UML-AOF: A Profile for Modeling Aspect-Oriented
Frameworks

José Uetanabara Junior?
Centro Universitario Euripedes de
Marilia - Univem
Marilia, Sdo Paulo, Brasil
CEP 17.525-901

miklotovx@gmail.com

ABSTRACT

The design model of an application that was deedopith
support of frameworks involves both the frameworid ahe
application design. This results in complex architees
represented by design models that are difficulunalerstand,;
because there are many framework characteristigshvare not
evident when plain UML is used. The same problepumwith
Aspect-Oriented Frameworks (AOF). In AOF-based
development there are units which deserve attenfrom
different developers — application engineers araméwork
engineers. Besides, there are a number of arcdhitgct
characteristics in AOFs which do not appear in Gbferiented
Frameworks. So, in order to make these specificacheristics
clearer in the models we propose UML-AOF, an UMbfpe
for designing AOFs. UML-AOF was created based on an
existing UML profile for aspect-oriented programigiand takes
into consideration some AspectJ idioms, patternd atso
stereotypes from a profile for object-oriented feavorks called
UML-F. UML-AOF was evaluated by means of its apation

in the design of a persistence and security AOF o&erve that
UML-AOF makes some specific AOF architectural
characteristics clearer in design models, improvitige
understandability of the architecture as well @&stibhavior.

Categories and Subject Descriptors

D.2.10 PBoftware Engineering: Design — Representation
D.2.11 [Boftware Engineerind: Software Architectures —
Patterns

General Terms
Design, Management.

Keywords

Aspect-Oriented Frameworks, Aspect-Oriented Modglin

1 This research is supported by CAPES.

2 This research is partially supported by CNPq:jeRooLatin-
AOSD - PROSUL-Proc. no. 490478/2006-9.

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commerciavadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

AOM’09, March 2, 2009, Charlottesville, VA, USA.

Copyright 2009 ACM 978-1-60558-451-5/09/03...$5.00.

Valter Vieira de Camargo?
Universidade Federal de Sao Carlos —
UFSCar
Sao Carlos, Sao Paulo, Brasil
CEP 13.565-905

valtercamargo@hotmail.com

Christina Von Flach
Universidade Federal da Bahia
— UFBA
Salvador, Bahia, Brasil
CEP 40.170-110

christina.flach@gmail.com

1. INTRODUCTION

After the emerging of Aspect-Oriented Programmid@®P) [9],
several frameworks begin to use it to modularizesscutting
concerns in their architecture [3][5][10] leadirgthe appearing of
Aspect-Oriented Frameworks (AOF). In this paper,use the term
“Crosscutting Framework” (CF) as a kind of AOF whic
encapsulates just one crosscutting concern. CRssakto support
the development of non-functional parts of an agion [3].

Despite all of the well-known reuse benefits proadotby
framework-based development, applications that @egeloped
with their support have a three-layer complex dediire, which
results in complex design models. The first layacapsulates
abstract and concrete modular units of the framkvamd it is of
interest to the framework engineers; the seconer lsyresponsible
for putting together the first and the third laydrg creating
concrete modular units extending the abstract amagable in the
framework (first layer) and it is of interest toethapplication
engineers; and the third layer is the applicatigeli and also it is
the application engineer that is in charge of nit.the context of
CFs, the problem is worse than with conventionainiworks, as
the development of an application may be basedewgral CFs,
and each of them addresses just one crosscuttimgeon The final
design models are complex and make comprehensoiser and
maintenance very difficult tasks [3].

Another problem is that CF design models have a dbt
architectural and design details not present indgted frameworks,
such as: hook methods, hook pointcuts, join poingsiabilities,

patterns/idioms to abstract behaviors, featuras, @me authors
have presented some idioms [8] and patterns [3intalularize

these frameworks in order to reach good levels ahtainability.

These idioms/patterns have been extensively used thia

“implementation” of these frameworks [3][5][10] ubthey are not
present at the design level, as the plain UML does provide

support to make these characteristics evident.

In this paper we present UML-AOF, an UML profiler fmodeling
CFs. The proposed profile uses the Evermann’slen@f] as base
AOP profile and also some concepts already definédML-F [6].
Besides, four idioms proposed by Hanenberg [8Jrepeesented as
stereotypes. The Data Catcher Pattern proposedahyaf@o and
Masiero [3] is also used in the profile as sterpesyand tagged
values. The aim is to bring to the level of dethiteesign the main
CFs characteristics. As a case study, we applymposed profile
in a Security and Persistence CF [3]. We have edt&n explicit
separation among layers that compose the detailesigm)
enhancing comprehension, reuse and maintenancs. taskther

contribution is that the profile can be used asidgyto develop
good architectural designs, as it incorporates nidioand
patterns.

This paper is structured as follows: basic conceptspresented
in Section 2; the UML profile for design CFs is geated in
Section 3; the persistence and security CFs userhses study
are presented in Section 4; the related works ezsepted in
Section 5; and the conclusion and future work aesented in
Section 6.

2. BASIC CONCEPTS

2.1 Evermann’s Profile

Evermann [4] developed a profile for AOP adherenfspectJ
concepts. The authors have chosen this languageiseof its
maturity to implement aspects. The gray meta-ctass€igure 1
present Evermann’s profile along with the additions
(stereotypes, tagged values, etc.) performed byRather than

specializing meta-classes, Evermann extended tistirex UML
meta-classes through the creation of stereotypges$Sf each class
in Figure 1 is a stereotype that may be appliechanlel level. The
extension relationship is depicted by brackets fPr example, the
Aspect stereotype has the walidass between brackets, indicating
that this stereotype extends ttieass meta-class.

We have chosen this profile because of the follgwigasons: it is
adherent to AspectJ language - which is the sangubge used to
implement the CFs and it is a light-weight profikhich guarantees
that many available tools can be used to impleritent

2.2 Hanenberg’s Idioms

Hanenberget al [8], proposed a set of eight idioms for AspectJ
aiming at structuring the code to reach good leeélseuse and
abstraction. Although the idioms can be used foveligping
conventional software, their main application is fiamework
development [8], since they aim to abstract thdiegion details,

in order to make the code more generic and indegénd

!

v

!

v

EE———
|PropertyPoitcat

[StructuralFesture]
|“fied: Property [1.7] 1

tereotyp
ExecutionPointCut
[StructuralF sature]

|

<ssterectypes>
OperationPointut

-
[StructuralFesture]

|-operation : Operation[1.*]

terentyp
WithinCodePointCut
[StructuraF esturs]

N

==stereatype=>
| AdviceExecutionPointCut
[StructuralFesture]

=<profile==

Perfil FT
‘;::;:r‘xzf;’ ‘;;‘E;:;‘:gi:’ <<sterectypess <=steretype=s <=steractypes>
o S dratod PreinitializationPointCut InitializationPointCut StaticCrossCuttingFeature <asteractypees s
[StrueturalFesture] [StrueturalFesture] [StructuralF sature] [StructuraF eature] [Feature] | ContetExposingPointcat

<=steraotypes>
CallPointCut
[StructuraFesture]

AspactinstantiationT
(StructuraFesturs] shecinstantisionType

>{-arghames [1. Jiordered} q—‘
-y

tereotyn
ArgsPointCut
[StructuralF eature]

-onType:: Type[1.] perthis

pertarget
perciow
perciowbelow

[=stereatype==
ThisPointCut
[StructuralFesture]

tereotyn
TargetPointCut
[StructuraFesture]

<<sterectypes=>
StaticInitializationPointCut
[StructuralFesture]

&

v

—

_oaphureType : captureTypenalus

casteretypess casteretypess [EEEr—— “=sterentypess
Advice -ackvice -pairtcut Pointcut t f i TypePointCut ==stereotype=>
[BehavioralFesture] o 1 [StructuraFssture] e e [StructuralFeature] [StructuraFeature] i ExceptionPointCut
|-aetviceExeeution : AdviceEeculonType i - [0+ |-type : Type [1.7] [hiEdraRestirs)
]‘ 1.2 5
—Fomposes 3 . _ .
— - . “S‘Et::‘;‘:”e” cisterectyper= | |<=stereotypess | e
—omposte - ati | g
CrossCuttingConcern PointCutHook 0r [Operation] ==sterentype=> '"m"[‘(';:;'s']'u“ss ([::;::S]F | WithinPointCut
[Pachige] [StructurFesturc] CFlowBelowPaintCut L | [StructuraFsature]
= ! [StructuralFesture]
<sstereatyper=
=<enumeration== <<enumeralion=> CompositePointCut E:fte'f,m,":(eg; el
AdviceFxecutionType | | PointCutCompositionType [StructuralF eature] oWk PER——
Feal [StructuraFasture] e on [Class] Fibill
Aroundidvice and _compostionType PortCutCampostionT ype o —H B
EBeforeAdvice or _isComplemerted * boolsan = false i [Class) [Class]
Afteradvice ==stereotypes= <astereatypess _marker|rtertace 1 joPrivileged - boolean [1] L
Container ContainerLoader |-perType : AspectinstantistionType 0.7] |orecedes
=<enumerstion== ;
e B e il [terface] [Class] perPointCut . Poinicut [0.1]
eredtyne ereatype eredtype captureTypeValue | o = <estereotypars |deciaredParents : Generalization (0.7
Markerinterface Interface-F iati ~containerLoader | |-corfainer 2 - ceclar InerfaceRealization (0. 7]
Torget | ContainerCannect —H
e e e e it e e e
i 1 = Args Aspect-F _precededBy
: WifthReturn DataCatcherPattern ,
e o MarkerSticker
[Class]

Figure 1 — Adaptation of Evermann’s meta-model.

Each of these idioms provides roles that must lzyea by
classes/aspects in order to structure the codegaah role
provides a well defined responsibility/behavior.uFmf eight
idioms have been used in this work: Container bhiction,
Marker Interface, Composite Pointcut and Abstraotnfut.
They were chosen because they are recurring impitien
strategies in CFs found in the literature [3][5][1Due to this,
we argue that they must be represented in desigielisio

2.3 UML-F Profile

UML-F [6] provides notational elements describingsic
characteristics of OOF (Object-Oriented Frameworks)this
profile both stereotypes and tagged values have besuped

into an element called “UML-F tag”. The use of ttag is the same
as a UML stereotype, however it can have a valike, tagged
values.

There are two categories of tags: tags for modeliagheworks
(<<appl i cati on>> and<<framewor k>>), and tags for essential
principles of OOF development<t enpl at e>> and <<hook>>).
The first category has tags that give support fe tramework
documentation, mostly for the application desighevéloper.
These tags allow differentiating between modulatsumelonging to
the framework from modular units belonging to thgplécation.
The second category has tags representing twoirnfessed by the
template method design pattern, template method, tha hook

method. These tags make the identification of tlaenéwork
instantiation points easier; and they are usedhm profile
proposed by the authors.

2.4 Data Catcher Pattern

Camargo and Masiero [3] proposed a pattern for g €Fs,
called Data Catcher, aiming at providing compositio
alternatives to compose a CF with a base code i¢apiph).
Each composition alternative is a different manofecatching
data from the base code. There are six composfiennatives:
1) With Return; 2) This; 3) Target; 4) Args; 5) WiParameters;
and 6) One Argument. Each of these compositionredtaves is
represented by one abstract aspect which may baatiped
through a concrete aspect in order to weave thevitFa base
code. In the concrete aspect, the application eegirmust
provide a concrete pointcut with join points of @esific base
code. Depending on the aspect chosen, the framewnitiréatch
the object/value using different mechanisms.

The use of such pattern increases the reuse |afelthe

framework and splits its structure into two distiqparts. The
first part deals with variabilities of the crosgouy concern, and
the second deals with the composition part. Thisassion

enables the framework and application engineeoimentrate
on tasks and problems inherent to each part seharat

3. A PROFILE FOR DESIGNING CFs

Figure 1 presents the proposed profile. We hadctmeern of
extending the Evermann’s profile and UML meta-moaslighout
inserting inconsistencies; so all modifications evealidated in
the Magic Draw modeling tool. This tool compliestlwithe
UML 2.0 meta-model.

The <<instantiationAspect>> and <<aspect-F>>
stereotypes have been created to represent ifsgectbelongs
to instantiation layer or to the framework layeheTframework
layer is the portion of the final design model tfi@mework
engineers are interested in; mainly because thitsipwhere the
framework maintenance and evolution tasks occure Th
instantiation layer is the portion of the final @gsmodel that is
in charge of application engineers, as they musaterconcrete
units to reuse the framework. These kind of steyeest allow an
easier identification of the modular units in cheargf both
developers, allowing each one to concentrate sipéuit.

The <<instantiationAspect>> and <<aspect-F>>
stereotypes extend th&Aspect >> stereotype from Everman’s
profile. The <<interface-F>> and <<instantiation
Interface>> stereotypes are similar, but they extend the
<<I nt er f ace>> meta-class. The same reasoning is applied for
the<<i nst anti ati ond ass>> and<<cl ass- F>> stereotypes,
but they extend thel ass meta-class. The<poi nt Cut Hook>>
stereotype was created to indicate which pointat variability
that can be concretized by the application engin€be last
stereotype,<<hook>>, has been inherited from UML-F, and
denotes that the method is a hook method, i.eetaad that can
be concretized by the application engineer. Theseatypes are
not related to implementation details and code rieggion; they
are just representative and must be used for dathatien.

The enumerations and stereotypes shown below datedeto
implementation details and code organization ay ttepresent
idioms and patterns found in the literature. Thstseeotypes have a
richer semantic than those shown above becausentrez/ a better
definition from which class they extend. The stéypes that are
based on idioms and patterns can aid developestunoturing the
design reaching good reuse and maintenance levels.

The set of stereotypes <<marker| nterface>>,
<<mar ker St i cker >> and<<aspect Speci fi cati on>> represent
the Marker Interface idiom [8]. The stereotype
<<nar ker | nt er f ace>> is used to specify which interface is being
used as base type for some application classehascah aspect,
playing the role of “aspect specification”, can Ipeeviously
designed to crosscut all of the interface subtypég aspect that
connects the marker interface with the subtypesnisther aspect
playing the role of “marker sticker”.

The set of stereotypes<<container>>, <<contai ner
Connector>> and <<contai nerLoader>> represent the
Container Loader idiom. The stereotypeont ai ner >> is used to
mark which interface is being used as a base typesébme
application classes; as is in the Marker Interfiiem. However,
the aim is to introduce a number of extrinsic chaastics in this
interface to be inherited by its subtypes. Thidase thought inter-
type declarations by an aspect playing the role“caintainer
loader”. The aspect responsible for connecting“tdoantainer” to
“container loader” plays the role of “container oentor”.

The enumerationsTarget, This, Args,
WthReturn, and OneArgument specify
composition types of Data Catcher Pattern [3].

W t hPar anet er s,
respectively the

4. CASE STUDY

In this section we present the case study thatave developed to
analyze the applicability of our proposed profilie application is
a web personnel system and the system is a frarkevesed
system, as it was developed based on two CFs;sRarse and
Security. The whole system has twenty seven aspeatsity one
classes and two interfaces, but only pieces ofitia¢ design model
are shown in Figure 2 because of space limitations.

Each class, aspect, and interface in Figure 2 aswhits name, in
parentheses, the name of the package that it belong For
example,Per si st ent Root interface has the word (Persistence).
So, this interface belongs to the Persistence fraorie(notice that
each framework is encapsulated in a package). abe&act aspect
Logi ngLog has the word (Security), so it belongs to the 8gcu
Framework. The same reasoning is valid for the rotiréts that
have the word (Instantiation) and (Application).isTdivision aids
the engineers to concentrate on what they areeistied in.

The PersistentEntities abstract aspect (letter “a”) aims at
introducing a set of persistence methods intoPtiesi st ent Root
interface (letter “d”). These methods can be sdmwough the
<<staticCrosscuttingFeature>> stereotype proposed by
Evermann. This stereotype has a tag calleType whose value is
the unit which will receive the methods. TRer si st ent Root
interface must be used as a base type for all Ggijdh classes
which need to have their objects stored in a dambdhe
M/PersistentEntities concrete aspect (letter “f’) aims at
declaring which are the application classes whigbdnto have their

objects persisted. Theersi stentEntities abstract aspect
plays the role of “container loader” and therefoite is
stereotyped as<cont ai ner Loader >>. ThePer si st ent Root
interface plays the role of “container”, so it iereotyped as
<<cont ai ner>> and theMPersistentEntities concrete
aspect has the role of “container connector”, §e #ttereotyped
as <<cont ai ner Connect or >>. These stereotypes makes the
use of the Container Introduction idiom evident

The OORel at i onal Mappi ng (letter “b”) aspect must crosscut
all of the sub-types of PersistentRoot interface,
characterizing these units as the application & Warker
Interface idiom. So, theOORel ati onal Mappi ng aspect is
stereotyped as <<aspect Speci fication>>, the
Per si st ent Root interface is stereotyped as
<<mar ker I nterface>> andSecurityPersistentEntities
concrete aspect (letter “g”) is stereotyped as
<<mar ker St i cker >>, since the “marker sticker” role connects
the interfacePer si st ent Root with the application classes. The
usage of these stereotypes makes evident the utte afliom
Marker Interface in the framework project.

As the Container Introduction and Marker Interfadi®ems are
composed by three roles each of them, sometimissditficult
to found in the model the units playing the otheles of the
idiom. To improve this search process, we havetedeaome
tags, for example, the aspects stereotyped
<<cont ai ner Loader >> and <<aspect Specification>>
have the tagscontainer and markerlnterface. The
performed extension can also be seen in Figure 4.have
incorporatectont ai ner andnar ker I nt er f ace attributes into
the <<cont ai ner Loader >> and <<aspect Spefi ci ati on>>
stereotypes, theaspect Specification, markerSticker
attributes into <<mar kerInterface>> stereotype and the
cont ai ner Connector and contai ner Loader into the
<<cont ai ner >> stereotype. These tags allow identifying the
interface each aspect affects and vice versa.Xangle, the tag
cont ai ner in thePersi stent Entiti es abstract aspect (letter
“e"), receives the value Persi stent Root, as
Per si st ent Root is the interface that will encapsulate all the
methods insert byPersistentEntities. Also, the tags
cont ai nerLoader and contai ner Connector in the
Per si st ent Root interface (letter “h”), allows identifying the
aspects that plays these roleRersistentEntities and
MyPersi stentEntities. These tags are optional and must be
used when the same idiom is applied more than once.

The <<Logi nLog>> and <<Logi nLogW t hPar anet er s>>
aspects correspond to the Data Catcher PatterTig].former
aspect<<Logi nLogW t hPar anet er s>> (letter “c”) is one of
the composition alternatives provided by this patteso it is
stereotyped as<Dat aCat cher Pat t er n>>. This means that the
Data Catcher Pattern [3] is being used in the desithe
{conpositionPattern = WthParaneters} tagged value
indicates the composition type provided by thiseasg{in this
case,Wt hPar anet ers). The same reasoning is valid for the
other ways of composition (Target, This, Args, etc)

The getAttribut eToBeFoundl nTheSession() abstract
method is an example of a method that must be etired by

the application engineer. For these kind of methbesstereotype
<<hook>> must used in order to make clear the extensiontpaif

the framework. Theogi nLog() abstract pointcut is an example of
an abstract pointcut that must be concretized ey application
engineer in order to define in which execution p®i@oin points)

the Log concern must be applied In that case the
<<Poi nt Cut Hook>> stereotype is applied. An example of both
stereotypes can be seen in letter (i) and (c) garEi2.

After CFs have been modeled with our proposed lerafie have

noticed the following advantages: 1) The model bee® more

organized, as the three layers can be easily foshtipropitiating

software engineers to concentrate themselves ansihecific parts;

2) The communication about design decisions andhtera@nce

tasks is improved when the idioms and patternskaosvn among

developers; and 3) The CF reuse process is faeilithecause the
variabilities and hooks are much clearer than thesigh model

without our stereotypes.

5. RELATED WORK

Many researchers have proposed profiles for AOR2]H][7].

However, only one of them [11] has proposed a [gafpecific for
CFs, like the one presented in this work. Rausd froposed
models to be used in requirements and design IdeelsAOF.
Besides, a technique for gluing models was developkhis
technique uses bidirectional arrows and notes WI@L (Object

with Constraint Language Each hook is specified inside the notes.

Through the OCL, the application elements are lihkéth the

hooks in the framework. Rausch’s work has someidefiies that
must be improved. It does not have a meta-modéladtlarge and
complex OCL statements because there is not afgpktiguage
for the aspect binding [11]. Therefore, a completefile of the

UML needs to be developed [11].

6. CONCLUSION

The notational elements created in this work aimpatviding
support for framework and application engineersdencing the
most important characteristics of the frameworkealeyment and
reuse process. For framework engineers, the prdpgsefile
presents stereotypes/tagged values that represboins and
patterns usually applied during AOF developmentsi@es, some
stereotypes allow distinguishing clearly the modulaits of the
framework layer, application layer, and instantiatilayer. With
this separation, each engineer can easily fincekments that need
to be modified. Also, the stereotypes for the idioamnd the Data
Catcher Pattern improve the communication amongnéveork
developers by providing a unique vocabulary.

It is important to notice that it is perfectly pdse to build a design
model without these elements. However, the reuseess and
changes required in the framework architecture mmuch more
difficult. So, their application brings maintainkty, reusability,

and productivity benefits for the experts involvathe final design
model of an application that has been developek tivéé support of
several CFs is complex. The existence of stereetypat aids
identifying the important components of this compéechitecture
is important.

(ﬂ) <ot <zAsp_ez1-F==
<hapectFer %00RelationalMapping (‘;i'c’:m"!;
==ContainerLoader=» (Persistence) i
i . {isPrivileged}
G L <<CalPointCut==-dopLevel kinPoirtFulConstrctor
(Persistence] (e) ==CallPaintCut==-topLevelJoinPoirtEmptyConstructor LogLog)
="PemistentRoot’) = +registerdcessLog() (l)
! +etfllAcesslonl)
a=hook=s+getin() L ==hook==+getiiiribute ToBeFoundintoSessiond)
a=hook=x+seb0() =zdspect-Fes ==hook fethodR i e Returning The Subject ()
==5taticCrossCuttingFeature==+setTahleMName){onType = PersistentRoct } ==AapectSpecification==
==StaticCrossCuttingFeature==+get Attributes!)jonType = PersistentRoct QOReiational Napping
==StaticCrossCuttingFesture==+setbumberOf Attributes(onType = PersistentRoot} (Persistence) T
==StaticCrossCuttingFesture==+setieyName(){onType = PersistentRoot} Ty
2 i ==4: = mamerlnterface = "PemsistentRoot" -
StaticCrossCuttingFeature==+setColMame(HonType = PersistertRoot} f i e DeteCatut erPattarmes
T il == dvice==+Fulll){poirtcut = topLevelJoinPointFullConstructor b Loginl_ogl."ﬁm!.’ammeters (C)
=zdvice=+Empty(){poirtcut = topLevelloinPointEmpty Constructar) (Security)
{eaptureType = WithParameters}
<<IEﬂe;;a_ce-F=> w) ==PaintCutHook==-LoginLog{advice = afterl Log}
=<Container==
==Markerinterface=» ==Advices=+afterLLog(HadviceExecution = BetoreAdvice, pointcut = LoginLog}
PersistentRoot
(d) (Persistence) (h)
i nnector = "MyPersistentEntities" . ’
containerLoader = "PersistentEntities"} FETERER
T h RRW
__________________________ f__________________________________
=<Instantiation Aspect== =<Instantiation Aspect== / I o
z=ContsinerConnectors: z=ContainerConnector=» | \ N
«chtarkerSticker== «chtarkerSticker== /! \ N ~
MyPersistentEntities (f) SecurityPersistentEntities () / I \\ h N n
{Instantiation) (Instartiation) = / I ; N S Instartiation
" . Y AY
aredimplements = mylmplementation} {declaredimplements = implements} / N
/ ‘ \ b ~
y | \ N ~
_______________________ 7________I______________________________
mylmplemertation mylmplemertation inpleiherts |mQ\ements \\mplemerﬂs
Fvent P - Employee <a2bzpect-Fex | feahspect-Fes ==hspect-Fe=
RegisterOftvents . <
[Application) Q(A ication) (Application) Role Subject Operation
i (Securty) (Security) (Securty) .
- e _ . |-mame Application
+Hain() ')-IastSaIary - -uzerhlame -
+oetEventType() - -description paszward -name
+aType() +getEventsCOThisharth)
+Ralel) +Subject() +Cperation)

Figure 2 — Case Study Modeled with the Profile.

The presented profile must be enhanced and extEpsiv
evaluated. As future work, we plan to perform maimability
assessments of the proposed profile based on differase
studies, comparing frameworks developed in a fiauht
manner with frameworks that use the stereotypes idiutns
packaged into the profile. The possible conflittattmay occur
between stereotypes also deserve further investigaAnother
future work we intend to conduct is change the haséile for
another; therefore, we can evaluate if the proposed of
extensions (stereotypes, tagged values and enuomsjatan be
applied in other profiles as well.

7.
[1]

(2]

(3]

REFERENCES

Aldawud, O., Elrad, T., Bader. A. UML Profile forspect-
Oriented Software Development. In: Proceedings of
Workshop of Aspect Oriented Modeling with UML of
Aspect Oriented Software Development Conference
(AOSD), 2003.

Barra, E., Génova, G. and Llorens, J. 2004. An@ggr to
aspect modeling with UML 2.0. In Proc. 5th Int. Wsiop
on Aspect-Oriented Modeling, October 2004.

Camargo, V.V.; Masiero, P.C. A Pattern to Design
Crosscutting Frameworks. In: Proceedings of thel 23r
Annual ACM Symposium on Applied Computing (ACM-
SAC'08), Fortaleza, Brasil, 2008.

[4] Evermann, Joerge. 2007. A Meta-Level Specificatiod
Profile for Aspectd in UML. Victoria University Wiahgton,
Wellington, New Zealand. AOSD 2007.

[5] Fayad, M. E.; Johson, R. E. (eds) (2000). Domaieegic
Application Frameworks: Frameworks Experience tgustry,
John Wiley & Sons. 2000.

[6] Fontoura, M., Pree, W., Rumpe, B. The UML Profde f
Framework Architectures. Addison Wesley, 2002.

[7] Groher, Iris, Baumgarth, Thomas. 2004. Aspect-Qaigon
from Design to Code. Munich, Alemanha. 2004.

[8] Hanenberg, S., Unland, R., Schmidmeier, A. Asplelitins
for Aspect-Oriented Software Construction. In: Rredings of
8th European Conference on Pattern Languages gf&ns
(EuroPLoP), Irsee, Germany, 25th—29th June, 2003.

[9] Kiczales, G., Lamping, J., Mendhekar, A., Maeda LGpes,
C., Loingtier, J., Irving, J. Aspect Oriented Pragming. In:
Proceedings of ECOOP. pp. 220-242, 1997.

[10] Rashid, A., Chitchyan, R. Persistence as an Asprect.
Proceedings of the 2nd International ConferencAspect
Oriented Software Development — AOSD. Boston — USA,
2003.

[11] Rausch, A., Rumpe, B., Hoogendoorn, L. Aspect-Qeen
Framework Modeling. In: The®™YAOSD Modeling With UML
Workshop. 2004.

