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Abstract In this paper, we study the problem of supporting
multidimensional range queries on encrypted data. The prob-
lem is motivated by secure data outsourcing applications
where a client may store his/her data on a remote server in
encrypted form and want to execute queries using server’s
computational capabilities. The solution approach is to
compute a secure indexing tag of the data by applying bucket-
ization (a generic form of data partitioning) which prevents
the server from learning exact values but still allows it to
check if a record satisfies the query predicate. Queries are
evaluated in an approximate manner where the returned set
of records may contain some false positives. These records
then need to be weeded out by the client which comprises the
computational overhead of our scheme. We develop a buck-
etization procedure for answering multidimensional range
queries on multidimensional data. For a given bucketization
scheme, we derive cost and disclosure-risk metrics that
estimate client’s computational overhead and disclosure
risk respectively. Given a multidimensional dataset, its
bucketization is posed as an optimization problem where
the goal is to minimize the risk of disclosure while keeping
query cost (client’s computational overhead) below a certain
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user-specified threshold value. We provide a tunable data
bucketization algorithm that allows the data owner to
control the trade-off between disclosure risk and cost. We
also study the trade-off characteristics through an extensive
set of experiments on real and synthetic data.
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1 Introduction

The problem of querying encrypted data is primarily
motivated by data outsourcing applications. In a typical
setup, the service provider hosts the data of its clients and
provides a variety of data management functionalities, like
queries, updates, modifications etc. While the server is
expected to implement the various operations correctly, the
client may not trust the server side with complete access to
its sensitive data. The solution is to store the sensitive data in
encrypted form and keep the keys secret from the server at
all times. To query this encrypted data, however, the server
should be able to evaluate various query predicates against
the data without having to decrypt it.

In this paper, we study the problem of supporting the
important class of multidimensional range queries over rela-
tional data in a privacy-preserving manner. There are many
practical applications where such range queries need to be
supported—for example, an internet service provider may
outsource the management of the web logs of his clients.
He may want to query this data to analyze traffic patterns
by date ranges and IP address ranges specified as 128.54.∗
etc. Consider another scenario where a large company keeps
an inventory of its stock across its warehouses using RFID
tags and readers. This data may be outsourced to a service
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provider for cost-saving purposes, but needs to be frequently
queried by analysts managing the supply chain. The queries
pertaining to location of goods may be specified using geo-
graphic regions and/or time ranges. Yet, another example
could be of a credit-rating agency that outsources its data-
base to a remote service provider where data are queried
by predicates specified on various financial attributes of an
individual. Range queries in such applications comprise an
important class of queries. All this data contain sensitive
information which the owner may want to keep hidden from
the server. As a concrete example, consider the following
relational table which may be stored remotely by the credit-
rating agency:

CUSTOMER(ssn,name,sex,salary,age,credit-rating)

The goal is to support multidimensional range queries like
the ones shown below without revealing the content of the
relation CUSTOMER to the database server.

SELECT * FROM CUSTOMER as C,
WHERE C.salary > 50K AND C.salary < 75K

SELECT * FROM CUSTOMER as C,
WHERE C.salary > 100K AND C.age < 35

The general approach is to encrypt the actual data using
some semantically secure encryption algorithm like AES [1].
The query predicate is evaluated by the server against some
indexing information created from the plaintext and stored
along with the original data as a “tag”. In cryptographic
approaches, the tag is the ciphertext generated by applying
the “searchable encryption” algorithm that as input a secret
key and the plaintext data generate the ciphertext. The server
can then evaluate the query predicate against this tag once
an appropriate “trapdoor” has been released by the client.
An alternative approach, one that we use in this paper, is
based on data partitioning (also known as bucketization in
the literature). Here, the data are first partitioned into buckets
and the bucket-id is set as the tag for each data item in the
bucket. A query posed by the client is then translated suit-
ably before issuing it to the server who can evaluate it using
only the information in the index tags corresponding to the
data items. We provide a little background on bucketization
next.

1.1 Bucketization background

Hacigumus et al. [23] were the first ones to propose the
bucketization-based data representation for query process-
ing in an untrusted environment (described in detail in
Sect. 3.2). Their bucketization was simply a data partition-
ing step similar to those used for histogram construction,
for instance, equi-depth, equi-width partitioning, etc. fol-
lowed by assignment of a random (index) tag to each bucket

effectively making every element within a bucket indistin-
guishable from another. When a query is issued by the client
(data owner), it is first determined which buckets intersect
the query using the index tag stored on the client (this is typ-
ically a small amount of information) and all contents of the
intersecting buckets are retrieved from the server. The disad-
vantage is that the query result almost certainly consists of
false positives which have to be eliminated by the client in
the post-processing phase. Unfortunately, the bucketization
schemes proposed in [23] are neither optimal for minimizing
false positives, nor are they especially suited for preventing
disclosure of data values against the simplest of adversar-
ial attacks. A more principled approach for one-dimensional
range queries was developed by the authors of the current
paper in context of single-dimensional range queries over
numeric attributes [29].

Range queries over data with numeric attributes are an
important class of queries that has received a lot of atten-
tion in the literature [4,6,9,29,34,43]. There are essentially
three categories of solutions that have been developed for
range queries—(i) those that use some specialized data struc-
ture for range query evaluation while trying to preserve
notions of semantic security of the encrypted representation
[9,34,43]. (ii) Order-preserving encryption-based techniques
[4,6] that ensures that order amongst plaintext data is pre-
served in the ciphertext domain. This allows direct trans-
lation of range predicates from the original domain to the
domain of the ciphertext. (iii) Bucketization-based tech-
niques like [29] and this paper, that use distributional
properties of the dataset to partition and index them for
efficient querying while trying to keep the information dis-
closure to a minimum. The information disclosure analysis is
akin to statistical disclosure control and privacy-preserving
data publishing approaches [35,47]. We will describe some
of the techniques in the first two classes in more in depth
in Sect. 7 on related works. Let us now delve into the
bucketization-based approach for multidimensional range
queries.

1.2 Bucketization-based techniques for range search

As mentioned above, bucketization can be seen as a general-
ized partitioning algorithm that induces indistinguishability
amongst data objets in a controlled manner. The nature of
disclosure in bucketization-based schemes is different from
that in cryptographic schemes. In the latter, the disclosure
risk is inversely proportional to the difficulty of breaking
the encryption scheme and if broken, there is complete
disclosure of the plaintext values. In contrast, the informa-
tion disclosure in bucketization approaches could be partial
or probabilistic in nature. That is, there could be a non-
negligible probability of partial disclosure of a sensitive value
given the transformed data, e.g., the bucket identity might
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Secure multidimensional range queries over outsourced data 335

identify some intervals to which the true value of the sensitive
attribute belongs to. Also, unlike cryptographic schemes that
aim for exact predicate evaluation, bucketization admits false
positives while ensuring all matching data are retrieved. A
post-processing step is required at the client to weed out
the false positives. Data bucketization is set up as a cost-
based optimization problem where buckets are created so
as to minimize the average number of false positives per
query. One of the biggest advantages of bucketization frame-
work is that expressive and complex queries can be eval-
uated relatively efficiently. Further, the implementation of
bucket-based query evaluation is often much simpler than
cryptographic protocols and do not require any specialized
algorithms to be executed on the server. Finally, bucketiza-
tion can actually be composed with many of the crypto-
graphic techniques to enhance the confidentiality properties
of searchable encryption schemes, but we will not go into
them in detail here.

1.3 Issues with extending single-dimensional schemes (like
[29]) to multiple dimensions

Out of all the works mentioned above, only [43] explicitly
addresses the multidimensional range search technique over
encrypted data. We note (as has been observed in [43]) that
one can adapt 1-dimensional search techniques to the multi-
dimensional case, but it leads to unwanted leakage of infor-
mation. As illustrated in the following example, if one were
to retrieve the data satisfying the query predicate along each
dimension independently and then compute the final set by
taking the intersection of these sets, it can lead to information
leakage.

1.4 Example

Consider two 2-d range queries R1(r1
1 , r2

1 ) and R2(r1
2 , r2

2 )

where r j
i represents the predicate of the i th query along j th

dimension. If we were to implement the range queries naively
by retrieving the set of records corresponding to each r j

i sep-
arately and then taking their intersection, after answering the
two queries above, the server would also be able to determine
all the records that satisfy the two range predicates (r1

1 , r2
2 )

and (r1
2 , r2

1 ) by simple intersection of the lists retrieved for
R1 and R2. This is clearly more information than what the
server needs to know. While the technique proposed in this
paper (and in [29]) only return “noisy” sets (i.e., that may
contain false positives), the simple list intersection attack
reveals more information than necessary and can help the
adversary guess the true value of a sensitive attribute.

Hence, it is clear that there is a need for developing
efficient algorithms for supporting multidimensional range
queries on encrypted data.

1.5 Contributions of this paper

In this paper, we generalize the bucketization-based approach
for 1-dimensional range queries proposed in our previous
work [29] to the multidimensional case. Specifically, we
describe how the bucketization technique can be applied
to multidimensional data. We will derive appropriate cost
function for measuring the overhead of evaluating multi-
dimensional range queries in this model. This, as we will
see, turns out to be substantially more complicated than the
single-dimensional case. We will develop a heuristics-based
polynomial time algorithm that works very well in practice.
To summarize, the additional contributions of this paper over
and above [29] are:

– We derive the disclosure metrics for bucketization from
first principles and confirm the correctness of the intuition
that was given in [29].

– We derive a new cost metric that measures the expected
performance overhead for multidimensional range queries
over bucketized data.

– We propose an efficient multidimensional bucketization
algorithm that uses novel heuristics to minimize the cost.

– We provide insightful discussions to the nature of privacy-
performance trade-off that bucketization facilitates for
multidimensional data.

– Finally, we carry out extensive experimentation using real
and synthetic data to measure the performance and quality
of our algorithms and illustrate how they are superior to
off-the-shelf data partitioning approaches.

1.6 Outline of paper

In the next section (Sect. 2), we describe the typical data
outsourcing architecture and give an overview of the data
representation and query execution method proposed in this
work. In Sect. 3, we derive the metrics that reflect the cost
of executing single and multidimensional range queries over
bucketized data. In the same section, we also propose two
measures of disclosure risk for the bucketized data. Sec-
tion 4 develops the 2-stage bucketization algorithm. The
first stage consists of an optimal partitioning algorithm that
creates buckets that minimize query execution overhead. The
second stage is the controlled diffusion algorithm that mixes
the contents of the buckets generated in the first stage to
create “safer” buckets while trading off a specified amount of
performance (i.e., while keeping the performance overhead
below an user-specified threshold). In Sect. 5, we discuss the
results from our extensive set of experiments for both single
and multidimensional data and queries. We provide some
discussion on practical aspects of our approach in Sect. 6.
We discuss some related work in Sect. 7 and conclude in
Sect. 8.
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Fig. 1 Data outsourcing model

2 Preliminaries

2.1 The outsourcing model

Figure 1 shows a simplified architecture for data out-
sourcing application. Here, the server-side environment is
assumed to be untrusted and therefore the sensitive data
must always remain encrypted on the server. We describe the
untrusted server model and corresponding adversarial attacks
in Sect. 3.2. To evaluate SQL queries, the client can down-
load the whole table onto the server side and then decrypt the
tables and execute the query. A trivial approach such as this,
however, would defeat the purpose of database outsourcing,
reducing it to essentially a remote secure storage. Instead,
the goal is to enable query processing at the server without
decrypting the data.

The client consists of two main components: the query
translator and query post-processor which are always
assumed to operate within the secure environment. To enable
query processing, auxiliary data are added to the each
encrypted record and referred to as the index tag. The plain-
text queries of the user needs to be translated appropri-
ately so that the server can evaluate it against the secure
indexes. This is carried out by the query translator using
the mapping functions. The server evaluates the translated
query predicate against the indexes and returns a set of
encrypted records. The returned set contains all true answers
possibly along with some false-positive records. The post-
processor decrypts the data and eliminates the false posi-
tives. We will illustrate the query translation and response
process shortly. The client also uses the mapping functions
for generating the index information on updates and new
insertions.1 The re-computation of these secure indexes is
expected to be infrequent2 and therefore the amortized cost

1 For generating the secure index information when new data are added,
the client makes use of the mapping functions which were constructed
during the creation of the secure indexes the first time. We assume that
a table is indexed only when it is of substantial size and significant
efficiencies can be expected by selective access during query evalua-
tion on the server side (as opposed to simply downloading the whole
dataset onto the client).
2 A re-computation of indexes is required only when the data
distribution changes substantially and this we assume is a rare event.

is not too great on the client. Additionally, key management
and encryption/decryption of data are client’s responsibility
and are all carried out exclusively within its secure perime-
ter. The key management issues are outside the scope of the
current paper and will not be discussed here any further.

2.2 Bucketization-based indexes for query processing

2.2.1 Encrypted representation of relational data

Consider the CUSTOMER table introduced earlier:

CUSTOMER(ssn,name,sex,salary,age,credit-rating)

The client may want to store values of “salary” and “age”
encrypted so that they are not disclosed but still support
queries with predicates defined on these attributes. We will
assume that data are encrypted at the row level, i.e., each row
of the table is encrypted as a single unit which we will refer to
as an e-tuple [23,29]. In a d-dimensional model for the rela-
tional data, the d dimensions typically correspond to the attri-
butes which are used in query predicates. To enable queries,
the server-side indexing data are generated as follows. The
set of data points are partitioned into M d-dimensional buck-
ets on the client (partitioning algorithm will be described in
Sect. 4) and the bucket label of each record is stored along-
side the corresponding e-tuple on the server. The client stores
the extents of each of the M rectangular buckets which are
then used to determine whether an user query intersects with
a bucket. This requires an additional O(dM) space on the
client. We illustrate the bucketization and query translation
process for multidimensional range queries below.

2.2.2 Multidimensional data and range queries

A multidimensional dataset R of dimension d is any set of
points where each point is specified by an ordered set of
d co-ordinates, where each co-ordinate takes values from
a specified domain Di , i = 1, . . . , d. A multidimensional
range query in a d dimensional space is specified by two
d-dimensional points p1 and p2 which determine the end
points of the longest diagonal where all co-ordinates of
p1 have values smaller than or equal to the corresponding
co-ordinates of p2. Answering a multidimensional range
query q consists of selecting the set of points from R that
satisfy the query predicate, i.e., lie within or on the query rect-
angle. In the outsourcing model, the client specifies the query
and the server retrieves the set of points from R that satisfy
the predicate and returns them to the client over the network.

In Fig. 2, the original CUSTOMER table is shown in the
bottom left-hand corner. Let the queried attributes be salary
and age. The partitioning algorithm maps the projected two-
tuple (salary, age) of each row in R to a two-dimensional
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R: Original Table (plain text) R A :Server side Table (encrypted + indexed)

3339kBadMaleJerry780

3445kGoodMaleJohn234

4029kGoodFemaleMary876

3234kBadMaleTom345

agesalcredit
rating

sexnamessn

B1: <(28k, 34), (33k, 40)>

B2: <(30k, 28), (45k, 38)>

B3: <(38k, 32), (41k, 35)>

Server side data

Client side data

B3&*#($T%#$@$R@@$#@^FG$%&

B2&*#($T%#$@$R@@$#@^FG$%&

B1&^$^G@UG^g&@^&&#G@@#(GW

B2(^#&*%T%&4&7ERGTty^Q!%^&*

Betuple

Encrypt

(28K,34)

(33K,40)
(45K,38)

(38K,32)

(41K,35)B1 B2

B3

Salary

A
ge

(30K,28)

Fig. 2 Queries on bucketized data

space and clusters them into 3 groups represented by the rect-
angles B1, B2 and B3. A new column is added to the table,
for the bucket label and denoted B. The B-value of each
tuple denotes the bucket to which that tuple is assigned. The
bucket labels by themselves give out no information regard-
ing the nature of values within the buckets. Each original
tuple is then encrypted and stored as a single encrypted string
(e-tuple) along with its assigned bucket label on the server
side in the table R A. The bucket label is stored in plaintext
to allow queries. Now consider a range query q: “Select ∗
From R Where salary ∈ [25k, 35k]∧ age ∈ [30, 36].” To
fetch the tuples meeting the selection criteria of q, the client
utilizes the translation information (client-side data) to map
q to a query over the buckets. As a result, q is translated to
q ′: “Select ∗ From R A Where bucket = B1 ∨ B2”. This not
only retrieves the true answer set, but also some false posi-
tives. Since the false positives comprise the overhead of the
scheme, we set the cost of a bucket as an estimate of the total
number of false positives that it contributes over the set of all
possible range queries. We will see in Sect. 3 how the cost
of buckets can be estimated.

2.2.3 Encryption of bucket labels

One may think that using non-deterministic encryption of the
bucket labels for each e-tuple on the server side will raise the
level of security, but that is not so. The reason being, in our
query model, all elements in a bucket need to be retrieved
together. Therefore, irrespective of whether bucket labels
have been encrypted or not, over sufficient number of dis-
tinct queries, an adversary will be able to determine which
elements belong to the same bucket with a reasonably high
probability. As a result, in the asymptotic analysis, encryp-
tion of bucket labels do not make a difference.

3 Performance cost and disclosure risk

With respect to a query, a bucketization (partitioning) of the
dataset is considered good if the number of false positives

Salary

B2

B3

B1

query

A
ge

(28K,34)

(33K,40)

(30K,28)

(45K,38)

(38K,32)

(41K,35)

Fig. 3 Query cost estimation

retrieved is not too large. Intuitively, one can see that greater
the number of buckets, smaller is the overhead per query.
In contrast, from security point of view, the best scheme is
to assign all data points to one bucket. Such a scheme does
not leak any information whatsoever, to a server-side adver-
sary, but it is obviously unacceptable for large datasets since
every query will lead to retrieval of the whole dataset. In this
section, we will assume that the owner specifies the number
of buckets M that are to be used. Later in Sect. 6, we will
describe how a good value of M may be selected in practice.
For a given set (or class) of queries, the optimal partition-
ing scheme (from performance perspective) is the one that
minimizes the total number of false-positive retrievals over
all queries in this class. We analytically derive expressions
for the total number of false positives retrieved for the class of
multidimensional range queries. We will refer to the expres-
sion of number of false positives as the cost measure or
objective function. The objective is then to minimize the cost
of the bucketization scheme. In [29], we derived the cost
measures for single-dimensional case where the attribute to
be queried is also the sensitive attribute. Here, we will derive
the cost measure for the generic multidimensional case. One
important distinction between the solution for single and
multidimensional cases is that while the former has an
optimum polynomial time solution, the multidimensional
partitioning problem is most likely NP-hard.

3.1 Cost metrics for multidimensional range queries

Consider the two-dimensional Euclidean space where the
buckets are 2-dimensional rectangles as shown in Fig. 3.
Assume the attributes are integer valued. Then, we can spec-
ify any query Q by an ordered pair of two reals. For example,
Q(k1,k2) denotes the set of rectangular queries with extents
k1 and k2 along the first and second dimensions respectively.
Consider a 2-dimensional bucket B with edges (b1, b2).
The number of distinct queries from Q(k1,k2) that overlap
with B are (b1 + k1)(b2 + k2). Each distinct data value p
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(multidimensional point)3 in B overlaps with exactly k1 ∗ k2

of the queries from this set. For the remaining queries, p con-
tributes only false positives. Therefore, each point within a
bucket contributes f p false positives for [b1b2 +b1k2 +b2k1]
of the queries in Q(k1,k2) where f p is the frequency of point p
in the dataset. For instance, the query shown in Fig. 3 will end
up retrieving all the points assigned to the buckets B1 and
B2 (all the red and blue points), thereby retrieving a number
of false positives along with the true solution set.

Over all queries that overlap a bucket B, the total number
of false positives that each point p with frequency f p contrib-
utes, is False(p) = f p

∑
k1

∑
k2

[b1b2 + b1k2 + b2k1]. The
total number of false positives gives a good estimate of the
query overhead under the assumption that all possible range
queries are equi-probable. Assume that ki takes values from
1, . . . , N . Breaking the summation we get the following:

False(p) = f p

N∑

k1=1

[Nb1b2 + Nb2k1] + f p Nb1

N∑

k2=1

k2

= f p N 2b1b2 + f p Nb2
N (N + 1)

2

+ f p Nb1
N (N + 1)

2

= f p N 2
[

b1b2 + (N + 1)b2

2
+ (N + 1)b1

2

]

False(p) = f p N 2
[

b1b2 + (N + 1)(b1 + b2)

2

]

False(p) denotes the number of false positives for a point
p ∈ B. Therefore, the total number of false positives for B
is given by

TFP(B) =
∑

p∈B

N 2 f p

[

b1b2 + (N + 1)

2
(b1 + b2)

]

where FB denotes the total number of data points (including
multiple copies) in B. Since N is a constant for the domain,
we observe that TFP(B) is proportional to FB[b1b2+C(b1+
b2)] where C = N+1

2 , a constant.
Now let us see the case of 3-dimensional data: assume

again that we have a fixed bucket B = (b1, b2, b3) and the
class of queries with edge fixed edge lengths (k1, k2, k3) be
denoted Qk1k2k3 . From this class, k1 ∗ k2 ∗ k3 queries overlap
any single point “p”. For the other queries from this group
that overlap the bucket B, p is a false positive. Similar to the
2-dimensional case, we compute the number of false pos-
itives False(p), the point p contributes over all possible
range queries where ki ’s can vary over the complete range
[1, N ].

3 We use the term value and point to mean the same thing when referring
to a multidimensional dataset.

False(p) ∝ f p[b1b2b3 + b1b2k3 + b1k2b3

+ k1b2b3 + b1k2k3 + k1b2k3 + k1k2b3]
Computing exactly

False(p) = f p

∑

k1

∑

k2

∑

k3

[b1b2b3 + b1b2k3 + b1k2b3

+ k1b2b3 + b1k2k3 + k1b2k3 + k1k2b3]
False(p) = f p

[

N 3b1b2b3 + N 2b1b2
N (N + 1)

2

+ N 2b1b3
N (N + 1)

2
+ N 2b2b3

N (N + 1)

2

+ Nb1
N 2(N + 1)2

22 + Nb2
N 2(N + 1)2

22

+ Nb3
N 2(N + 1)2

22

]

False(p) = N 3 f p

⎡

⎣b1b2b3 + N + 1

2

∑

i< j

bi b j

+
(

N + 1

2

)2 ∑

i

bi

⎤

⎦

For the whole bucket (with FB total points), the total number
of false positives over all queries that intersect with B, we
have:

TFP(B) =
∑

p∈B

False(p)

= N 3 FB

⎡

⎣b1b2b3 + N + 1

2

∑

i< j

bi b j

+
(

N + 1

2

)2 ∑

i

bi

⎤

⎦

It can be shown easily by induction on the number of dimen-
sions d, that the total false positive for any d-dimensional
bucket B, is given by:

TFP(B) = N d FB

[
d∑

k=1

{(
N + 1

2

)k−1

×
∑

i1<···<it

(bi1 bi2 · · · bit )

⎫
⎬

⎭

⎤

⎦ (1)

where t = d − k +1. Therefore, our objective is to minimize
the value of

∑M
Bi ,i=1 TFP(B). In most cases since N � bi ,

we see from the generic expressions of TFP(B) (Eq. 1) that
the dominant term is due to the last term when the expres-
sion inside the bracket is expanded. For example, for the
3-dimensional case, the dominant term within the bracket is
( N+1

2 )2 ∑
bi . Hence for all practical purposes, it is desir-

able that the bucketization minimize the term FB
∑

bB
i for
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a bucket B (where bB
i , i = 1 . . . d denote the edge lengths).

Hence we use the following expression as the cost measure
that needs to be minimized.

Cost =
M∑

t=1

(

FBt

d∑

i=1

bBt
i

)

(2)

where bB
i , i = 1 · · · d denote the edge lengths of the bucket

B. Note, the cost is proportional to the sum of edge lengths
instead of the area of the buckets. This is intuitively correct
since a bucket may have a very small volume (for instance,
if one of its edges is very small) but still overlap with large
number of data points.

In spite of the fact that buckets are allowed to overlap
in arbitrary manner, there is no ambiguity in the querying
process since we retrieve a bucket if and only if it overlaps
the query rectangle. This class of clustering obviously covers
the set of all non-overlapping partitioning schemes as well.
Now, let us turn our attention to disclosure analysis of the
bucketization process.

3.2 Disclosure model

In this paper, we analyze the security of our scheme in the
passive adversary model. It is the most popular adversarial
model considered in context of the secure data outsourcing
problem by far. It is alternatively referred to as the curious
intruder model in literature [22]. In this model the server is
considered truthful in general, i.e., the server implements
various data storage and query processing functionalities
correctly. The adversary is one or more inquisitive individ-
ual(s) on the server side who has access to the data, e.g., a
database administrator. Such an adversary only tries to learn
sensitive information about the data without actively modi-
fying it or disrupting any other kind of services.4

Since the actual data always remains encrypted on the
server, there is no direct way in which the adversary can
access this data unless he is able to break the encryption. We
will assume that the user employs computationally strong
encryption algorithms that makes the possibility of such
an exposure negligible even if a hacker gets access to the
encrypted records. To prevent any kind of information leak-
age, we will assume that the whole record (all attributes) is
encrypted. Therefore, the only information that is visible to
the adversary are the bucket labels corresponding to each row
of the table.

3.2.1 Attack model

Given that all attributes of a record are encrypted on the
server, the attack model we consider here is one where the

4 Almost all the approaches we describe in this paper address data
confidentiality and privacy issues for the passive adversary scenario.
We will refer to this model interchangeably as the semi-trusted model.

adversary is able to determine one or more attribute values
of some records in a bucket through an alternate channel. A
real scenario where such an attack is plausible is when the
adversary is able to insert a few known tuples into the dataset
and see the corresponding bucket labels that are generated.5

Such an adversary may comprise two or more individuals,
one on the server side and the other on the client side who
collude to insert “test records” and gather information about
the bucket labels.

Next, we derive metrics for measuring how much infor-
mation buckets leak about sensitive attribute values.

3.3 Measures of disclosure risk

The bucketization process can be seen as a process of
“Creating a new variable B (bucket label) which directly
or indirectly captures some information about the sensi-
tive variable S”. In our case, since all attributes are con-
sidered sensitive, S denotes the set of all data attributes. A
subset of the attributes are labeled as the set of queriable
attributes if the corresponding dimensions are used in the
bucketization algorithm. For example, if salary and age are
both queriable attributes, bucketization will be carried out on
the 2-dimensional projection of the dataset along these two
dimensions. The buckets may look something like the ones
shown in Fig. 2. In this case, the bucket extents along the sal-
ary dimension directly captures some information about the
salary values of the records in the bucket. If the adversary can
learn the salary values of a few encrypted records, he can use
this knowledge to predict the salary values of other records
in the same bucket (by using some localization property). As
an example of indirect disclosure, consider the credit rating
attribute which is not designated as a queriable attribute. The
two-dimensional buckets created on salary and age do not
reveal information about the credit rating directly, but may
do so indirectly since there may be a correlation between
the credit rating of an individual and his/her age and salary
attributes. For instance, if younger people with lower salaries
tend to have bad credit, then knowing that a certain individ-
ual belongs to a bucket that spans lower salaries and ages
indicates a higher probability that the person’s credit ratings
is bad. In such cases, we say that the bucket leads to indirect
exposure about the particular attribute.

Therefore, we need an approach to measure and more
importantly control the association between B and S. In other
words, we want to compute the predictive power of B, i.e.,
“how well is the adversary able to predict the value of an
attribute of a record by simply looking at its bucket label?”.

5 In this work, we do not consider the cases of partial disclosure
of encrypted records on the server. This is another interesting attack
scenario which we intend to look into in future.
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The information conveyed by variable X about Y can be
quantified by the mutual information expression [15]:

I (X; Y ) = H(X) − H(X |Y ) = I (Y ; X) (3)

where H(X) denotes the entropy of the variable X and
H(X |Y ) is the conditional entropy of X given Y . When
X is a discrete variable, the entropy is denoted by the
following formula (here log denotes the logarithm to base
2 and x ∈ domain(X) is denoted as x ∈ X for short) [15].

H(X) = −
∑

x∈X

p(x) log (p(x)) (4)

and the conditional entropy H(X |Y ) is given by the formula:

H(X |Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x |y) (5)

Therefore, a measure of the information that B captures
about the sensitive attribute S is given by

I (S; B) = H(S) − H(S|B)

Since H(S) is constant, to minimize the risk, one has to
minimize −H(S|B) or in other words, maximize the entropy
of the distribution of S within each bucket. This is same
as saying that the distribution of the values that attribute S
takes within each bucket is as uniform and spread out (over a
large domain) as possible. This is analogous to the notion of
l-diversity proposed for privacy-preserving data publishing
[35].

If the sensitive attribute takes values from a discrete
numeric domain,6 then entropy by itself might not be a
adequate measure of security. This is because, entropy
measure for a discrete random variable does not take into
consideration the order inherent in a domain. For example,
let the salary domain be [50k, 150k] and let it be discret-
ized into 100 “classes” [50k, 51k], [51k, 52k], …, [149k,
150k]. Let bucket B1 contain 9 tuples, 3 each with salary
values in ranges [50k, 51k], [53k, 54k] and [55k, 56k]. Con-
sider a second bucket B2 which also has 9 tuples with 3 each
having values in [60k, 61k], [100k, 101k] and [145k, 146k].
The entropy of the distribution of values within buckets B1
and B2 is the same whereas, the spread of the first bucket is
merely 6k and that of the latter is approximately 85k. As a
result, if one salary value is exposed from B1, say acciden-
tally then the adversary is able to estimate the remaining val-
ues in B1 within a relatively small error bound. Therefore, the
second distribution is clearly more preferable from the point
of view of disclosure risk. To capture this notion of security,
we propose the variance of the bucket-level distribution (of
the sensitive values) as the second measure of disclosure risk.
That is, higher the variance of the value distribution within

6 Even in the case of continuous domain, the variable is often discret-
ized for entropy computation.

each bucket, more secure is the bucketization scheme. The
following theorem shows how variance of the value distribu-
tion within a bucket captures the adversarial uncertainty in
estimating the correct value of the attribute for any record.
We first define the term Average Squared Error of Estimation
(ASEE) (This is reproduced here from [29] for completeness):

3.3.1 ASEE

Let a random variable X B follow the same distribution as the
sensitive values in bucket B, denoted as PB . For the case of
a discrete (continuous) random variable, let the correspond-
ing probability mass (density) function be denoted by pB .
Then, a measure of disclosure risk will be denoted by the
adversary’s ability to estimate the true value of a random
element chosen from this bucket. We assume that A employs
a statistical estimator for this purpose denoted X ′

B which fol-
lows the probability distribution P ′

B (the statistical estimator
is itself a random variable). If A assigns the value xi to X ′

B
with probability p′

B(xi ) and there are N distinct values in the
domain of B. Now, since there is no information to distin-
guish between two elements of the same bucket, the variables
X B and X ′

B are independent for every bucket B. Now, we
define Average Squared Error of Estimation (ASEE) as:

Definition 1

ASEE(X B, X ′
B) =

N∑

j=1

N∑

i=1

p′
B(xi |x j )pB(x j )(xi − x j )

2

=
N∑

j=1

N∑

i=1

p′
B(xi )pB(x j )(xi − x j )

2

Proposition 1 ASEE(X, X′) = Var(X)+Var(X′)+(E(X)

− E(X′))2 where X and X ′ are random variables with prob-
ability mass (density) functions p and p′, respectively. Also
Var(X) and E(X) denote variance and expectation of X
respectively.

Proof We have from definition of ASE E(X, X ′)

=
N∑

i=1

N∑

j=1

p′(xi )p(x j )(xi − x j )
2

=
N∑

i=1

p′(xi )

N∑

j=1

p(x j )(xi − x j )
2

=
N∑

i=1

p′(xi )

N∑

j=1

p(x j )
(

xi
2 + x j

2 − 2xi x j

)

=
N∑

i=1

p′(xi )

⎡

⎣
N∑

j=1

p(x j )xi
2 +

N∑

j=1

p(x j )x j
2

− 2
N∑

j=1

p(x j )xi x j

⎤

⎦
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Using V ar(X) = σ 2 = E(X2)−μ2 (where μ = E(X)) we
get

=
N∑

i=1

p′(xi )
[
1.xi

2 +
(
σ 2 + μ2

)
− 2μxi

]

=
N∑

i=1

p′(xi )xi
2 +

(
σ 2 + μ2

) N∑

i=1

p′(xi ) − 2μ

N∑

i=1

p′(xi )xi

=
(
σ ′2 + μ′2) +

(
σ 2 + μ2

)
− 2μμ′

= σ 2 + σ ′2 + (
μ − μ′)2

= V ar(X) + V ar(X ′) + (E(X) − E(X ′))2

	

It is easy to see that adversary can minimize ASE E(X B , X ′

B)

for a bucket B in two ways: (1) by reducing V ar(X ′
B)

and (2) by reducing the absolute value of the difference
E(X B) − E(X ′

B). Therefore, the best estimator of the value
of an element from bucket B that the adversary can get is
the constant estimator equal to the mean of the distribu-
tion of the elements in B (i.e., E(X B)). For the constant
estimator X ′

B, V ar(X ′
B) = 0. Also, as follows from basic

sampling theory, the “mean value of the sample-means is a
good estimator of the population (true) mean” [13]. Thus, the
adversary can minimize the last term in the above expres-
sion by obtaining a large number of samples,7 i.e., plain-
text values from B. However, note that the one factor that
the adversary cannot control (irrespective of the statistical
estimator he uses) is the true variance of the bucket values,
V ar(X B). Therefore, even in the best case scenario (i.e.,
E(X ′

B) = E(X B) and V ar(X ′
B) = 0), A still cannot reduce

the ASEE below V ar(X B), which, therefore, forms the lower
bound of the accuracy achievable by A. Hence, we conclude
that the data owner (client) should try to bucketize data in
order to maximize the variance of the distribution of values
within each bucket.

3.3.2 Information leakage through query patterns

In the outsourced data security, we need to deal with multiple
security issues: (a) secure storage and retrieval of encrypted
data (b) prevent information disclosure based on query access
patterns. Using encryption and bucketing ideas, we address
the first issue. On the other hand, our work and other work on
encrypted key-word search [29] do not hide access patterns.
In fact, most cryptographic solutions [6,8,9,14,20,43,44] are
even more vulnerable since they attempt to return the exact
set of answers. Maintaining access statistics accurately for

7 While it is unlikely, but nonetheless quite possible that the adversary
can monitor the plaintext values of a large fraction (or even all but one)
of the records in a bucket.

such techniques is even easier for such techniques. To our
knowledge, there are two types of techniques proposed in
the literature to address the issue: the first is inspired by the
Oblivious RAM [38]. The basic idea is to replace any single
data request by a set of requests. While the original Oblivi-
ous RAM model required O(log4(n)) requests (another ver-
sion of the solution requires O(log3(n) requests with a large
constant), authors in [38] came up with a technique that
only requires O(log2(n)) requests, where n is the number
of records in the database. An alternate strategy is to periodi-
cally re-encrypt the data (thus changing the representation of
the data at the server) at a frequency greater than what would
be needed to launch an access pattern-based attack.

Query access pattern attacks are also possible in the
context of bucketization-based approach, albeit they are
somewhat less severe since bucketization-based approaches
retrieve all records in the same bucket together there by
making accurate determination of access frequency difficult.
Furthermore, even if the adversary, through frequency-based
attacks can determine the exact set of values (along with their
frequencies) that are present in the bucket, there is a degree
of protection since high entropy and high variance of sensi-
tive values within each bucket guarantees a certain minimum
level of uncertainty (security) against such attacks.

Nonetheless, our technique is susceptible, by itself to
access pattern attacks. Techniques such as oblivious RAM
and/or re-bucketization could be used to prevent against
adversaries being able to make inferences. Some of the recent
works on PIR [48] and access pattern hiding in untrusted
stores [49] have proposed some interesting approaches
keeping performance considerations in mind. We, however,
believe that an exploration in any depth of how some of these
techniques may apply to answer multidimensional range
queries is outside the scope of the current paper.

Now, that we have given our cost and disclosure metrics,
we turn our attention to algorithms for bucketizing the data.

4 Bucketization algorithms

The central goal of bucketization is to minimize the dis-
closure risk while keeping the query performance (number
of false-positive retrievals) bounded within specified lim-
its. Our bucketization consists of two phases—first create
buckets that are optimized only from the performance per-
spective; then in a controlled manner re-distribute the con-
tents of each optimal bucket into multiple composite buckets.
The second phase is called controlled diffusion, where in one
decreases the disclosure risk of bucket by making the con-
tents more “diverse” by increasing the entropy and variance
of the value distribution within each bucket. The controlled
diffusion mechanism allows us to limit the worst-case deg-
radation in query performance for the resulting composite
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buckets (from the performance achieved by the optimal buck-
ets). One important point to note is that if we assign only a
small number of data items to a bucket, then, one might not
be able to achieve a desired level of entropy or variance of
the value distribution. However, we do not propose a more
principled way to derive the optimal size of buckets in this
paper. This remains an important problem for future work.

Now, we present our multidimensional partitioning algo-
rithm that tries to minimize the number of false positives
retrieved for all range queries.

4.1 Partitioning multidimensional data

As mentioned earlier, in the first phase of the two-phase buck-
etization algorithm the objective is to determine the least cost
partitioning of a multidimensional dataset into M of buckets
(where M is smaller than the number of points in the data-
set). The quality of a bucket is measured by the cost func-
tion derived in the previous section (Eq. 2). Intuitively, the
cost measure captures the compactness of a bucket. A good
bucketization minimizes the sum (over all buckets) of the
product of a bucket’s weight (number of data points) and its
perimeter (or sum of its extents along each dimension). Since
we are only interested in rectangular buckets, the following
observation holds: “the longest diagonal of the rectangle is
proportional to its perimeter”. Now, the algorithm can utilize
this fact to determine good new candidate buckets to form as
follows—start with all points in a single bucket (note that this
has maximum possible cost); then consider all pairs of data
points such that a new rectangle defined with these two as the
end points of its longest diagonal reduces the cost measure
by the maximum amount, i.e., the reduction in cost when the
data are partitioned into two rectangles, one set covered by
the new rectangle, and remainder covered by the (modified)
first rectangle. Since the total cost monotonically decreases
in each iteration, the algorithm iterates till M distinct buckets
are formed. We will illustrate the algorithm with an example
shortly.

Most problems of optimal partitioning of multidimen-
sional datasets are NP-hard [32,36,37]. While we do not
explicitly show our problem to be NP-hard, we found that
the following, very related partitioning problem [11] has
been long known to be NP-hard.: “Given a set of objects
X with pairwise distance d defined between each pair of ele-
ments in X , find a partitioning P of X into fixed number
q(q ≥ 3) of buckets that minimizes the objective func-
tion F(P) = ∑

C∈P diam(C) where diam(C) is defined
as diam(C) = maxx,y∈C d(x, y)”. Our problem can be seen
as a weighted version of this problem and is likely to be
NP-hard as well.

Below, we present the “Query Optimal Bucketization
(QOB)” algorithm below (Algorithm 1). It is a polynomial
time algorithm which produces good buckets in practice. The

B1

B1

B2

B1

B2

B3

R*

B1

R*

Fig. 4 Example: greedy optimal clustering

algorithm starts with a single bucket and greedily generates
a new one in each iteration till the specified number of buck-
ets is formed. We refer to the resulting buckets as “optimal”
buckets.

Algorithm 1 Query Optimal Bucketization (QOB)
1: Input: Dataset of multidimensional points D, # buckets M ;
2: Output: M buckets, Total Cost;
3:
4: Cost (D, R1) = |D| ∗ ∑d

i=1 r i
1;

5: /* r i
j is the length of the i th edge of rectangle R j */

6:
7: for j = 2 to M do
8: Over all pairs of points in D, choose the pair (p∗

1 , p∗
2) and the corre-

sponding rectangle R∗ s.t. the cost reduction Cost (D,∪ j−1
t=1 Rt )−

[Cost (D\DR∗ ,∪ j−1
t=1 Rt ) + Cost (DR∗ , R∗)] is maximized;

9: Assign points within R∗ to a new cluster R j & recompute the min-
imum bounding rectangles (MBRs) of all the affected clusters;

10: Make one pass on D & reassign all points to these j clusters
(readjusting MBRs if necessary) to further reduce total cost;

11: end for
12: Output the M clusters and the total cost of scheme;

Note that the total cost decreases monotonically with
increasing number of bins. The term Cost (D,∪ j−1

t=1 Rt ) is the
sum over all rectangles Rt (t = 1, . . . , j − 1) of the product
of the number of data points within Rt and the sum of the d
edge lengths of Rt (recall, Rt is a d-dimensional rectangle).
For example, in the Fig. 4 above, consider the final bucket-
ization. The cost of this scheme is given by

∑i=3
i=1(#points

in Bi )*(length(Bi )+width(Bi )). For each of the M − 1 itera-
tions, in step 8 of Algorithm 1, O(|D|2) candidates for a new
cluster are considered. A candidate subset of points is spec-
ified by selecting all points within a bounding rectangle R
whose diagonal endpoints correspond to a pair of points in D.
The rectangle R∗ that maximally reduces the cost is the cho-
sen candidate and a new bucket is initialized using the points
within R∗. This requires re-computing the MBRs (Minimum
Bounding Rectangles) of the clusters that lost data elements
to R∗. Since the candidate selection was restricted only to the
rectangles which have one pair of their diagonal endpoints
in the dataset, we can potentially reduce the cost further by
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readjusting the extents of the MBRs. Step 10 makes one more
pass to carry out such a reassignment of points if it leads to
cost reduction. An illustrative example with M = 3 is shown
in Fig. 4. Beginning at the top left corner, initially all data
points belong to the single bucket denoted as B1. The algo-
rithm then chooses two data points in this set (corresponding
to the two end points of the dotted line in the top right fig-
ure) that determine the “best rectangle” R∗ to create a new
bucket. After local re-arrangements, the new bucket is shown
as B2. After the second iteration, the third bucket that maybe
created is shown by B3 and so on.

4.1.1 Implementation of the greedy partitioning algorithm

In step 8 of the algorithm, for all pairs of points in D (p1, p2),
a temporary rectangle is created whose diagonal endpoints
correspond to (p1, p2). Next, all of the points within the
boundaries of this rectangle are moved to a new rectangle.
After generating these temporary rectangles, the one which
maximizes the cost reduction is selected and created which
is named as R∗. In our implementation, we do not leverage
any special data structure to find the set of points between
p1, p2. Therefore, the cost of finding these points is O(|D|).
However, an R-tree implementation could be used to elimi-
nate the linear scan cost. Once a multi-dimensional index is
built on the dimensions, the points in the bounding rectangle
could be retrieved efficiently. For a detailed discussion on
R-tree and its variants, please refer to [42].

We found that step 9 does not necessarily lead to sub-
stantially increased efficiency in all cases and hence can be
implemented as an optional optimization step. We imple-
mented step 10 of the algorithm as follows. For every point
pi in dataset D, the following operations are performed: First,
we iterate over each of the j-1 other rectangles (that do not
contain the point) as follows: we move the point pi to the rect-
angle and update its MBR and compute the cost of the rect-
angle with this new point. We determine the rectangle (Rmin)
which has the least cost after the addition of the point. Next,
we remove the point from the owner rectangle (Rowner ) and
update its MBR. We compute the cost without point pi with
the updated MBR. If the former is greater than the latter, we
move the point from Rowner to Rmin . Otherwise, we conclude
that moving pi to any of the j-1 rectangles does not provide
any improvement.

4.1.2 Complexity of greedy algorithm

A worst-case analysis for the straightforward implementa-
tion of the algorithm has a time complexity of O(M |D|3),
where M is the number of buckets to be created and |D| is the
size of the dataset. In the first step within the for-loop, each
pair of data points is considered which contributes O(|D|2)

units and for each of these pairs, computing the magnitude
of cost reduction may take another O(|D|) units.

4.2 Security-performance trade-off: controlled diffusion

In Sects. 3.2 and 4.1, we analytically derived security and
cost measures for data partitioning schemes to tackle multi-
dimensional data. We also proposed algorithms to partition
a dataset into a given number of buckets that minimizes the
overhead of answering queries. We will refer to the resulting
buckets as optimal buckets.8 Since the algorithms proposed in
Sect. 4.1 do not take security into consideration, indexing the
user’s data on the server using the optimal buckets might lead
to a higher than desired disclosure risk. Intuitively, we can
see that there is a direct trade-off between the level of secu-
rity and performance. On one hand, security is best served
when all data belongs to just a single bucket and each tuple
is indistinguishable from any other on the server side. This,
of course, leads to poor performance since all data needs
to be retrieved on each query. The other extreme is actually
poor from both the security and performance perspective.
For instance, if we assign a bucket to every distinct value
appearing in the dataset, there are no false positives, and as
a result, the server always returns the exact solution set (i.e.,
no false positives) for each query. But, in this case, the size
of the translated query (i.e., one that is posed to the server)
could be quite large, therefore, offsetting the benefits of the
accurate solution set. Additionally, the bucket contents are
vulnerable to potential disclosure by statistical attacks due to
low variance and entropy measures of the buckets.

From the above discussion it is clear that there is a trade-
off between security and performance. An ideal partitioning
approach should allow the user to explore this trade-off space
and choose a partitioning scheme that best suits his require-
ments. Toward this goal, we propose a 2-phase parameter-
ized partitioning algorithm that lets the user choose a desired
level of trade-off between security and performance. Below,
we present a simple trade-off algorithm that is “distribution
agnostic” and works very well in practice.

4.2.1 Distribution-agnostic trade-off algorithm

The optimal buckets generated in the first phase are compact
and tend to have a value distributions with small vari-
ance and/or entropy. Therefore, in the second phase we
re-distributes the data in these buckets into a new set of buck-
ets such that the average entropy and variance of the sensitive
attribute’s value distribution is substantially increased. We
call this the controlled diffusion algorithm (C D f -algorithm)

8 These buckets are not optimal and in fact, computing an optimal
partitioning is NP-Hard for most cost functions. Nonetheless, we use
the qualifier optimal to distinguish the buckets resulting from the first
phase from the final ones which are called composite buckets.
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(first proposed in [29]). The diffusion algorithm admits a
control parameter max-degradation factor that lets the data
owner control the trade-off between cost (performance over-
head) and security. The problem is formally stated below:

Problem 1 (Trade-off Problem) Given a dataset D =
(V, F) and an optimal set of M buckets on the data
{B1,B2, . . . , BM }, re-bucketize the data into M new buckets,
{C B1, C B2, . . . , C BM } such that no more than a fac-
tor K of performance degradation is introduced and the
minimum variance and minimum entropy amongst the
M random variables X1, . . . , X M are simultaneously maxi-
mized, where the random variable Xi follows the distribution
of values within the i th bucket.

4.2.2 Controlled diffusion

Let optimal buckets be denoted by Bi ’s for i = 1, . . . , M .
The controlled diffusion process creates a new set of M
approximately equi-depth buckets which are called the
composite buckets (denoted by C B j , j = 1, …, M) by
diffusing (i.e., re-distributing) elements from the Bi ’s into
the C B j ’s. The diffusion process is carried out in a con-
trolled manner by restricting the number of C B’s that the
elements from a particular Bi get diffused into. The resulting
set of composite buckets, the {C B1, . . . , C BM } form the final
bucketized representation of the client data on the server, i.e.,
the e-tuples are tagged with these bucket labels. To retrieve
the data elements in response to a range query q, the client
first computes the query overlap with the optimal buckets
(denoted as q(B)) and then determine the composite buckets
that contain at least one element from any bucket in q(B)

which are then requested from the server.
A requirement for guaranteeing the bounds on false

positives is that the M composite buckets should be approxi-
mately equal in size. This equi-depth constraint sets the target
size of each C B to be a constant9 = fC B = |D|/M where
|D| is size of the dataset (i.e., rows in the table). The per-
formance constraint is enforced as follows: If the maximum
allowed performance degradation = K , then for an optimal
bucket Bi of size |Bi | its elements are diffused into no more
than di = K∗|Bi |

fC B
composite buckets. The diffusion factor di

is rounded-off to the closest integer. In response to a range
query q, the server will retrieve at most K times the number
of records it would have retrieved using the optimal buckets.
For example, if the optimal buckets retrieved in response to a
query q were B1 and B2, then using C B j ’s the server would
not retrieve any more than K ∗|B1|+ K ∗|B2| elements. This
ensures that precision of the retrieved set does not reduce by
a factor greater than K .

9 The actual size of the composite buckets needs to be approximately
close to the target and need not be exactly = fC B .

An added advantage of this approach is that, it guarantees
the performance lower bound not just for the average preci-
sion of queries but for every query in the class individually.
The important point to note is that the domains of the com-
posite buckets overlap where elements with the same value
can end up going to multiple C B’s. This extra degree of
freedom for the composite buckets allows the user to sub-
stantially increase the security level by trading off relatively
small degree of performance (i.e., allowing for small degra-
dation). In the extended paper [28], we derive an upper bound
on the expected degradation in query precision resulting from
the diffusion algorithm when the attribute value distribution
is uniform. Interestingly, this factor turns out to be indepen-
dent of the value of the parameter “Max-degradation-factor”
K . The C D f algorithm allows the user to explore the “pri-
vacy-performance trade-off space” by choosing the value of
K . We illustrate the diffusion process with an example below.

Algorithm 2 Controlled Diffusion (D, M, K )

1: Input: Dataset D = (V, F), M = # of C B’s (usually same as # opt
buckets) K = maximum performance degradation factor;

2: Output: An M partition of the dataset (i.e., M buckets)
3:
4: Compute optimal buckets {Bi , . . . , BM } using QO B algorithm;
5: Initialize M empty composite buckets C B1 . . . , C BM ;
6: for each Bi do
7: Select di = K∗|Bi |

fC B
distinct C B’s randomly, fC B = |D|

M ;
8: Assign elements of Bi equiprobably to the di C B’s;
9: /* (roughly |Bi |/di elements of Bi go into each C B) */
10: end for
11: Return the set buckets {C B j | j = 1, . . . , M};

4.2.3 Example

Figure 5 illustrates the diffusion process using a single-
dimensional dataset. Another, multidimensional version of

1     2     3    4    5    6    7     8     9    10

Freq

Values

4 4 4 4 4 

10 10 

6

2 2 

B1 B2 B3 B4 

2     2       2

2     4       2

4         2        2          3

3        4          2          3

2     2       2       3         4

CB1

CB3

CB2

CB4

CB1

CB2

CB3

CB4

Performance
factor k = 2

Query optimal buckets

Composite Buckets

1    2    3    4     5      6     7     8    9  10

Fig. 5 Controlled diffusion

123



Secure multidimensional range queries over outsourced data 345

this example is shown in the extended version of the paper
[28]. Consider the optimal buckets shown in the figure and
say a performance degradation of up to 2 times the optimal
(K = 2) is allowed. In the figure, the vertical arrows show
which of the composite buckets, the elements of an optimal
bucket gets assigned to (i.e., diffused to). The final resulting
buckets are shown in the bottom right-hand side of the fig-
ure, and we can see that all the 4 C B’s roughly have the
same size (between 11 and 14). The average entropy of a
bucket increases from 1.264 to 2.052 and standard devia-
tion increases from 0.628 to 1.875 as one goes from the B’s
to C B’s. In this example, the entropy increases since the
number of distinct elements in the C B’s are more than those
in the B’s. The variance of the C B’s is also higher (on an
average) than that of the B’s since the domain (or spread)
of each bucket has increased. Note that average precision
of the queries (using the composite buckets) remains within
a factor of 2 of the optimal. For instance, take the range
query q = [2, 4], it would have retrieved the buckets B1

and B2 had we used the optimal buckets resulting in a pre-
cision of 18/32 = 0.5625. Now evaluating the same query
using the composite buckets, we would end up retrieving all
the buckets C B1 through C B4 with the reduced precision as
18/50 ≈ 0.36 > 1

2 ∗ 0.5625. (Note: Due to the small error
margin allowed in the size of the composite buckets (i.e., they
need not be exactly equal in size), the precision of few of the
queries might reduce by a factor slightly greater than K ).

We will now see the performance of the bucketization
algorithms in the next section.

5 Experiments

We primarily carried out experiments to (i) clearly illustrate
the benefit of bucketization over a naive strategy that retrieves
all records from the server for every query; (ii) measure the
(performance) cost of query evaluation as a function of num-
ber of buckets used; (iii) measure the disclosure risk due to
bucketization as a function of number of buckets used; (iv)
gain insight into the trade-off between performance cost and
disclosure risk. We also compared the trade-off character-
istics of our partitioning algorithm with other off-the-shelf
multidimensional data partitioning/indexing techniques that
could have been used in the first phase of bucketization (like
R-trees, KD-trees etc.) and show that ours is better in most
cases.

Now, we describe each of these in detail.

5.1 Performance: Bucketization versus naive strategy

Here, we compare the performance of the proposed multi-
dimensional bucketization approach with the performance
of a simple client-server architecture where bucketization

has not been used. Suppose that a client wants to store his
data on a server and query this data periodically. To be able
to do that the client first encrypts the data records with an
encryption algorithm such as AES [1] and stores them on
a server in encrypted format. Whenever there is a query,
the server simply streams all the encrypted records to the
client over the network. The client then decrypts all the
records and evaluates the query predicate locally against each
record. Below, we describe the details of the experiments we
have conducted to analyze the benefits of using bucketization
approach compared to this trivial solution.

Using two different computers, we simulated the scenario
described above to conduct the performance experiments. As
for the server, we used an IBM x3500 which has 16GB of
main memory and a 8 core Intel(R) Xeon(R) CPU E5420 @
2.50 GHz processor running on a 32 bit Suse Linux operating
system. For the client side, we used a 2.79 GHz Intel Pentium
D Dell Precision with 2 GB memory running on Windows XP
platform.

As for the dataset, we used the Lineitem table of TPC-H
dataset generated with the default scale (scale 1). TPC-H
is a decision support benchmark widely used in the data-
base community to assess the performance of database
management systems [83]. In the experiments, we con-
structed the buckets using 10K records of Lineitem table
and used four different attributes for the range queries. These
are PartKey, ExtendedPrice, ShipDate, CommitDate. We pre-
pared a workload of 10K range queries where a single range
predicate is defined for each attribute. The range of the predi-
cates was selected randomly from a Gaussian distribution. As
for the mean of the Gaussian distribution, we used the median
value of the attributes. Standard deviation of the distribution
is selected as 10 % of the range of the attribute domains.

5.1.1 Client-side processing cost

We measured the workload execution time on both the server
and client side for different number of buckets. The experi-
mental results are shown in Fig. 6. Each point in the figure
corresponds to a different run of the workload. Each run was
repeated 20 times and the average duration of these runs were
recorded. The x axis shows the number of buckets applied
to the dataset on the server side and y axis shows the total
execution time of the workload on the client side which is
dominated by the cost of decrypting the records. The straight
line at the bottom of the plot shows the execution time of the
workload when there are no false positives (less than one sec-
ond). We use this as the base line for evaluation. The second
line which is named as “With false positives” shows the exe-
cution time using the optimal buckets (i.e., without applying
diffusion). The remaining three lines show the execution time
when we apply diffusion after bucketization. The topmost
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straight line shows the execution time when we use the trivial
idea described above (it takes 61035 milliseconds).

The experiment results show that the bucketization
approach is quite effective in reducing the client-side
processing cost. This cost gets smaller as larger number of
buckets are used. For example, if the records are clustered into
400 buckets, the execution of the workload takes 1,818 ms
which is about 33 times less than the cost of the trivial imple-
mentation. Even if diffusion is applied, the execution time is
significantly less than the cost of the trivial implementation.
For the diffusion factor of K = 6, the bucketization approach
provides about 6 times improvement over the naive strategy.
We decided to limit the number of buckets used in all our
experiments to 400 since we found that for these many buck-
ets, the query execution overhead was almost similar to the
case where there are no false positives in most cases.

5.1.2 Server-side processing cost

We also measured the workload execution time on the server
side and observed that the execution of the workload takes
about 2,665 ms. For many different values of the diffusion
factor k, the client-side processing cost is greater than the
server-side processing cost. Based on this observation, we
can claim that the decryption cost on the client side consti-
tutes the bottleneck during query processing. Hence, buck-
etization provides significant improvement over the trivial
approach.

Next, we describe the results of our experiments using
multidimensional datasets.

5.2 Performance, disclosure and trade-off characteristics
of bucketization

We used three types of datasets to perform the multidimen-
sional experiments. We used the “Co-occurrence Texture”
table of the “Corel Image” dataset in UCI-KDD archive [46]

as a sample real-world dataset. The dataset includes 16 attri-
butes where the attribute values have a normal distribution.
Since many real-world data follow the normal distribution,
we believe that this dataset would be a good choice for real
dataset experiments. We illustrate the trade-off characteris-
tics using one of these six attributes.

We have also conducted some experiments with the
TPC-H dataset. We used 10K records of the Lineitem
table of TPC-H dataset generated with the default scale
factor (scale 1). For the multidimensional columns, we used
PartKey, ExtendedPrice, ShipDate, CommitDate attributes.

As for the synthetic dataset, 104 integer values are gen-
erated by sampling uniformly at random from the domain
[0,999].

We generated four different workloads to conduct the
precision experiments. The first two workloads, Qsyn and
Qreal , correspond to synthetic and real datasets. Each of
these sets has 10K queries. The range of each query in Qsyn

and Qreal was selected randomly from a uniform distribu-
tion which has the same range as the datasets. The third and
fourth workloads, each consisting of 10K queries, were pre-
pared for the TPC-H experiments. The range of the queries
in these workloads was selected randomly from a Gaussian
and uniform distribution respectively. As for the mean of the
Gaussian distribution, we used the median value of the attri-
butes. Standard deviation of the distribution is selected as
10% of the range of the attribute domains.

Four types of experiments were carried out to evaluate
the performance of the proposed algorithms. Below we pres-
ent the results of experiments conducted for a 4-dimensional
dataset only. Experiment results for data with other dimen-
sionality are given in the extended version [28].

1. Precision: In this experiment, we measure the decrease
in precision of evaluating the benchmark queries using
optimal buckets(QO B-buckets) and composite buck-
ets (C B’s). In Fig. 7, we plot the ratio of the average
precision using optimal buckets to that using the com-
posite buckets as a function of # of buckets. We use the
benchmark query set Qsyn . Plots are shown for multiple
values of the maximum allowed performance degrada-
tion factor K = 2, 4, 6, 8, 10. Figure 8 shows the cor-
responding plot for the real dataset on query set Qreal .
Figures 9 and 10 show the same plot for TPC-H dataset
on two different TPC-H query workloads.

2. Privacy measure: We plot the ratio of variance of the
C B’s to that of the QO B buckets as a function of # of
buckets in Fig. 11 for the synthetic dataset and in Fig. 12
for the real dataset and Fig. 13 for the TPC-H dataset (for
values of K = 2, 4, 6, 8, 10). Figure 14 plots the ratio of
average entropy for the two sets of buckets, on the syn-
thetic dataset. Figures 15 and 16 displays the correspond-
ing ratio for the real and TPC-H datasets respectively.
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3. Performance-privacy trade-off: Figures 17, 18, 19, and
20 display the trade-off between average variance of
buckets and average precision for the synthetic real TPC-
H datasets respectively (Figs. 19 and 20 correspond to
two different workloads on the TPC-H data). We run the
experiment with 6 different values of M (# of buckets)
M = 100, 150, . . . , 350. For each M , we plot the aver-
age variance of the optimal set of buckets (QO B’s) as
well as the average variance for the 5 sets of composite
buckets. That is, for each of 6 values of M , we apply
the controlled diffusion algorithm for 5 different values
of maximum degradation factor (K = 2, 4, 6, 8, 10).
In effect, we plot 6 different points for each value of
K . Similar plots of entropy-precision trade-off for the
same sets of buckets are shown in Figs. 21, 22, 23 and
24 respectively.
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Figures 19 and 20 display the trade-off between average
variance of buckets and average precision for the two
TPC-H workloads. Similar plots of entropy-precision
trade-off for the two TPC-H workloads are shown in
Figs. 23 and 24 respectively.

5.2.1 Observations from the experiments

1. Precision: The relative precision measurements show
that the decline in average precision is below the allowed
maximum factor K particularly for higher values of K .
In Fig. 7, an interesting observation is that for smaller
values of K (e.g., K = 2) the observed degradation
factor is larger than K ! This is possible since the algo-
rithm assumes that the size of the composite buckets is
approximately the same. If for some reason the sizes
deviate significantly from the intended (average) size,
then it may lead to larger degradation than the intended
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TPCH dataset, Gaussian query workload

maximum denoted by K . This is what we suspect was
the case for the smaller values of K for the synthetic
dataset. Also, unlike the single-dimensional case, for the
synthetic dataset we saw that relative query precision
degraded as the number of buckets increased for a given
value of K . This phenomenon is due to the fact that aver-
age precision was poor for the optimal case to start with
(for the synthetic data) when small number of buckets
were used and the relative degradation due to diffusion
was not as much as that when larger number of buckets
were allocated.

2. Privacy measure: The privacy measurement experi-
ments show that the variance increases by a large factor
in most cases even for small values of K . This is in line
with the pattern we observed for single-dimension case
as well. Similar is the change in values of entropy after
diffusion.

3. Performance-Privacy trade-off: The plots in the
privacy-performance trade-off space display all the
design points available to the data owner. These plots
provide a good estimate of the degree of privacy available
if one is willing to sacrifice efficiency by a given amount.
For example, by looking at the plots of Figs. 18 and 22,
the data owner might choose a bucketizaton scheme that
uses 100 buckets and sets K = 2 (shown by the arrows).
K = 2 provides a high value for average entropy as well
as a sufficiently high value of variance of the buckets for
a acceptable loss in efficiency. The owner can also use
non-integral values of K and explore more points in the
trade-off space. The trade-off plots could be made more
accurate by choosing an appropriate set of benchmark
queries for a given application.

5.2.2 Greedy algorithm versus partitioning algorithms

In Sect. 4.1, we described a multi-dimensional data parti-
tioning algorithm that aims to minimize the cost function
derived in Sect. 3.1. We showed that minimizing the cost
function in turn improves the precision of the queries and
therefore improves the quality of the buckets. Instead of
using the greedy algorithm if one were to use some of the
well-known multidimensional data structures to partition the
data, how would the performance vary? To get an answer to
this question, we carried out the initial bucketization using
some of the well-known data structures. We carried out some
experiments where we compare these algorithms with the
greedy algorithm in terms of precision achieved for multidi-
mensional range queries. We describe the bucket formation
strategies below.

1. BSP tree (Binary Space Partitioning): Binary Space
Partitioning is a method for dividing a multidimensional
space into sub-spaces using hyperplanes. The generated
sub-spaces can be represented as a tree data structure
known as a BSP tree (See [42] for more details). In
our implementation, the sub-spaces are partitioned with
axis-orthogonal hyperplanes. The axis is chosen based on
depth of the tree node which is being split. Specifically,
if the depth of node n is denoted Depth(n), the split-
ting hyperplane is orthogonal to axis Depth(n) mod d +
1 and splits the space into two equal halves. The split-
ting operations are performed until obtaining the desired
number of leaf nodes. Once the splitting operations are
completed, the buckets are created using the data points
in each leaf node.

2. Kd-tree: Kd-tree is a data structure used for multidimen-
sional space partitioning. The construction of kd-tree is
very similar to that of BSP tree. The root node covers
the entire space. At each step, a splitting dimension and
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a split value from the range of the current node on that
dimension are chosen heuristically to divide the space
into sub-spaces. The algorithm halts when pre-defined
requirements (such as tree height or number of elements
covered by a node) are met (see [42] for more details). In
our implementation, the sub-spaces are partitioned with
axis-orthogonal hyperplanes and the axis is chosen based
on the depth of the tree node as done in the BSP construc-
tion. For a given partition, the median point is chosen as
the splitting point. As in the BSP construction, the split-
ting operations are performed until we obtain the desired
number of buckets.

3. R-tree and its variants: R-tree is a data structure used to
index multi-dimensional data. At each iteration, the data
structure creates possibly overlapping MBRs containing
the data points. Each non-leaf node keeps a minimum
boundary box of all data points within this child node.
There are numerous variants of R-trees discussed in the
literature. One of these data structures is called R*-tree
which aims to minimize the volume of partitions. In addi-
tion to the original version of R-trees, we have conducted
experiments with R*-tree. For a detailed discussion on
R-tree and its variants, please refer to [42].

4. k-means: In addition to the partitioning algorithms
discussed above, we have conducted some experiments
with k-means clustering algorithm which is a popular and
practical algorithm. For this purpose, we used the imple-
mentation of k-means in Weka library with the default
parameters [50].

To perform these experiments, we used the datasets
described in Sect. 5.2. Further we generated a third data-
set similar to the synthetic dataset except that the data points
are selected from a standard normal distribution rather than
a uniform distribution.

The experiment results for only dimension 4 are given
in Figs. 25, 26 and 27. The experiment results for the other
dimensions are given in the extended version. These results
imply that the precision of the buckets generated using our
greedy multidimensional bucketization algorithm is much
higher than those generated with other algorithms for the real
dataset and the synthetic dataset with a normal distribution.
At the same time, for the special case when the data are known
to be uniformly distributed, our experiments show that many
existing space and data partitioning algorithms may perform
comparable or better than the greedy algorithm and therefore
should be used instead. However, since most real datasets are
unlikely to be uniformly distributed, the greedy algorithm
should be the algorithm of choice in the majority of cases.
The results also reiterate the fact that using the cost measure
in the optimization pays off, and in a big way in many cases,
as compared to using an off-the-shelf multidimensional data
structure.
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We also conducted some experiments to compare these
algorithms in terms of variance and entropy. These results are
shown in Figs. 28, 29, 30, 31, 32 and 33. We notice that while
the precision achieved by the optimal buckets is greater than
all other data structures (except for the uniformly distributed
dataset), the variance and entropy lies somewhere in the mid-
dle. However, this is to be expected, since the first phase of
the bucketization process only optimizes for performance and
does not take into account the entropy and variance measures
of buckets.

In these experiments, we used numerical attributes for
each dimension. However, our methods extend easily to
schemas containing categorical attributes as well. As a pre-
processing step, such attributes can be converted to numerical
attributes by assigning unique values to every category.
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Fig. 28 Variance comparison (variance vs. number of buckets)—real
dataset
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Fig. 29 Variance comparison (variance vs. number of buckets)—
synthetic dataset normal distribution
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Fig. 30 Variance comparison (variance vs. number of buckets)—
synthetic dataset uniform distribution
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Fig. 31 Entropy comparison (Entropy vs. number of buckets)—real
dataset
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Fig. 32 Entropy comparison (entropy vs. number of buckets)—
synthetic dataset normal distribution
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synthetic dataset uniform distribution
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Fig. 34 Greedy algorithm execution time versus number of buckets

5.3 Timing experiments

In this section, we present the experiment results where we
measure the time spent for the partitioning of the datasets. We
have conducted some experiments with different number of
buckets and data points. The results are displayed in Figs. 34
and 35. As we mentioned earlier, a worst-case analysis for the
straightforward implementation of the algorithm has a time
complexity of O(M |D|3), where M is the number of buck-
ets to be created and |D| is the size of the dataset. As shown
in Fig. 34, the total execution time increases linearly as the
number of buckets increases. Also in Fig. 35, we show the
increase in the execution time as the number of data points
increases in the dataset.

These experiments reinstate the fact that the greedy algo-
rithm has a high time complexity. However, the focus in this
paper has not been so much about scalability as it has been
to derive a heuristic that results in high quality buckets, i.e.,
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Fig. 35 Greedy algorithm execution time versus size of data

those resulting in relatively low overhead of false positives.
In this regard, we have been able to clearly show that the pro-
posed greedy algorithms results in better buckets than other
standard multidimensional data structures. Regarding scala-
bility of our algorithm, we outline an approach in the next
section.

6 Practical considerations and future work

There are various issues to address in making the proposed
scheme more practical. The first major issue is how should
a data owner decide the value of M which is required as an
input to the bucketization algorithm. We note that increase
the value of M lowers cost (improves performance) but also
lowers security. One strategy could be to let the user specify
the maximum cost overhead he is willing to tolerate as well
as the minimum security he requires (he needs to specify
minimum values of both average entropy and variance of
buckets). Since the cost function and the two privacy metrics
vary monotonically with M , one can simply employ a binary
search mechanism to identify the feasible values of M which
meet both criteria. If privacy is more important one can use
the minimum value of M in the feasible region, since that
tends to offer the maximum privacy while meeting the per-
formance constraints. Alternatively, one may combine the
cost and disclosure measures into a joint (weighted) measure
and pose it as a minimization problem. The goal would be to
search for the value of M that minimizes this joint measure.

In general, designing appropriate mechanisms to set the
correct values for maximum cost overhead and minimum
security is an important problem which has implications
on usability of the proposed system. As mentioned above,
the data owner can start with some default values for the
two parameters M and the diffusion factor, say those which
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achieve high degree of privacy (i.e., high values for variance
and entropy) and then adjust the parameter(s) as required to
achieve a more desirable trade-off between performance and
privacy. This would require re-bucketization of the dataset
of course.

Another issue of concern is measuring how secure we are.
Our security model is geared toward estimating the worst-
case disclosure risk under the attack model mentioned in
Sect. 3.2. In that respect, it is more akin to information theo-
retic security than computational security. It is therefore not
conducive for security analysis where specific attacks are
proposed and schemes are shown to be safe against them
for a computationally bounded adversary (i.e., polynomial
time adversary). Here, the worst-case exposure corresponds
to the situation when the adversary has learnt the complete
distribution for a bucket, i.e., he knows the set of values along
with their frequencies for the bucket. Now, given any random
encrypted record from this bucket, he can restrict (guess) a
sensitive attribute’s value to within a certain interval with a
certain probability of error. From the security stand point,
a bucket is more robust if the error in the adversary’s esti-
mate is large on an average. We show that this is the case
when both entropy and variance of the value distribution
within the bucket is large. However, it is not easy to deter-
mine whether a partitioning of the data exists, such that a
specified (high) value can be attained for the average entropy
and average variance. Hence, we simply try to increase these
measures in a relative sense, i.e., in comparison to the opti-
mal buckets. We show via experiments that indeed, one
can enhance these measures substantially via the diffusion
mechanism.

Another important issue is that of rebucketization—when
to rebucketize the data? The performance of a bucketiza-
tion scheme is dependent upon the data distribution. There-
fore, for large datasets where distribution of values is mostly
stable, we expect that rebucketization will be required only
infrequently. In such cases, a trivial solution is to carry out
the bucketization periodically at a secure location such as
the client. However, if the client is computationally con-
strained, such as a mobile device, it can periodically access
a server with sufficient computation power and storage
which is also secure. Of course this is not an ideal solution
which works in all cases. In other cases, one would pos-
sibly want a dynamic scheme where bucketization follows
the data distribution more faithfully and remains optimal.
This problem, however, is out of the scope of the current
paper and would be a very interesting direction for future
extensions.

Regarding scaling our bucketization algorithm to large
datasets, a sampling-based approach can potentially be
employed. The basic approach would be to create the buckets
using a random sample from the underlying dataset and then
assign the remaining points to a bucket such that the cost

increase is minimal in the process. This process may require
bucket extents to be enlarged in order to cover all points. We
do not explore such a sampling-based algorithm in this paper,
and again, this remains an important piece of future work.

7 Related work

The problem of querying encrypted data has been deeply
researched in both cryptography and database communi-
ties [2–4,6,8–10,14,16,20,23–25,29,43,44]. The specific
scheme that may be applicable depends on the data type and
the type of query that needs to be supported. We first describe
some of the techniques proposed specifically for evaluating
range queries.

7.1 Order-preserving encryption

An ideal cryptographic scheme for supporting range queries
would be one that allows range-predicate evaluation over
encrypted data directly. Agrawal et al. [4] were the first
ones to propose an order-preserving encryption scheme for
numeric data. Such a scheme allows the server to execute
range queries directly on the encrypted representation as
well as maintain indexes which would enable efficient access
of the encrypted data. Recently, Boldyreva et al. [6] gave
a formal security analysis and a relatively efficient imple-
mentation of such an order-preserving encryption scheme.
The disadvantage of order-preserving schemes is that the
encryption needs to be deterministic (i.e., all encryption of a
given plaintext should be identical). As a result, it reveals the
frequency of each distinct value in the dataset and hence sus-
ceptible to statistical attacks. Both these techniques suffer
from the problem that the adversary is able to progres-
sively improve his estimate of the true value of a ciphertext
by evaluating more predicates against the ciphertext (i.e.,
as number of queries increase). For example, consider two
queries q1 = [50, 100] and q2 = [70, 120]. If the same ele-
ment x is retrieved for both the queries, the adversary is able
to tell that x ∈ [70, 100] which is better than what he learns
from either one of the queries in isolation. We will refer to
this as the “value-localization” problem.

7.2 Pattern hiding by oblivious data structure traversal

In a recent paper by Vimercati et al. [12], they create bucket
based on the B+tree index. In order to hide the access
patterns, they run fake queries. In addition, they buffer the
first few levels of the tree on the client side. Finally, they
shuffle from time to time. However, this technique while
being related is trying to solve a different problem—out-
sourcing a B+tree securely and obliviously traversing this
data structure to retrieve data. While our technique tries to
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prevent approximate leakage under certain attack scenarios
(e.g., when the adversary may learn the distribution of val-
ues within a bucket), this paper does not analyze the security
under any specific attacks. Also, how the technique will scale
with dimensions or be applied to multidimensional data struc-
tures remains unclear at this point. However, practical obliv-
ious data structure traversals techniques could potentially be
integrated into a secure data outsourcing framework.

7.3 Cryptographic techniques for range queries

More recently [9,43] have proposed techniques for eval-
uating range predicates directly over encrypted data. For
example, Shi et al. in [43] propose a searchable encryption
scheme that supports multidimensional range queries over
encrypted data (MRQED). The technique utilizes an inter-
val tree structure to form a hierarchical representation of
intervals along each dimension and stores multiple cipher-
texts corresponding to a single data value on the server (one
corresponding to each level of the interval tree). Consider
the case when the scheme is applied to a single-dimensional
dataset with values belonging to a domain of size T. The
scheme not only generates a ciphertext representation that is
O(log T) times the actual dataset (due to multiple encrypted
representation), each search query has a complexity of O(N
log T) where N is the size of the dataset and T is the size of
the domain. The performance only gets worse as the dimen-
sion increases—each query requires an O(dN log T) time
to execute. The scheme is proven secure under the selective
identity security model [7] similar to that used for identity-
based encryption techniques. Authors in [34] present a binary
string-based encoding of ranges. Similar to [43], they show
that they can represent each range as a set of prefixes (this
is same as saying that a set of nodes in the interval tree can
represent a range as done in [43]). Then, using the bit-flip-
ping-based encryption scheme of [52] they modify the encod-
ing function (i.e., flip the bits corresponding to a subset of
branches in the interval tree). This modified encoding func-
tion is called the ciphertext tree which is then used for encod-
ing the numeric values and also translating a range query into
appropriately represented set of prefixes.

There are severe performance limitations in the techniques
described above—for instance public-key encryption-based
schemes like [9] are substantially slower than symmetric key
encryption algorithms. Further, neither one of these tech-
niques admit any form of indexing for faster access. This
leads to inefficient access mechanism as the server has to
check the query predicate against each record, i.e., make a
complete scan of the whole table. This could be prohibi-
tively expensive for large tables. Additionally, like the order-
preserving encryption scheme, the techniques of [9,43] are
also susceptible to the value-localization problem described
above.

7.4 Related query types on encrypted multidimensional
data

There are a few other encrypted query mechanisms that have
been proposed for related problems to ours. The authors in
[51] address the problem of nearest neighbor search over
encrypted multidimensional data. They develop a special-
ized encryption technique to estimate distances between
an encrypted query point and a set of encrypted database
points. However, their technique is not directly useful for
our problem since there is no easy mechanism to repre-
sent a typical range predicate as a nearest neighbor query.
A more severe restriction is that they have to scan all data
to evaluate a k-nearest-neighbor query which would prove to
be prohibitively expensive for large datasets. A more recent
work on secure outsourcing of spatial datasets was studied
in [53] where the goal is to support spatial (2-dimensional)
predicate-based retrieval of data. They specifically protect
the database from an attacker who tries to use location-based
information to attack the dataset. Their technique involves
mapping a 2-dimensional point to another 2-dimensional
point by applying a linear transformation along with noise
addition. The original space is first partitioned into disjoint
buckets and subsequently, each bin is transformed indepen-
dently to mimic a target distribution. While the authors out-
line an interesting approach which seems to work for data in
lower dimensions, it is not apparent if this can be applied to
high dimension data or heterogenous datasets easily. Also,
one has to be able to provide a target distribution of points for
the linear transformation parameters to be computed. Also,
since the goal in the paper is to support nearest neighbor
queries, their approach tends to preserve more locality infor-
mation than ours. This in turn implies that the adversary
will be better able to localize neighbors of a point whose
true value has been compromised. Our scheme tries to pro-
tect against worst-case attacks which is not specific to any
particular attack algorithm. In contrast, the scheme in [53]
is geared toward protection from a specific kind of attack
where the adversary employs a linear least-squares fitting-
based algorithm to reconstruct the original points.

A more recent work involving homomorphic encryption
can potentially evaluate any function directly on the encrypted
data [18]. The proposed approach is not very practical and
its technical details are out of the scope of the current paper.
A good overview of the approach is described in a recent
CACM article [19].

7.5 Data partitioning problems

Many optimization problems in computer science and related
areas can be modeled as a multidimensional partition-
ing problem, e.g., load balancing in parallel computing
applications [31], histogram construction for selectivity
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estimation in query optimizers [39,40], data anonymization
for privacy-preserving data publication [5,27,33] etc. to
name a few. In a typical setting, the partitioning problem
consists of set of data elements along with an objective func-
tion and a set of constraints. The data element is represented
as points in some suitably chosen d-dimensional space and
the optimization goal is to partition this set into a number of
bins10 such that the value of the objective function is mini-
mized (maximized) and at the same time, all the constraints
are met. The objective function is often an aggregate function
over the resulting bins. For instance, in the problem of mul-
tidimensional histogram creation, if data elements are asso-
ciated with a weight equal to their frequency in the dataset,
the objective is to minimize the total sum of square of devia-
tions from the mean value in each bin. Such a partition tends
to make within-bin distribution more uniform and leads to
high-quality histograms for density estimation problems. The
constraints define the subset of partitioning schemes that are
admissible (feasible) for the given application. For instance,
space constraints might require the number of total bins to
be less than some number or the weight of each bin to be less
than some maximum weight bound etc.

The first phase in our bucketization algorithm is nothing
but a multidimensional data partitioning algorithm like many
previously proposed histogram techniques [39,40]. How-
ever, the similarity is rather deceptive, since histograms are
meant for selectivity estimation of query predicates while
ours are meant for reducing the overhead of false positives in
the bucketized query evaluation approach. These two objec-
tives can potentially result in very different partitions. For
instance, take a uniformly distributed multidimensional data-
set. For selectivity estimation, using a single bucket would be
as good as using all of the M buckets. However, for our prob-
lem, using larger number of buckets would lead to greater
reduction in the number of false-positive retrievals for any
underlying data distribution. Therefore, the optimal answers
in the two cases could deviate arbitrarily. Also, techniques
to map the multidimensional data first to a one-dimensional
space by imposing say an Hilbert ordering [26] will most
probably not work very well either, for the same reason
that they do not works very well for selectivity estimation
for multidimensional predicates, because the mappings tend
not to be locality preserving [39]. Nonetheless, it would be
interesting to empirically compare the performance of the
standard histogram techniques with ours, especially with
newer approaches like [17] which combine ideas of multidi-
mensional data structures with Hilbert ordering to linearize
multidimensional distributions. However, but we do not carry

10 In many problems the number of bins might not be specified directly,
but instead derived from other constraints specific to the application at
hand.

out such comparison in this paper and this remains a direction
for future extensions.

Whichever formulation one chooses, whether to set the
cost as a constraint and the security metrics as objective func-
tions or vice versa, we found that the resulting optimization
function is very distinct from any of the existing multidi-
mensional data/space partitioning problems we are aware of.
As a result, we decided to design partitioning techniques
from scratch rather than try and adapt existing histogram
techniques.

8 Conclusion

In this paper, we studied the problem of securely execut-
ing range queries over outsourced data. We looked at mul-
tidimensional data and range queries. The quality metric is
captured using cost metrics that estimate the expected num-
ber of false-positive matches given a bucketized representa-
tion. We show that this number is proportional to the number
of points (data items) allocated to a bucket times the sum of
edge lengths of the bucket. Therefore, our quality objective
is to keep this measure as small as possible. Given the buck-
etized view of the data, the best that an adversary can do is to
learn a distribution over the value range of the sensitive attri-
bute. In other words, bucketization induces an uncertainty
regarding the true value of the each record by inducing a prob-
ability distribution over the value of data. Therefore, if we can
ensure that this distribution satisfies some “safety” properties
we can provide better protection against adversarial estima-
tion. We identify two distributional properties—variance and
entropy of the bucket value distribution as measures of dis-
closure risk. Higher the value of these two metrics, lower is
the worst-case risk that an adversary will learn the true value
of a data item given the distribution. In contrast, for higher
values of variance and entropy the number of false-positive
retrievals tend to increase for queries. We propose a trade-off
algorithm called “controlled diffusion (CDf)” where we take
query optimal buckets and redistribute them in a controlled
manner to generate new buckets with value distributions hav-
ing substantially greater entropy and variance than in the
optimal buckets but are still able to guarantee bounds on the
query precision within a small factor of the optimal. Finally,
we carried out extensive experimentation to test the quality
and performance of our optimal partitioning and diffusion
algorithms. Below, we outline some directions of future work
and present some generic discussion.

8.1 A principled approach to trade-off exploration

Since the C D f -algorithm is distribution agnostic, it is not
necessarily the optimal approach to exploring such a trade-
off. The intuition is that we might be able achieve better
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results (i.e., further lower disclosure risk while paying
smaller cost) by designing an algorithm that takes the nature
of correlations between the bucket labels, sensitive attribute
and the other attributes into consideration.

8.2 Background information of adversary

We also need to take into consideration the domain knowl-
edge that might be available to the adversary which may
be combined with the exposed information to better esti-
mate the value of the sensitive attribute(s). One way to
model the adversary is like a powerful learning machine
who tries to learn the association (approximate joint-proba-
bility distribution) between non-sensitive and sensitive attri-
butes as accurately as possible. An exposure scenario may
be as follows—Say the dataset is horizontally partitioned
across a set of disks and the contents of one of the disks
gets partially exposed due to a security breach e.g., hacker
attack. For example, in the table shown in Fig. 2 one or
more attributes from the set {age, salary, credit_rating} might
get exposed for some of the records. Once the credit_rat-
ing (the sensitive attribute) has been exposed for a record
it can be utilized by the adversary as a part of a training
set to learn the association between age, salary, bucket label
and credit_rating. Let us denote the corresponding learning
model as “{age, salary, bucket label} → credit_rating”. In
this case, the adversary could learn associations of the follow-
ing form “(age=30, sex=M, salary < 40,000)→ (credit_rat-
ing=BAD)”, “(age=25, sex=F, salary > 30,000)→
(credit_rating=GOOD)” etc. with some level of confidence.
In fact, the dependent attribute bucket label is always avail-
able to the adversary, therefore we can assume that his back-
ground knowledge comprises rules of the form {F, B} → S,
where F consists of 0 or more of the non-sensitive attributes.
This background knowledge allows him to predict the value
of a record’s sensitive attribute.

8.3 Heterogenous data

The algorithms proposed in Sect. 4 works best when all the
dimensions used are numeric or there is a clear notion of a
distance metric associated between two tuples in the data-
set. Real datasets, more often than not, have mixed attri-
butes: numeric as well as categorical. Categorical attributes
may further have taxonomies defined on them where dis-
tance metrics based on these taxonomies might be consid-
ered more appropriate rather than imposing some arbitrary
order to the categorical values. In case of such heteroge-
nous data, the algorithm proposed above might not give
the best results. In another paper [27], we develop a hier-
archical data partitioning algorithm for heterogenous data.
The partitioning scheme (known as a guillotine partition-
ing) yields non-overlapping buckets. The enumeration-based

minimization algorithm developed in [27] was primarily
developed to search for optimal partitioning of such heterog-
enous datasets to implement a variety of privacy constraints
like k-anonymity [41,45] and l-diversity [35]. The enumer-
ation algorithm can be easily modified for the cost functions
proposed in Eq. 2 above.

8.4 Alternate techniques for bucketization

One way to view this problem is in the form of a multi-
objective constrained optimization problem, where the
entities minimum entropy and minimum variance amongst
the set of buckets are the two objective functions and the
constraint is the maximum allowed performance degradation
factor K . Most popular solution techniques for such prob-
lems seem to revolve around the Genetic Algorithm (GA)
framework [21,30]. GA’s are iterative algorithms and cannot
guarantee termination in polynomial time. Further, their effi-
ciency degrades rapidly with the increasing size of the data-
set. Nonetheless, it will be interesting to see how a GA-based
approach will perform and compare it against our two-phased
approach.
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