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Abstract Xxx-yyy - and image DV1 with offset altered from 0 to zzz.
These two images were further altered by application of a
Outliers due to occlusions and contrast and offset signal large mask (mimicking a large occlusion) to produce im-
deviations notably hinder recognition and retrieval of fa- ages DVx-L (lower mask) and DVx-U (upper mask), see
cial images. We propose a new maximum likelihood match-Figure 1.
ing score with “soft masking” of outliers which is robust
in these conditions. Differences between two images are MITFDB01  DV1 DV1-L DV1-U

modelled by unknown contrast and offset deviations from E ﬂ

an unknown template and by independent pixel-wise errors.
The error distribution is a mixture of a zero-centred Gaus-
sian noise with an unknown variance and uniformly dis-

tributed outliers. The matching score combines the maxi- C; 01: 0.0 02: 1.834 04: 1.82g1
mum likelihood estimates of model parameters and the soft C202:1.02  01:1.84¢ 03: 1.82g2
DV2 DV2-L Dv2-U

masks being produced by a simple iterative Expectation-
Maximisation algorithm. Experiments with facial images
from the MIT Face Database show the robustness of this
technique in the presence of large occlusions.

Cq 02: 1.42¢ 12: 1.929 10: 1.973
Co 01: 1.445 02: 1.93¢ 04: 1.975

1. Introduction

Figure 1. Best (C; x 107°) and second best

The main challenges in face recognition and retrieval are  (C2 x 10~°) matches to the MIT Face Database
associated with considerable deviations between facial im  subset (App. A) based on scores DY, (see
ages of the same person. This is often due to varying obser- Section 2) for images with altered contrast
vation position, orientation, and resolution, differdhitrini- and offset (DV1, DV2) and large occlusions
nation, partial occlusions (e.g. by hair, glasses, scarves  (DVz-L, DVz-U). Matching errors are bold-
and so on. Thus robust best image matching has to allow faced. Note that a match to a different image
for these deviations in the matching score and effectively of the same face is not considered an error.
eliminate them. However, most local deviations - especiall
caused by occlusions - cannot be easily eliminated because
they result in signal outliers that do not conform to conven- ~ Of course, outlier definition and characterisation de-
tional formal models of image deviations. pends on a particular image recognition or retrieval prob-

Outliers adversely affect the accuracy of image recog- lem. For instance, not only visual occlusions can be treated
nition. Consider, for example, a subset of the MIT face as outliers. As well, it would be sensible to exclude back-
database [8] in Appendix A. To show that classification in- ground from matching because it is likely to be consider-
variant to uniform contrast and offset deviations in facial ably different in facial images of the same person. Many
images fails or becomes unstable if the deviations are com-face databases simply crop images to completely eliminate
bined with large occlusions, we took an image from the backgrounds as in the MIT database [8] in Fig. A6. How-
MIT Face Database and formed two variants by changingéever, backgrounds could also be considered as outliers and
the contrast and offset values: image DV1 with reduced eliminated in the same manner as occlusions.
contrast - the intensity range was reduced from 0-255 to  In order to focus on the robustness to outliers, we only



considered the specific problem of pixel-to-pixel match- an image derived from an (unknown) noiseless template
ing under relative translations, spatially uniform costra g = (g; : ¢« = 1,...,p) by arbitrary uniform contrast
and offset deviations and occlusions. Today’s robust im- (a;) and offset §;) deviations of signals and independent
age matching [1, 7, 10] replaces pixel intensities (grey val errors caused either by random noise or outliers. For the
ues or colour components) with local features (e.g. nor- non-outliers:

malised signal gradients) which are more stable to con-

tra;t and offset variatio_ns and explpits mostly statidsl_\'tta gji = ajgi +b; +ejis i€ {1,...,p}, (1)
estimators [6, 9] to derive a matching score. M-estimators
depends less on outliers than least-square estimatorg as th
error function has a less than than quadraticgrqwth foelarg tion with the same variance. The outliers are uniformly
error values._ Ho_wever.robustness of Iv''es'['m‘fj‘tor'b"’lseddistributed and bear no relation to the template transferma
scores to outliers is obtained at the cost of complex numer-; o

ical optimisation for matching images under relative con- L . .

trast and offset distortions compared to least-squareebas . Let, for S|mpI|C|ty, the per pixel error pro.bablll_ty r.nod.el
scores. Because spatially uniform contrast and offseddist in Eq. (1) be a mlxture2 of the normal noise distribution
tions cannot be analytically eliminated, M-estimatordzhs N (¢lo) = 5= exp (%) with an unknown variance?
scores have more local optima in the parameter space thaand the outlier distributiot¥ (<):

complicate the numerical search for the best match.

where the errorsg;;, have a centred normal distribu-

We preserve the maximum likelihood framework leading Pr(e) = pN(e|o) + (1 — p)U(e) (2)
to the least-square image matching in the absence of autlier
but attempt to eliminate outliers tsoft maskingf ‘suspi- wherep is an unknown prior probability of the noise.

cious’ pixels. To do so each pixel is weighed by a mask

entry ranging from 0 (an outlier) to 1 (‘pure’ noise). The

matching errors are modelled with a mixture of the proba-

bility distributions of random noise and outliers. The mask

are estimated with an Expectation-Maximisation (EM) al-

gorithm similar to the model identification schemes in [2, 1 ( 2)
exp

Providing the errors are signed integetse {—Q +
1,...,Q — 1}, where@ is the number of image grey val-
ues (typicallyQ = 256), the distributionV (¢|o) is derived
from the zero-centred normal distribution of noise:

—&
3]. Because most of the unknown model parameters have N(elo) = — Py

Z 20 (3)

analytical estimates, the resulting iterative maximurallik
hood matching is faster and more flexible than its more con- )
ventional M-estimator-based counterparts. Moreoves, thi whereZ, = Z(;Q;IQH exp (%) Generally, the distri-
approach could be in principle extended to spatially vadrian butions of both noise and outliers depend on the images of
relative contrast / offset deviations between the imagles (a interest. In some cases, the error distribution for owlier
thoughthe latter are eliminated in this case only numdyical can be associated with an empirical marginal distribution o
using an appropriate quadratic programming technique). all differences between the image signals [4]. However this
The paper is organised as follows. Section 2 presents amodel does not hold for many image types, in particular, for
symmetric maximum likelihood matching score to measure the facial images from the MIT database in Fig. A6 where
dissimilarity between two noisy images under spatially-uni the artificial black ¢; = 0) background unduly overempha-
form contrast and offset deviations. Then a EM-based scoresises zero matching errors for outliers.
robust in the presence of outliers is derived from it. Ex-
periments describing the validity of the proposed matching
score in the case of face recognition or retrieval are giaen i
Section 3.

2.1. Uniform contrast and offset deviations

If the model in Eqg. (1) accounts for only the
2. Symmetric maximum likelihood matching noise with no outliers, the maximum likelihood match-
ing score,leading to the minimum log-likelihood score
D$, = ming (—InPr(g1,g2)), measures the signal dis-
similarity after replacing the unknown parametefs,=
(a1, b1, as,b2,g,0?), with the most likely estimates (de-
noted by “hat” below):

Matching of images distorted with different contrast
(gain) and offset values and random noise leads to the fol-
lowing probability models of images. Let : R — Q
denote a digital image on a finite 2D latti& with val-
ues (grey levels ot colour indices) from a signal €gt »
Each image is considered as the vecgpr= [g1, ..., gy, DS, = — Zlnl\/(éi) —p+plnZe 4)

whereg; is the signal intensity for the pixel Letg; be —



R P _
whereZ; = 7 &1 and®;, = min ;:1 (e1; +€3;), thatis,
AT~ 2 ~ 2
©12 = min > [(gu —a1g; — b1)” + (g2; — azg; — ba) }
=1
= Z é? = % |:511 + SS9 — \/(Sll - 522)2 + 45122:|
=1

whereS;, = 37, (950 — k) gk — m); J.k = 1,2, is
Fhe non-normalisgd signal covar!anqx—;;, = LS gjis
j=1,2, the mean signal value, aédis the estimated mutual
residual noise:

& = az(gu— ) — a1(gai — p2);

a% = % <1 + S = S22 ;) ; (B)
[(S11 — S22)2 +453,)

o2 = %(1_ S11 — S 2 1)
[(S11 — S22)? + 4S7,]?

The score in EqQ. (4) is obtained using the maximum likeli-
hood estimates? = %@12, of the noise variance?. The
matching score of Eq. (4) holds also for the discrete noise
distribution in Eq. (3) provided that the latter noise vada
estimates?, is used in this case, too.

2.2. Expectation Maximisation Qutlier
Masking

To derive the robust version of the score in Eq. (4), let
a soft noise maskIl’ = (v; : ¢ = 1,...,p); v € [0,1],
be applied to the signals in the images, andg», to be
matched. The maximum likelihood signal dissimilarity,
Dys = ming - (—InPr(gi,g2)), combines non-outliers
and outliers. Let; be the residual matching error, or differ-
ence between the signals for the pixekfter their contrast
and offset deviations are eliminated. Then

- ; [y (NN (E2)) + (1 = %) InU(e3)]
=v+ Vln(Za) 4+ Uy

e ©

wherer = Zle Yis Uiy = le(l — ’}/Z) IHU(EZ‘), ZU =
Z®15, and®,, is the minimum total squared error with re-
spect to the model paramet@&'s= {a1, as, by, ba, g}:

P
P12 = Ingin > i (e +€3)
i=1

& 2 2

= H19Hl ; Yi {(911‘ —a19; — b1)” + (g2 — a2g; — b2) ]
P 22 1 2 2

= 7€ =5 [Su+ S22 — \/(511 — S92)” + 457,
i=1

Now Sy = 327 1 i (g0 — 1t5) (gri — pw); G,k = 1,2,
i = % > vigji, and the estimated residual noisend
factorsa; andas are computed as in Eq. (6).

The estimated noise variancesi$ = %@12. As before,
with this estimate, the matching score of Eq. (6) holds also
for the discrete noise distribution in Eq. (3). The local min
imum of D15 by the parameter8, ~ is obtained using the
following EM-based iterative re-evaluation of both thetsof
masks and model parameters.

EM-based image matching:

Input: two imagesz; andgs.

Initial step t = 0: match the images with the mask

% = /% = 1:4 =1,...,p] in order to find

0] 0 0 c 0 0 0 0
o), 5% = Lo, DY = Dy !, all Y,
(the conventional matching score and its compon
in Section 2.1). Set the prigf, = 0.5.

ents

Iteration ¢ = 1,2, ...: reset the mask and prior for t
current residual errorét] =

Oé[ztil] (gli - M[ltil]) - 04[1%1] (91‘2
p[t—l]N (5£ﬂ|0[t—1])
[t]

pr—yN (Egt]lU[tq]) + (1 = pp—1)U (8-

ne

N Iu[ztfl]

2

) ;

~ 1 Yy
Viy) = Z%— 3P =
i=1 p
and updates*g.’z; gk = 1,2, o, ofy = 2'/1m ol

N N L1 1

Dis, a3, ay'y py,

andu[;].

Stopping rule: terminate if| DI} — DI < ¢, DI or
t > 0; wheref, andé; are the fixed thresholds.

This algorithm provides additional cues for robust match-
ing: if the priorp is less than a given threshold (specifying
roughly an admissible level of outliers) or one of the
relative scaling factorspy; or as is close to zero, the
matching obviously fails (i.e. the images are too dissimila
overall).

3. Experimental results

To evaluate the proposed robust matching, we considered
the simplest case of rigid 2D matching under only contrast
and offset deviations, mutual translations, random noise,
and occlusions. Figure 2 shows that the EM-based sym-
metric dissimilarity score is more accurate and stable than
its more conventional counterpart using Eq. (4) for the sase
shown in Fig. 1.

Figure 3 and Table 1 compare the performance of the
matching scores based on Eqgs. (4) and (6) for faces from
the MIT database in Appendix A distorted only by large oc-
clusions and matched to the same database. The occlusions



MIT FDB 01 DV1 DV1-L DV1-U 01-L 01-U 02-U
. n ﬂ ] |
Dis-1075 C; 01: 0.40 01: 1.11 11: 1.45¢ Best matches for DS, in Eq. (4)
02: 1.904 10: 1.945 12: 1.90¢ 10: 1.93;
‘ Best matches for D12 in Eq. (6)
e ; 01: 0.86 01: 1.03 02: 1.03 02: 1.03
} = r Soft masks for D12
Soft mask
2"d match C2 02: 1.08 07: 1.454

Dv2-U

03-U

Dis-1075 Cy1 01: 1.414

Best matches for Df, using Eq. (4)

12: 1.91 04: 1.955 12: 1.928 04: 1.965
Soft mask . Best ma.ltches for Dy2 us.ing Eq. (6) .
ond match Co 02: 1415 02: 1.495 10: 1.510 03: 0.98 03: 1.10 12: 1.57 04: 1.19
Soft masks for D2
Figure 2. Robust matching of the images ‘
from Fig. 1: best (C,) and second best (C,)
scores Di, using Eq. (6) and grey-coded soft '

masks (black - 0; white - 1).

Figure 3. Matching of the half-occluded im-
ages from the MIT Face Database in Fig. 6:
cover either the upper (U) or lower (L) half of each face. In ~ the robust score D, in Eq. (6) vs. the score
these experimentg, < 0.45 anda; < 0.10. Note that im- Di, using Eq. (4) (errors are boldfacgd
ages in the MIT database occur in pairs, images 1 and 2 are
of the same subject as are images 3 and 4, etc. A match to
another image of the same subject was considered a corre
match.

The experiments show that the EM-based matching score
based on Eq. (6) results in considerably more accurate It is clear that a requirement for effective face match-
recognition of the occluded faces - 95% correct matchesing with templates in a database is an ability to handle both
compared to less than 50% using Eq. (4). It is also more photometric deviations (variations in contrast and ojfast
stable with respect to noise: differences between bestmatc well as occlusions generated by artefacts covering regions
and second best match were typically25% of the best  of the face. By modelling both contrast and offset devia-

C .
ﬁ. Conclusions

EM-based match score compared to differences dt% tions as well as the possibility of outliers caused by large
for DS$,. as regarding score differences between the bestchanges in the image being matched, we have shown that it
match and second best match. is possible to match effectively even when large regions are

Figures 4 and 5 show results from additional experiments Mdified.

in which subject’s aversions to razors, barbers and the sun
(typical sources of occlusions in real face images) were sim
ulated. EM-based scores produced correct matches in aIIReferenC&

the examples shown whereas scores based on Eq. (4). As[1] J.-H. Chen, C.-S. Chen, and Y.-S. Chen, Fast algo-
might be expected, the masks derived in the matching pro- rithm for robust template matching with M-estimators,
cess correspond closely to the shapes ‘added’ to the images  IEEE Trans. Signal Processingol. 51, pp. 230-243,

to simulate beards, glasses and additional hair. 2003.



Table 1. Best (C;) and second best (C3) match
for the half-occluded images from the MIT
Face Database in Appendix A using scores
based on Eq. (4) and Eq. (6) (Matching errors are
in bold: a match to another template of the same per-
son is considered correct ).

DS, 01: 1.15

Eq. @) DS, - 107

Eq. (6): D15 - 10—°

D12 01: 1.03

‘*u,;;//

DS, 02: 1.60 02: 1.72 02: 1.55 02: 1.65

D12 01: 0.96 01: 1.08 01: 0.80 01: 1.02

DS, 12:1.99

Djo 01: 1.51

DS, 03: 1.97 03: 1.78

Face | C;: ?2 Ca: ?2 Ci: D1o Cs: D1o

01-L | 02:1.90 12:19% | 01:0.86 02:1.28
02-L | 12:1.90; 08:1.92 | 02:1.03 01:1.27
03-L | 12:1.91, 08:1.92 | 03:0.98 04:1.45
04-L | 12:1.92% 02:1.94 | 12:1.57 06:1.60
05-L | 06:1.9% 12:1.92 | 05:1.13 09:1.50
06-L | 06:1.85 12:1.8% | 06:1.14 05:1.53
07-L | 08:1.88 12:1.91 | 07:1.01 08:1.53
08-L | 08:1.48 12:1'8% | 08:1.08 07:1.86
09-L | 12:1.91y 09:1.93 | 09:0.82 10:1.38
10-L | 12:1.89, 08:1.92 | 10:0.94 09:1.39
11-L | 12:1.9G 02:1.93 | 11:0.90 09:1.50
12-L | 12:1.83 11:1.8% | 12:0.88 10:1.57
13-L | 14:1.96 16:1.9¢ | 13:1.10 14:1.49
14-L | 08:1.9% 12:1.93 |14:1.17 13:1.50
15-L | 16:1.92 08:1.9% | 15:1.12 11:1.53
16-L | 16:1.8¢ 08:1.93 | 16:1.18 07:1.55
17-L | 16:1.9% 08:1.94 |17:1.13 18:1.50
18-L | 18:1.92 17:1.92 | 18:1.04 17:1.48
19-L | 12:1.94) 08:1.94 | 19:1.04 20:1.48
20-L | 12:1.94 08:1.9% | 20:1.05 19:1.49
01-U | 10:1.94 04:1.94 | 01:1.03 02:1.32
02-U | 10:1.93 04:1.93 | 02:1.03 01:1.32
03-U | 04:1.9¢ 03:1.9% | 03:1.10 09:1.47
04-U | 04:1.9¢ 03:1.9% | 04:1.19 10:1.49
05-U | 05:1.94 06:1.95 | 05:1.18 09:1.48
06-U | 06:1.8§ 05:1.89 | 06:1.21 10:1.52
07-U | 04:195 03:1.9% |07:1.11 01:1.48
08-U| 04:1.88 03:1.88 |08:1.14 09:1.51
09-U | 10:1.92 09:1.93 | 09:1.01 10:1.42
10-U | 10:1.92 09:1.93% | 10:1.06 12:1.51
11-U | 03:1.95 04:1.95 | 11:1.08 09:1.49
12-U | 04:1.85 03:1.8% | 12:1.02 10:1.49
13-U | 13:2.0¢ 14:2.0Q¢ | 13:1.17 14:1.54
14-U | 13:1.98 14:199 | 14:1.18 13:1.54
15-U | 15:2.02 13:2.03 | 15:1.11 10:1.56
16-U | 15:1.93 13:1.95 | 12:1.58 10:1.59
17-U | 03:1.98 04:19%9 | 17:1.02 18:1.51
18-U | 04:1.98 03:198 | 18:1.13 17:1.51
19-U | 03:1.98;, 04:198 | 19:1.14 10:1.51
20-U | 04:1.97% 03:1.9% | 20:1.16 09:1.48

Error rate: 47% Error rate: 5%

D12 03:

;

03: 1.27

Figure 4. Best match for the faces synthe-
sized from faces ‘01’ and ‘03’ of the MIT
database in Fig. 6: robust score D> using
Eqg. (6) vs. DS, using Eq. (4) and soft masks
(no errors vs. 50% errors (boldfaced), respectively



DE, 12: 1.99

D12 03: 1.49

Figure 5. Best match for faces synthe-
sized from faces ‘03’ and ‘09’ from the MIT
database in Fig. 6: the robust score D;s us-
ing Eq. (6) vs. the score DY, using Eq. (4) and
grey-coded soft masks (no errors vs. 50% errors
(boldfaced), respectively
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A TheMIT Face Database

The above experiments use a subset of the MIT
database [8] containing two differently illuminated image
for each of the ten persons: in total, 20 normali2@@lx 200
grayscale images shown in Fig. 6.
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Figure 6. The MIT face database [8] subset.



