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Abstract

Outliers due to occlusions and contrast and offset signal
deviations notably hinder recognition and retrieval of fa-
cial images. We propose a new maximum likelihood match-
ing score with “soft masking” of outliers which is robust
in these conditions. Differences between two images are
modelled by unknown contrast and offset deviations from
an unknown template and by independent pixel-wise errors.
The error distribution is a mixture of a zero-centred Gaus-
sian noise with an unknown variance and uniformly dis-
tributed outliers. The matching score combines the maxi-
mum likelihood estimates of model parameters and the soft
masks being produced by a simple iterative Expectation-
Maximisation algorithm. Experiments with facial images
from the MIT Face Database show the robustness of this
technique in the presence of large occlusions.

1. Introduction

The main challenges in face recognition and retrieval are
associated with considerable deviations between facial im-
ages of the same person. This is often due to varying obser-
vation position, orientation, and resolution, different illumi-
nation, partial occlusions (e.g. by hair, glasses, scarves),
and so on. Thus robust best image matching has to allow
for these deviations in the matching score and effectively
eliminate them. However, most local deviations - especially
caused by occlusions - cannot be easily eliminated because
they result in signal outliers that do not conform to conven-
tional formal models of image deviations.

Outliers adversely affect the accuracy of image recog-
nition. Consider, for example, a subset of the MIT face
database [8] in Appendix A. To show that classification in-
variant to uniform contrast and offset deviations in facial
images fails or becomes unstable if the deviations are com-
bined with large occlusions, we took an image from the
MIT Face Database and formed two variants by changing
the contrast and offset values: image DV1 with reduced
contrast - the intensity range was reduced from 0-255 to

xxx-yyy - and image DV1 with offset altered from 0 to zzz.
These two images were further altered by application of a
large mask (mimicking a large occlusion) to produce im-
ages DVx-L (lower mask) and DVx-U (upper mask), see
Figure 1.

MIT FDB 01 DV1 DV1-L DV1-U

C1 01: 0.0 02: 1.834 04: 1.8281

C2 02: 1.02 01: 1.846 03: 1.8282

DV2 DV2-L DV2-U

C1 02: 1.426 12: 1.929 10: 1.973

C2 01: 1.448 02: 1.936 04: 1.975

Figure 1. Best (C1 × 10−5) and second best
(C2×10−5) matches to the MIT Face Database
subset (App. A) based on scores Dc

12 (see
Section 2) for images with altered contrast
and offset (DV1, DV2) and large occlusions
(DVx-L, DVx-U). Matching errors are bold-
faced. Note that a match to a different image
of the same face is not considered an error.

Of course, outlier definition and characterisation de-
pends on a particular image recognition or retrieval prob-
lem. For instance, not only visual occlusions can be treated
as outliers. As well, it would be sensible to exclude back-
ground from matching because it is likely to be consider-
ably different in facial images of the same person. Many
face databases simply crop images to completely eliminate
backgrounds as in the MIT database [8] in Fig. A6. How-
ever, backgrounds could also be considered as outliers and
eliminated in the same manner as occlusions.

In order to focus on the robustness to outliers, we only



considered the specific problem of pixel-to-pixel match-
ing under relative translations, spatially uniform contrast
and offset deviations and occlusions. Today’s robust im-
age matching [1, 7, 10] replaces pixel intensities (grey val-
ues or colour components) with local features (e.g. nor-
malised signal gradients) which are more stable to con-
trast and offset variations and exploits mostly statistical M-
estimators [6, 9] to derive a matching score. M-estimators
depends less on outliers than least-square estimators as the
error function has a less than than quadratic growth for large
error values. However robustness of M-estimator-based
scores to outliers is obtained at the cost of complex numer-
ical optimisation for matching images under relative con-
trast and offset distortions compared to least-square-based
scores. Because spatially uniform contrast and offset distor-
tions cannot be analytically eliminated, M-estimator-based
scores have more local optima in the parameter space that
complicate the numerical search for the best match.

We preserve the maximum likelihood framework leading
to the least-square image matching in the absence of outliers
but attempt to eliminate outliers bysoft maskingof ‘suspi-
cious’ pixels. To do so each pixel is weighed by a mask
entry ranging from 0 (an outlier) to 1 (‘pure’ noise). The
matching errors are modelled with a mixture of the proba-
bility distributions of random noise and outliers. The masks
are estimated with an Expectation-Maximisation (EM) al-
gorithm similar to the model identification schemes in [2,
3]. Because most of the unknown model parameters have
analytical estimates, the resulting iterative maximum likeli-
hood matching is faster and more flexible than its more con-
ventional M-estimator-based counterparts. Moreover, this
approach could be in principle extended to spatially variant
relative contrast / offset deviations between the images (al-
though the latter are eliminated in this case only numerically
using an appropriate quadratic programming technique).

The paper is organised as follows. Section 2 presents a
symmetric maximum likelihood matching score to measure
dissimilarity between two noisy images under spatially uni-
form contrast and offset deviations. Then a EM-based score
robust in the presence of outliers is derived from it. Ex-
periments describing the validity of the proposed matching
score in the case of face recognition or retrieval are given in
Section 3.

2. Symmetric maximum likelihood matching

Matching of images distorted with different contrast
(gain) and offset values and random noise leads to the fol-
lowing probability models of images. Letg : R → Q

denote a digital image on a finite 2D latticeR with val-
ues (grey levels ot colour indices) from a signal setQ.
Each image is considered as the vector,g = [g1, . . . , gp],
wheregi is the signal intensity for the pixeli. Let gj be

an image derived from an (unknown) noiseless template
g = (gi : i = 1, . . . , p) by arbitrary uniform contrast
(aj) and offset (bj) deviations of signals and independent
errors caused either by random noise or outliers. For the
non-outliers:

gji = ajgi + bj + εji; i ∈ {1, . . . , p}, (1)

where the errors,εji, have a centred normal distribu-
tion with the same variance. The outliers are uniformly
distributed and bear no relation to the template transforma-
tions.

Let, for simplicity, the per pixel error probability model
in Eq. (1) be a mixture of the normal noise distribution

N (ε|σ) = 1√
2πσ

exp
(

−ε2

2σ2

)
with an unknown varianceσ2

and the outlier distributionU(ε):

Pr(ε) = ρN (ε|σ) + (1 − ρ)U(ε) (2)

whereρ is an unknown prior probability of the noise.
Providing the errors are signed integers,ε ∈ {−Q +

1, . . . , Q − 1}, whereQ is the number of image grey val-
ues (typicallyQ = 256), the distributionN (ε|σ) is derived
from the zero-centred normal distribution of noise:

N (ε|σ) =
1

Zσ

exp

(
−ε2

2σ2

)
(3)

whereZσ =
∑Q−1

δ=−Q+1 exp
(

−δ2

2σ2

)
. Generally, the distri-

butions of both noise and outliers depend on the images of
interest. In some cases, the error distribution for outliers
can be associated with an empirical marginal distribution of
all differences between the image signals [4]. However this
model does not hold for many image types, in particular, for
the facial images from the MIT database in Fig. A6 where
the artificial black (gi = 0) background unduly overempha-
sises zero matching errors for outliers.

2.1. Uniform contrast and offset deviations

If the model in Eq. (1) accounts for only the
noise with no outliers, the maximum likelihood match-
ing score, leading to the minimum log-likelihood score
Dc

12 = minθ (− lnPr(g1,g2)), measures the signal dis-
similarity after replacing the unknown parameters,θ =
(a1, b1, a2, b2,g, σ2), with the most likely estimates (de-
noted by “hat” below):

Dc
12 = −

p∑

i=1

lnN (ε̂i) = p + p ln Ẑc
σ (4)



whereẐc
σ = π

p
Φ12 andΦ12 = min

θ

p∑
i=1

(
ε2
1i + ε2

2i

)
, that is,

Φ12 = min
θ

p∑
i=1

[
(g̃1i − a1gi − b1)

2
+ (g̃2i − a2gi − b2)

2
]

=
p∑

i=1

ε̂2
i = 1

2

[
S11 + S22 −

√
(S11 − S22)

2 + 4S2
12

]

whereSjk =
∑p

i=1(gji − µj)(gki − µk); j, k = 1, 2, is
the non-normalised signal covariance,µj = 1

ν

∑p

i=1 gji;
j=1,2, the mean signal value, andε̂i is the estimated mutual
residual noise:

ε̂i = α2 (g1i − µ1) − α1 (g2i − µ2) ;

α2
1 =

1

2

(
1 +

S11 − S22

[(S11 − S22)2 + 4S2
12]

1
2

)
; (5)

α2
2 =

1

2

(
1 −

S11 − S22

[(S11 − S22)2 + 4S2
12]

1
2

)

The score in Eq. (4) is obtained using the maximum likeli-
hood estimate,̂σ2 = 1

2p
Φ12, of the noise varianceσ2. The

matching score of Eq. (4) holds also for the discrete noise
distribution in Eq. (3) provided that the latter noise variance
estimate,̂σ2, is used in this case, too.

2.2. Expectation Maximisation Outlier
Masking

To derive the robust version of the score in Eq. (4), let
a soft noise mask,Γ = (γi : i = 1, . . . , p); γi ∈ [0, 1],
be applied to the signals in the images,g1 andg2, to be
matched. The maximum likelihood signal dissimilarity,
D12 = minθ,γ (− lnPr(g1,g2)), combines non-outliers
and outliers. Letεi be the residual matching error, or differ-
ence between the signals for the pixel,i, after their contrast
and offset deviations are eliminated. Then

D12 = −
p∑

i=1

[γi (lnN (εi)) + (1 − γi) lnU(εi)]

= ν + ν ln(Ẑσ) + Ψ12

(6)

whereν =
∑p

i=1 γi, Ψ12 =
∑p

i=1(1 − γi) lnU(εi), Ẑσ =
π
ν
Φ12, andΦ12 is the minimum total squared error with re-

spect to the model parametersθ
′ = {a1, a2, b1, b2,g}:

Φ12 = min
θ

p∑
i=1

γi

(
ε2
1i + ε2

2i

)

= min
θ

p∑
i=1

γi

[
(g1i − a1gi − b1)

2
+ (g2i − a2gi − b2)

2
]

=
p∑

i=1

γiε̂
2
i = 1

2

[
S11 + S22 −

√
(S11 − S22)

2
+ 4S2

12

]

Now Sjk =
∑p

i=1 γi (gji − µj) (gki − µk); j, k = 1, 2,
µj = 1

ν

∑p
i=1 γigji, and the estimated residual noiseε̂i and

factorsα1 andα2 are computed as in Eq. (6).

The estimated noise variance isσ̂2 = 1
2ν

Φ12. As before,
with this estimate, the matching score of Eq. (6) holds also
for the discrete noise distribution in Eq. (3). The local min-
imum of D12 by the parametersθ, γ is obtained using the
following EM-based iterative re-evaluation of both the soft
masks and model parameters.
EM-based image matching:

Input: two imagesg1 andg2.

Initial step t = 0: match the images with the mask
Γ[0] = [γ

[0]
i = 1 : i = 1, . . . , p] in order to find

Φ
[0]
12 , σ̂2

[0] = 1
2p

Φ
[0]
12 , D

[0]
12 = Dc

12, α
[0]
1 , α

[0]
2 , µ

[0]
1 , µ

[0]
2

(the conventional matching score and its components
in Section 2.1). Set the priorρ[0] = 0.5.

Iteration t = 1, 2, . . .: reset the mask and prior for the
current residual errorŝε[t]

i =

α
[t−1]
2

(
g1i − µ

[t−1]
1

)
− α

[t−1]
1

(
gi2 − µ

[t−1]
2

)
:

γ
[t]
i =

ρ[t−1]N
(
ε
[t]
i |σ[t−1]

)

ρ[t−1]N
(
ε
[t]
i |σ[t−1]

)
+ (1 − ρ[t−1])U

(
ε
[t]
i

) ;

ν[t] =

p∑

i=1

γ
[t]
i ; ρ[t] =

ν[t]

p

and updateS[t]
jk; j, k = 1, 2, Φ

[t]
12, σ2

[t] = 1
2ν[t]

Φ
[t]
12,

D
[t]
12, α

[t]
1 , α

[t]
2 , µ

[t]
1 , andµ

[t]
2 .

Stopping rule: terminate if|D[t]
12 − D

[t−1]
12 | ≤ θrD

[t]
12 or

t > θi whereθr andθi are the fixed thresholds.

This algorithm provides additional cues for robust match-
ing: if the priorρ is less than a given threshold (specifying
roughly an admissible level of outliers) or one of the
relative scaling factors,α1 or α2 is close to zero, the
matching obviously fails (i.e. the images are too dissimilar
overall).

3. Experimental results

To evaluate the proposed robust matching, we considered
the simplest case of rigid 2D matching under only contrast
and offset deviations, mutual translations, random noise,
and occlusions. Figure 2 shows that the EM-based sym-
metric dissimilarity score is more accurate and stable than
its more conventional counterpart using Eq. (4) for the cases
shown in Fig. 1.

Figure 3 and Table 1 compare the performance of the
matching scores based on Eqs. (4) and (6) for faces from
the MIT database in Appendix A distorted only by large oc-
clusions and matched to the same database. The occlusions



MIT FDB 01 DV1 DV1-L DV1-U

D12 · 10
−5 C1 01: 0.40 01: 1.11 11: 1.450

Soft mask
2nd match C2 02: 1.08 02: 1.32 07: 1.454

DV2 DV2-L DV2-U

D12 · 10
−5 C1 01: 1.414 01: 1.479 01: 1.508

Soft mask
2nd match C2 02: 1.415 02: 1.495 10: 1.510

Figure 2. Robust matching of the images
from Fig. 1: best (C1) and second best (C2)
scores D12 using Eq. (6) and grey-coded soft
masks (black - 0; white - 1).

cover either the upper (U) or lower (L) half of each face. In
these experiments,ρ ≤ 0.45 andαj ≤ 0.10. Note that im-
ages in the MIT database occur in pairs, images 1 and 2 are
of the same subject as are images 3 and 4, etc. A match to
another image of the same subject was considered a correct
match.

The experiments show that the EM-based matching score
based on Eq. (6) results in considerably more accurate
recognition of the occluded faces - 95% correct matches
compared to less than 50% using Eq. (4). It is also more
stable with respect to noise: differences between best match
and second best match were typically∼ 25% of the best
EM-based match score compared to differences of∼ 2%
for Dc

12. as regarding score differences between the best
match and second best match.

Figures 4 and 5 show results from additional experiments
in which subject’s aversions to razors, barbers and the sun
(typical sources of occlusions in real face images) were sim-
ulated. EM-based scores produced correct matches in all
the examples shown whereas scores based on Eq. (4). As
might be expected, the masks derived in the matching pro-
cess correspond closely to the shapes ‘added’ to the images
to simulate beards, glasses and additional hair.

01-L 01-U 02-L 02-U

Best matches for D
c
12

in Eq. (4)
02: 1.904 10: 1.945 12: 1.906 10: 1.931

Best matches for D12 in Eq. (6)
01: 0.86 01: 1.03 02: 1.03 02: 1.03

Soft masks for D12

03-L 03-U 04-L 04-U

Best matches for D
c
12

using Eq. (4)
12: 1.91 04: 1.955 12: 1.928 04: 1.965

Best matches for D12 using Eq. (6)
03: 0.98 03: 1.10 12: 1.57 04: 1.19

Soft masks for D12

Figure 3. Matching of the half-occluded im-
ages from the MIT Face Database in Fig. 6:
the robust score D12 in Eq. (6) vs. the score
Dc

12 using Eq. (4) (errors are boldfaced).

4. Conclusions

It is clear that a requirement for effective face match-
ing with templates in a database is an ability to handle both
photometric deviations (variations in contrast and offset) as
well as occlusions generated by artefacts covering regions
of the face. By modelling both contrast and offset devia-
tions as well as the possibility of outliers caused by large
changes in the image being matched, we have shown that it
is possible to match effectively even when large regions are
modified.
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M01-a M01-b M01-c M01-d
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D12 01: 1.03 01: 1.35 01: 1.39 01: 1.30

M01-e M01-f M01-g M01-h

D
c
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M03-a M03-b M03-c M03-d

D
c
12

03: 1.97 03: 1.89 03: 1.78 12: 1.99

D12 03: 1.61 03: 1.60 03: 1.27 03: 1.90

Figure 4. Best match for the faces synthe-
sized from faces ‘01’ and ‘03’ of the MIT
database in Fig. 6: robust score D12 using
Eq. (6) vs. Dc

12 using Eq. (4) and soft masks
(no errors vs. 50% errors (boldfaced), respectively).
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A The MIT Face Database

The above experiments use a subset of the MIT
database [8] containing two differently illuminated images
for each of the ten persons: in total, 20 normalised200×200
grayscale images shown in Fig. 6.

01 02 03 04 05

06 07 08 09 10

11 12 13 14 15

16 17 18 19 20

Figure 6. The MIT face database [8] subset.


