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ABSTRACT
We present Fatman, an enterprise-scale archival storage based
on volunteer contribution resources from underutilized web
servers, usually deployed on thousands of nodes with spare
storage capacity. Fatman is specifically designed for enhanc-
ing the utilization of existing storage resources and cutting
down the hardware purchase cost. Two major concerned
issues of the system design are maximizing the resource u-
tilization of volunteer nodes without violating Service Level
Objectives (SLOs) and minimizing the cost without reduc-
ing the availability of archival system.

Fatman has been widely deployed on tens of thousands of
server nodes across several datacenters, provided more than
100PB storage capacity and served dozens of internal mass-
data applications. The system realizes an efficient storage
quota consolidation by strong isolation and budget limita-
tion, to maximally support resources contribution without
any degradation on host-level SLOs. It firstly improves da-
ta reliability by applying disk failure prediction to minish
failure recovery cost, named fault-aware data management,
dramatically reduces the MTTR by 76.3% and decreases file
crash ratio by 35% on real-life product workload.

1. INTRODUCTION
Internet companies have collected billions of gigabytes of

data on their storages during recent years, and have to face
the growing of storage cost. These large set of data are not
always processed by applications but still spend the space of
expensive storage resources on offline computational cluster-
s. According to ESG report [1], 80% of file data on storage
systems is wasting high cost resources for their inactivation.
These set of data should be transferred to archiving system.
However, saving huge number of data still has to be paid
investment on extra machines, racks, and rents.

Many studies for building cost-saving archiving system
focus on high-density data compression [21][11] or shifting
cost to opening cloud storage provider like Amazon S3 or
Windows Azure [27] [26]. They seldom think about how to
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make use of existing unutilized storage nodes to build the
system, because the mainly cost lies in the machine purchase
and attached cash on datacenter infrastructure.

On the other hand, the disk utilization on existing clusters
are always low averagely. To cut down the cost, it becomes
a trend to adopt compact hardware configuration in ma-
chine purchase, which redundantly attaches several disks to
serve both CPU-bound and IO-bound applications at the
same time. This compact configuration is beneficial for in-
ternet companies. Because internet business generally con-
sists of offline backend for IO-bound mining or analysis and
online frontend for CPU-bound query processing, mixed de-
ployment on compact configured hardware can save much
overhead when transmitting tons of result data from offline
clusters to online ones. However, compact configuration will
introduce low utilization when the hardware requirement of
two kinds of applications does not match mutually. Another
reason results in lower utilization is that legacy servers with
common hardware configuration have not fully consumed
all hardware capacity and these spare capacity can be con-
tributed as volunteer resources. From our statistics on the
datacenters of the biggest internet search service provider in
China, there exists more than 240PB free storage space on
tens of thousands of frontend servers, and in most of them,
the utilization on both space and IO is lower than 40% over
years.

In this paper, we present Fatman, a novel design for enter-
prise-scale archiving storage built on volunteer nodes, which
makes use of the idle storage contribution to implement PB-
level low-cost reliable storage. The volunteer node can be
any server from search backend or frontend, which makes
agreement of resource sharing and gets protection from ma-
licious behaviours. Our contribution is as follows:

• We investigate the challenges of archiving system build-
ing on volunteer storage, addressing the basic isolation
requirement, the features of various Quality of Service
(QoS) of storage medium, and complexity of data re-
liability. (Section 2)

• We present the system architecture and lightweight
isolation mechanism to implement budget-based re-
source limitation. (Section 3.2)

• We outline the rules to place the data replicas within
resource limitation, and show how to take advantage
of medium heterogeneity while not losing reliability.
(Section 3.3)

• We demonstrate pre-scheduled data recovery based on
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failure prediction of disk medium, which efficiently avoid-
ing the hardware failure. (Section 3.4)

• We finally demonstrate by experiments that our Fat-
man can ensure the reliability with cost efficiency. (Sec-
tion 4)

2. CHALLENGE
The major barriers impeding broader application of vol-

unteer storage systems lies in three aspects:

• Resources isolation and limitation, to guarantee no
performance influence on host applications. Like TFS
[5], contributory application is transparently running
as parasite daemon in volunteer nodes, sharing host’s
CPU, memory, disk, network and other local resources.
The mixed-deploy contributory application will cause
heavy performance degradation as more storage is al-
located [16], if no isolation and limitation are enforced
in resource usages.

• Heterogeneous storage medium, usually contributed to
volunteer storage, has influence on hardware perfor-
mance, reliability, and cost [10]. It is critical for Fat-
man and other volunteer storages to accomplish the
isolation and abstraction for slow, failed or will-fail s-
torage medium and to minimize the data failure repair
overhead for avoiding the host’s SLO violation. Es-
pecially for those replica recovery with erasure codes
[19][14], data recovery is expensive against all kinds of
medium fault.

• Reliability is complicated and tricky. Besides heteroge-
neous resource failure, contributory applications may
deliberately be killed at any time for resource with-
drawn by volunteer node. Activated replication recov-
ering can not be quickly processed because of resource
limitation and non-priority access. To smooth resource
utilization without losing availability, assumptions are
pre-required in some systems to determine when da-
ta can be recovered and how to be recovered [5]. But
the assumptions are not always true in general case
[22][10].

3. DESIGN AND IMPLEMENTATION

3.1 Overview
Fatman adopts master-slave architecture: metadata is main-

tained by master and file data is stored via datanode, which
is as contributory service, residenting in volunteer nodes and
trying to share local resources (see Figure 1). For scalability,
there are several meta servers in master assisting metadata
management.

Resource isolation and limitation is implemented in datan-
ode to monitoring the usage of CPU, memory, disk and
network. Hardware health parameters are also collected to
failure model training and prediction, which result in-turn
provides hints for scheduling on data recovery or power ef-
ficiency.

3.2 Resource Availability
To enforce network bandwidth within given limitation lev-

el (say b MB/s), network is scheduled based on budget. Each
second will be assigned a budge of b MB for the total send-
ing buffer size on RPC channel. During this second, each
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Figure 1: Overall architecture

RPC request will subtract part of budget according to its
sending package size. When the budget is exhausted, next
RPC request will be blocked until new budget is assigned in
next second. Sometimes, we need to fine-tune the param-
eters to ensure no network peak is too high to hurt host’s
local applications.

Budget-based scheduling is also used to control disk IO
bandwidth. But for multiple block devices, each block de-
vices are sharing the total budget. Currently, storage ca-
pacity is only isolated via physical disks, and is returned via
background garbage collector.

CPU and memory are controlled elastically by cooperat-
ing with one standalone daemon, self-manager, which check-
s whether any over-consumption of resources occurred, and
will execute suicide to clean malignant affect.

The self-manager is designed as a stand-alone daemon, so
it can watch all contributory daemons and objectively au-
dit their resource consumption. Different from hypervisor
of virtual machine [2], it is more lightweight and quickly be
launched or destroyed. Also different from kernel-level con-
tainer (i.e. cgroup) [23], self-manager only control CPU and
memory. Another key reason why not use virtual machine or
kernel-level container is that almost all volunteer nodes are
running online services, which does not allow deploying new
system softwares or shutdowning to upgrade kernel version
to support new features.

3.3 Replica Placement
Data in Fatman are classified as hot data, with three repli-

cas, or cold data, encoded via Reed-Solomon (RS) algorithm
[19][14]. Like [8], a big file will be separated as 256MB-size
data blocks, stored in distributed datanode. Each data block
may have replication, or may be encoded together with sev-
eral parity blocks. The classification of hot data and cold
data results in that we can simply know which data are in-
active and can save storage capacity by applying high com-
pression algorithm.

The placement aims at reaching the balance of low cost
and best availability. For three-replica hot data, one block
replica is placed in high-quality storage media, other two
mirrors are in cheaper media (one of them is trying to place
on neighboring datacenter). For RS-encoded cold data, data
blocks are trying to place on cheaper but better-performance
medium, while parity blocks are placed in high-available
medium. Therefore, accessing cold data will achieve bet-
ter performance in most cases without data block crashes.

The placement of cold data helps data recovering to save
net bandwidth. If data block crash happens, the recovery of
cold data has to access all the data blocks and parts of parity
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blocks. This would cause heavy IO consumption. To achieve
the best recovering performance, an optional solution is to
split cold data block into slices and dispersed them across
several nodes. Fatman adopts RS(10, 4) to encode the data
slices (RS(n, k) is defined to represent one data is split to n
data blocks with k parity blocks). Each slice owns 10 seg-
ments for data and 4 segments for parities. For un-failure
data slice access, client only needs to read 10 data segments.
However, when needing to tolerate t-failure block (t < 4),
each slice will at most have 4 failure segments, therefore
client will read 10− t data segments and t parity segments
back in stream to recover the slice on crashed blocks. To
recover one crashed data segment, other data segments will
be pre-fetched from datanode, and the pre-fetched data seg-
ment can be used again to assemble the whole block. For hot
data, read on failure data block will auto-switch to another
replica simply.

Because of resource limitation, data recovering needs to
be intelligently scheduled in advance to reduce the MTTR
of failure file data. The pre-scheduling strategy is cooper-
ated with hardware failure prediction. Usually, prediction
mechanism notifies scheduler to prepare data transmission
several days in advance, then the scheduler makes use of the
idle time and activates replication recovering.

3.4 Fault Awareness
To the best of our knowledge, accurate detection of stor-

age failure can help system to optimize the mean time to
repair (MTTR) [13], since the speed of repair after a fail-
ure determines reliability for a specific storage system [28].
However, classical erasure codes relied on by Fatman, like
RS codes, are suboptimal for distributed environments be-
cause RS(10, 4) recovery requires transferring 10 blocks and
recreating the original 10 data blocks even if a single block
is lost [20]. Hence, the recovery process suffers a tenfold
overhead in repair bandwidth and disk I/O. To be more
efficient, Locally Repairable Codes (LRCs) has been intro-
duced in [21][11][24], which gains 50% disk I/O and network
reduction at the cost of 14% more storage.

As reported by [25], 78% of the hardware replacements
in modern datacenters were caused by hard disk failures.
So Fatman applies disk failure prediction for improve MT-
TR, and our result shows a better performance than LRCs
without any more storage overhead. In our previous work
[29], our model can predict 84.8% failures at least 24 hours
ahead, preserving enough time margin for data migration
from will-fail drives.

Once Fatman receives the alerts of incoming disk failures,
it can pre-schedule the recovery process as soon as possible.
Therefore the data reconstruction time after failures will be
reduced, especially when heavy RS decoding is needed under
computing resource limitations. The benefits of this mecha-
nism to replica robustness lie in two aspects. On one hand,
as [7] confirmed, a system that can predict failures sufficient-
ly ahead of time would be able to extend the mean time to
failures (MTTF) and shorten the mean time to repair (MT-
TR) evidently. On the other hand, we may have an oppor-
tunity to migrate and recover data when resource budget
of the target node is unstrained, which means that higher
bandwidth (network and disk) and more CPU/memory can
be used while side effects to basic performance are under
control. We will analyse the effects of this failure prediction
method in Section 4.3.

4. EVALUATION
The goals of our evaluation here are (1) to illustrate volun-

teer resources are available for Fatman without any resident
influence; (2) to show the performance based on volunteer
environment with specific resource limitation and enforce-
ment; (3) to demonstrate the reliability impact of fault-
aware data management and scheduling on MTTR of data
repair and real-life product workload.

4.1 Resource Availability
We measure the resource consumption on one of real on-

line volunteer nodes, which is configured with 8-core 2.4
GHz Xeon processors, 32 GB of memory, 12 1TB disks, and
a 1 Gbps full-duplex Ethernet connection. Fatman datan-
ode service and self-manager service are deployed within the
same Linux account in the volunteer node. In Figure 2, the
workload fluctuation (line host) is simulated from real lo-
cal host application, to measure the impact on contributory
services (datanode) about their resource consumption (line
contributory). The measurement can be easily conducted
via system tools or commands (e.g. top or ps).

CPU is the flexible resource and can be easily scheduled
without killing processes. Usually, datanode keeps core con-
sumption under specific given threshold (say 60%) when
host workload is not heavy. When host workload increases
and challenges more CPU resource, datanode will gradually
return the core. In Figure 2(a), we simulate the workload
changing as the fluctuation of dot-dash line. It can be seen
from figure datanode withdrawing the resource consumption
to ensure host’s resource provision. When host workload
continues to increase to upper limit, the datanode would
be killed totally, which can be seen from the black line at
1000-second point, releasing all resources.

Differently, the memory is recycled via killing contributory
services. We use kill, not shut down, because the execution
is quicker and simpler to relase resources. The self-manager
can be optionally restarted after suicide, by being configured
in Linux cron service

The budget-based network scheduling can achieve the rel-
atively stable utilization of contributory services. In our
experiment, the network bandwidth is limited to 30 MB/s,
we can see from Figure 2(c) that datanode will keep this
level unless resource challenge is arrived at threshold from
host workload. Similarly, self-manager detects the resource
shortage and informs datanode to narrow down the band-
width budget whenever necessary.

As disk capacity resource is recycled via garbage collec-
tor in background, the effect of resource release will not be
instant. But, it has no influences on our real workload, be-
cause disk utilization of real workload is almost stable and
seldomly approaching the threshold. Additionally, physical
isolation based on devices is common in our real deployment.

4.2 Performance
We measured performance on a Fatman cluster consisting

of one master, two master replicas, 24 datanode servers,
and 32 clients. Hardware configuration of each datanode
servers is the same as real volunteer node. We prepare both
hot data and cold data in our experiment: hot data has
three replicas for each data block, and cold data is encoded
with RS(10, 4). Note that this configuration was set up for
ease of testing. Generally clusters have several thousands of
datanode servers and thousands of clients.
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Figure 2: Elastic resource usage for dynamically changed workload
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Figure 3: Read/Write throughput

4.2.1 Reads
N clients read simultaneously from the system. Each

client reads a randomly selected 256 MB block size from
a 500 GB file set without replication crash. This is repeated
10 times to simulate the big-data flowing operation like real
case. Figure 3(a) illustrates the aggregated read throughput
with increase of client number. As for hot data with three
replicas, read operation can easily reach 120MB/s peak lim-
it of 1Gbps switch, and averagely 14MB/s for each client.
But for RS-encoded cold data, the peak throughput fluc-
tuates at about 85MB/s (14MB/s for each client). Be-
cause the RS-decoding is streamingly processed from data
segments across tens of datanode which swaps out some CPU
time from networking, the curve in 3(a) cannot approach the
bandwidth of hot data when increases the client’s workload.

4.2.2 Writes
N clients write simultaneously to N distinct files. Each

client writes 1 GB of data to a new file in a series of 2 MB
writes. The write throughput is shown in Figure 3(b). Aver-
agely, write for both of hot data and cold data are reaching
the peek 14MB/s per client. But the throughput for cold
data can not keep up with the corresponding value of hot
data at full workload.

The reason of low throughput at full workload is that RS
computation slows down the networking. Since computa-
tion resource is strictly limited and current implementation
has to calculate the parity segment per ten data segments,
there exists an idle scope of networking flow reducing the
throughput. But the effect of idle scope can disappear grad-
ually after N > 16 (see Figure 3(b)).

4.2.3 Reads on Failure Replication
Figure 3(a) also shows the performance of reads on those

files which have some replicas are crashed. The experiment
simulates the replica crash via random deleting replication
without crashing whole file. For hot data, we random delete

one or two replica(s), and for RS-encoded cold data, one or
two block(s) are selected to be deleted. The missing reads
can measure the overhead of data recovering when client
tries to read back correct data from the system.

As shown in 3(a), the missing reads has minute influence
on client throughput for hot data, which is decreased 0.4%.
But for cold data it is 29.7% averagely. For hot data, client
usually selects a closer and lower-workload replica to exe-
cute data read. If the replica is crashed or missing, the
performance cost of client is only to switch to next replica.
So, the the crash-replica read throughput of hot data is al-
most equal to no-crash reads. But for cold data, crashed
replica would cause multiple additional read operations of
parity segments to recovering the data segments. Plus the
computation cost, there will decrease the throughput.

4.2.4 Data Recovering
Table 1 lists the recover performance of single replica in

Fatman (For RS-encoded cold data, each block only has one
replica). For hot data, it is determined by networking and
disk IO, while, for cold data, RS-based decoding also needs
to consider the CPU and Memory. This may result in some
performance loss during recovering. Since one crash/missing
RS block will fetch tenfold data set, it needs to open ten con-
nection averagely and read from geographically block file.
Under the 40MB/s bandwidth, it needs 82.8 seconds to re-
cover one block file.

Table 1: Recover performance of single block
Type Three-replica RS-encoded
Block size (MB) 256 256
Trans. size (MB) 256 256 * 10
Opened connections 1 10
Network limit (MB/s) 40 40
Consumed time (sec) 7.25 82.8
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4.3 Fault Awareness
As discussed in Section 3.4, Fatman implements a fault-

aware recovering mechanism by predicting incoming disk
failures, which can reduce 76.3% of MTTR for RS recov-
ery. For those will-fail drives that are predicted, Fatman
not only pre-schedules the recovery processes for the sake of
resource limitation to improve the repair efficiency, but also
cuts down the reconstruction cost apparently, because the
system just needs to migrate the data away from the will-
fail drives, consuming only 1/10 repair time of RS recovery
time. After the actual statistics, 1, 384 of the predictions
were made 24 hours ahead of the 1632 failures, accounting
for 84.8% of all the failed disks (shown by the cumulative
distribution function in Figure 4). Therefore, the MTTR of
RS should be reduced by (1−1/10)∗84.8% = 76.3% at least
if the latent failures can be predicted 1 day ahead, saving
the computing resources for RS decode in the meantime.

4.4 Reliability Improvement
We specifies some status to represent the file block chang-

ing. For three-replication hot data, f1 means client hits one
failure replication (including missing replica), f2 means two
hits, and f3 means file has been crashed since at least one
block in file has completely missed. The Figure 5 shows the
three-month statistics from log files of our daily-run process
routine, which is real-life product workload of reading 1T da-
ta randomly from our testbed. Compared no-prediction and
prediction of hot data, we can found the failure prediction
can help cut down 77% of crash replication (f3) and 68%
of two-replica failure (f2). In Figure 5, the one-hits number
of prediction is higher than no-prediction one, because two-
failure-replication block will be recovered first which will
increase the number of one-failure number.

For RS-encoded cold data, f2 is specified to the status in
which failure replication number is between two and k. The k
is the maximally tolerant crash number in RS. In Fatman’s
RS code, each ten units of data segments will create four
units of parities, so the k is four. Therefore, total crashed
replica on f1 is less than those of hot data, and the benefit
of failure prediction can achieve 35% for f1 and 49% for f2.
But for f3, both of them are zero, which means that no file
is crashed or missing in our experiments.

5. RELATED WORK
Volunteer computing aims at enhancing the resource uti-

lization without local performance loss. Currently, prevalent
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Figure 5: The failure hits of read statics

volunteer systems or produces are built based on computa-
tional resources like CPU and memory, since this category
of runtime resources are relatively easier in control[15]. It
introduces more challenges of volunteer storage to solve effi-
cient utilization of heterogeneous host resources with vary-
ing capabilities and instability of high optional participation
rate, which are two of basic requirements in volunteer com-
puting[6].

Volunteer storage would cause SLO violation without ef-
ficient isolation during utilizing volunteer resources. VM-
based isolation can achieve strong limitation but also intro-
duce heavy overhead, while kernel-level container has not
been ready for networking and disk IO[2][23]. Some still use
the traditional audit-control methods in application level,
while it is coarse-grained and insensitive[5][15]. However,
the application-level control can be pervasive for not any
requirements resident with existing applications.

The reliability of volunteer storage is more tricky, chal-
lenged by fault prevalence from the instability of volunteer
resource provision or heterogeneous resource failure. As we
have proved, hard drive failure prediction can help main-
tain the reliability on storage system effectively. Merely
relying on the S.M.A.R.T. standard (Self Monitoring and
Reporting Technology) that most hard drive vendors will
follow can predict at least 50 percent of future failures [7].
In order to further enhance the prediction accuracy, several
machine learning techniques have been proposed using the
SMART-based feature sets [9][12][17]. In our previous work
[29], we also compared the performance of Backpropagation
(BP) neural network and SVM.

Storage system has long tried to build more reliable sys-
tem via disk mirroring [3] and RAID [4]. Erasure codes
[18][19][14] can improve reliability with low storage capaci-
ty but the overhead of using such erasure codes will likely
reduce system performance.

The integration of failure prediction and erasure codes is
never reported in recent articles, especially applying predic-
tion to pre-schedule decoding. Previous work focuses on self-
monitoring detection, but not considering hardware-aware
tolerance design.

6. CONCLUSION
Volunteer resource contribution is one of obvious ways

to achieve high scalability and low investment for building
large-scale archival system. However, traditional volunteer
storage is hard to be popularized, which lies in the concerned
influence on host applications against the reliable service
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provision. The paper presents Fatman, a novel storage sys-
tem design on volunteer contribution resources to build a
reliable enterprise-scale archiving storage system. Fatman
is implemented with strong resource limitation to maximal-
ly isolate influence against host applications. By fault-aware
scheduler predicting potential hardware failure and perceiv-
ing QoS, Fatman can in-advance execute data scheduling
and quality-aware data allocation, achieving high availabil-
ity and reliability. The experiment result illustrates failure
replication ratio has been reduced 68% for hot data and 35%
for cold data at least and MTTR has reduced by 76.3%.

In reality, Fatman has been deployed on tens of thousands
of server nodes across several datacenters, providing more
than 100PB storage capacity and saving millions of dollars
for company. The storage capacity of Fatman has served for
dozens of business applications, especially for those valuable
data sets with periodic updates like webpage processing and
user business logging.
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