for the idioms and the Data
Catcher Pattern improve the communication among framework
developers by providing a unique vocabulary.

It is important to notice that it is perfectly possible to build a design
model without these elements. However, the reuse process and
changes required in the framework architecture can be much more
difficult. So, their application brings maintainability, reusability,
and productivity benefits for the experts involved. The final design
model of an application that has been developed with the support of
several CFs is complex. The existence of stereotypes that aids
identifying the important components of this complex architecture
is important.

Figure 2 – Case Study Modeled with the Profile.

The presented profile must be enhanced and extensively
evaluated. As future work, we plan to perform maintainability
assessments of the proposed profile based on different case
studies, comparing frameworks developed in a traditional
manner with frameworks that use the stereotypes and idioms
packaged into the profile. The possible conflicts that may occur
between stereotypes also deserve further investigation. Another
future work we intend to conduct is change the base profile for
another; therefore, we can evaluate if the proposed set of
extensions (stereotypes, tagged values and enumerations) can be
applied in other profiles as well.

7. REFERENCES
[1] Aldawud, O., Elrad, T., Bader. A. UML Profile for Aspect-

Oriented Software Development. In: Proceedings of
Workshop of Aspect Oriented Modeling with UML of
Aspect Oriented Software Development Conference
(AOSD), 2003.

[2] Barra, E., Génova, G. and Llorens, J. 2004. An approach to
aspect modeling with UML 2.0. In Proc. 5th Int. Workshop
on Aspect-Oriented Modeling, October 2004.

[3] Camargo, V.V.; Masiero, P.C. A Pattern to Design
Crosscutting Frameworks. In: Proceedings of the 23rd
Annual ACM Symposium on Applied Computing (ACM-
SAC'08), Fortaleza, Brasil, 2008.

[4] Evermann, Joerge. 2007. A Meta-Level Specification and
Profile for AspectJ in UML. Victoria University Wellington,
Wellington, New Zealand. AOSD 2007.

[5] Fayad, M. E.; Johson, R. E. (eds) (2000). Domain-Specific
Application Frameworks: Frameworks Experience by Industry,
John Wiley & Sons. 2000.

[6] Fontoura, M., Pree, W., Rumpe, B. The UML Profile for
Framework Architectures. Addison Wesley, 2002.

[7] Groher, Iris, Baumgarth, Thomas. 2004. Aspect-Orientation
from Design to Code. Munich, Alemanha. 2004.

[8] Hanenberg, S., Unland, R., Schmidmeier, A. AspectJ Idioms
for Aspect-Oriented Software Construction. In: Proceedings of
8th European Conference on Pattern Languages of Programs
(EuroPLoP), Irsee, Germany, 25th–29th June, 2003.

[9] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J., Irving, J. Aspect Oriented Programming. In:
Proceedings of ECOOP. pp. 220-242, 1997.

[10] Rashid, A., Chitchyan, R. Persistence as an Aspect. In:
Proceedings of the 2nd International Conference on Aspect
Oriented Software Development – AOSD. Boston – USA,
2003.

[11] Rausch, A., Rumpe, B., Hoogendoorn, L. Aspect-Oriented
Framework Modeling. In: The 4th AOSD Modeling With UML
Workshop. 2004.

