
ProxiMate: Proximity-based Secure Pairing using Ambient
Wireless Signals

Suhas Mathur1
∗

, Rob Miller2, Alexander Varshavsky3, Wade Trappe2, and Narayan Mandayam2

1AT&T, 33 Thomas Street, New York, NY, suhas@att.com
2WINLAB, Rutgers University, 671 Route 1 South, North Brunswick, NJ, USA

2{rdmiller, trappe, narayan}@winlab.rutgers.edu
3AT&T Labs, Florham Park, NJ, varshavsky@research.att.com

ABSTRACT

Forming secure associations between wireless devices that

do not share a prior trust relationship is an important prob-

lem. This paper presents ProxiMate, an algorithm that al-

lows wireless devices in proximity to securely pair with one

another autonomously by generating a common cryptographic

key directly from their shared time-varying wireless envi-

ronment. The shared key synthesized by ProxiMate can

be used by the devices to authenticate each others’ physi-

cal proximity and then to communicate confidentially. Un-

like traditional pairing approaches such as Diffie-Hellman,

ProxiMate is secure against a computationally unbounded

adversary and its computational complexity is linear in the

size of the key. We evaluate ProxiMate using an experimen-

tal prototype built using an open-source software-defined plat-

form and demonstrate its effectiveness in generating com-

mon secret bits. We further show that it is possible to speed

up secret key synthesis by monitoring multiple RF sources

simultaneously or by shaking together the devices that need

to be paired. Finally, we show that ProxiMate is resistant to

even the most powerful attacker who controls the public RF

source used by legitimate devices for pairing.

1. INTRODUCTION

The number of devices with wireless interfaces is grow-
ing at an increasingly rapid pace. This growth fuels the
need for devices to interact as they move about and
come in proximity of one another. As an example, two
people meeting for the first time may wish to exchange
data between their mobile devices, or a passenger at a
train station may wish to pay for a ticket by having
their phone interact with an electronic ticket booth.
Securing such interactions from malicious adversaries

is an important and challenging problem. Due to the
broadcast nature of the wireless medium, how does one
device know that it is really interacting with the device
it intends to communicate with, if it has never encoun-
tered this device before? As a result, setting up a secure

∗This work was done while the primary author was at WIN-
LAB, Rutgers University.

Figure 1: Temporal variations in the wireless
RF channel from a public source (Peter) can be
used by parties in physical proximity (Alice and
Bob) to extract a random cryptographic key. An
adversary (Eve) who is not within the proxim-
ity of Alice and Bob cannot extract the same
key. Here, λ is the wavelength of the public RF
transmission.

link between wireless devices in proximity is presently a
surprisingly cumbersome procedure that often requires
significant human intervention in the form of entering a
shared key on both devices. Moreover, with the global
trend toward miniaturization and increased variety of
device form factors, the devices may not have a com-
mon set of hardware components required for setting a
human-supported secure association. For instance, the
devices may or may not have a screen, buttons, LEDs,
accelerometers, RFIDs and NFC chips. The only hard-
ware component that is guaranteed to be present on all
interoperable devices is the wireless radio.
In this paper, we show that devices in close physical

proximity can derive a shared secret key directly from
their common but continuously fluctuating radio envi-
ronment. Our technique, called ProxiMate, is based on
the observation that wireless devices in close proxim-
ity perceive the same small scale temporal variations
in their wireless channels, known as small-scale fading.
We show that these common temporal variations can be
used by the co-located devices to derive a shared secret
key directly, without the need for an expensive Diffie-
Hellman key exchange [1, 2]. In contrast, as shown in

1

Figure 2: A 30 second trace of the temporal channel variations observed at two receivers tuned to a
TV broadcast frequency (584.31 MHz) when the receivers are 8 cm apart.

Figure 1, an adversary that is not in close proximity
to the co-located devices will perceive different small-
scale fading effects and won’t be able to derive the same
secret key. Figure 2 illustrates that the temporal varia-
tions as perceived by two co-located devices are indeed
correlated.
The proximity at which the two co-located devices

must reside in order to perceive common small scale fad-
ing effects depends on the wavelength of the RF trans-
mission. As a general rule of thumb, the devices located
closer than half a wavelength will perceive similar sig-
nal fluctuations, whereas a device that is located fur-
ther than half a wavelength will perceive different small
scale fading effects. For example, the wavelengths of an
90 MHz FM Radio, 624 MHz TV and 2.4 GHz WLAN
transmissions are 3.3m, 47cm and 12.5cm, respectively.
The main idea of using common radio environment

as a proof of physical proximity was first presented in
Amigo [2]. Amigo relies on the Diffie-Hellman pro-
tocol for a secret key exchange between two devices
and then utilizes the received signal strength indica-
tor (RSSI) from WiFi packets for a proof of physical
proximity. ProxiMate has four advantages over Amigo.
First, ProxiMate doesn’t use the Diffie-Hellman key ex-
change protocol, but instead derives the shared key di-
rectly from the radio environment. Removing the re-
liance on the Diffie-Hellman key exchange has two ben-
efits: (a) Diffie-Hellman involves discrete modular ex-
ponentiation which is O(n3) in the size n of the desired
key, whereas ProxiMate uses a linear code, whose com-
plexity is O(n). This makes ProxiMate particularly use-
ful in domains where the entities wishing to form a key
have limited computational resources, such as sensor
networks [3]; (b) reliance on Diffie-Hellman implicitly
assumes that the adversary is computational bounded,
whereas ProxiMate extracts secret bits from the wire-

less channel itself and is therefore secure against even
a computationally unbounded adversary. Second, in-
stead of relying just on WiFi, ProxiMate can utilize any
available radio technology. For example, in this paper
we show how ProxiMate utilizes FM radio and TV sig-
nals for secret key extraction. Third, instead of relying
on individual packets, ProxiMate uses a continuous sig-
nal to measure the time-varying channel, thereby im-
proving the speed at which common randomness can
be harvested. Finally, ProxiMate does not rely on a
coarse-grained RSSI metric that measures the average
received power in a packet preamble and is, therefore,
relatively simple for an attacker to manipulate in a con-
trolled manner, as shown in [4]. Instead, it uses a finer
grained 2-dimensional (amplitude and phase) channel
measurements, which aren’t as easy to manipulate in a
controlled manner [4].
This paper makes four contributions. First, we de-

scribe ProxiMate, a mechanism for wireless devices in
physical proximity to convert their correlated wireless
channel measurements into identical sequences of bits,
which can then be used as a shared encryption key. As
part of the algorithm, we introduce a novel encoding
scheme, which we call list-encoding. Second, we evalu-
ate the performance of this algorithm through measure-
ments of ambient wireless signals. Third, we propose to
simultaneously monitor multiple RF sources and show
that concurrent monitoring significantly increases the
rate at which secret bits can be extracted. As an exam-
ple, ProxiMate can generate the equivalent of a 4-digit
PIN used in Bluetooth systems within 0.34 sec with
10 TV sources (see Section 4.6 for details). Finally,
we describe how the differential-phase of the received
signals can be used to protect against a very powerful
adversary who controls the public wireless source that
is being used by co-located devices for the secret bit

2

extraction.

2. SYSTEM MODEL

In this section, we define the problem of proximity-
based secure association, describe our threat model and
present an overview of wireless channel characteristics
that are important for this paper.

2.1 Problem Definition and Threat Model

We assume that two legitimate wireless devices, Alice
and Bob, are located in close physical proximity and are
interested in exchanging private information via com-
patible radios, without an adversary Eve being able to
decrypt their communication. This requires an authen-
ticated and secure channel. Alice and Bob do not know
each other a priori. Therefore, they cannot prove their
identities to each other. However, Alice and Bob know
that they are located in close physical proximity and
can use this information for authentication. Note that
Alice and Bob cannot simply use the Diffie-Hellman key
exchange [1] protocol to establish a secure channel since
Eve can easily masquerade as Alice to Bob or vice-versa,
or launch a man-in-the-middle attack. We further as-
sume that Alice, Bob and Eve can overhear a public
source of radio waves Peter that transmits a signal with
a wavelength of λ. Peter can be an FM radio station, a
TV station, a WiFi AP or a cellular tower.
We consider two threat models. First, we assume that

Eve can eavesdrop on all communications, and can try
to authenticate with Bob, pretending that she is Alice
(or vice versa). Second, we show how our technique
can deal with the most powerful attacker who controls
the public source of radio waves that Alice and Bob
are using for authentication - that is Eve is Peter! In
both cases, we assume that Eve is located at a further
distance from both Alice and Bob than they are from
each other. In Section 4, we show that to reliably derive
a shared secret key, Alice and Bob need to be located
closer than 0.1λ from each other, whereas the attacker
needs to be located further than 0.4λ from Alice and
Bob.

2.2 Wireless Channel

We assume that the wireless channel between Peter
and the legitimate devices is a multi-path channel, con-
sisting of many reflectors and scatterers. Many of the
paths taken by the signals transmitted by Peter are
time-varying due to the movement of people and ob-
jects and varying atmospheric conditions. Even slight
perturbations in the environment can generate signifi-
cant signal fluctuations at the receiver. This is the case
for all terrestrial wireless transmissions such as FM ra-
dio, TV and cellular networks. The state of the wireless
channel at any given time instant can be expressed as
a complex number, representing amplitude and phase

Figure 3: Wireless signals travel along multi-
ple paths, adding up to random amplitude and
phase at the destination. Thus, a wireless chan-
nel can be represented as a 2-D vector resulting
from the sum of many random 2-D vectors, each
corresponding to a separate path from transmit-
ter to receiver. If Alice and Bob are in proxim-
ity, the 2-D vectors corresponding to the chan-
nels between Peter and them are correlated.

of the composite channel (see Figure 3). The received
signal has an amplitude given by the product of the
transmit signal’s amplitude and the amplitude of the
channel at that instant. The phase of the received sig-
nal is the sum of the phase of the transmit signal and
the phase of the channel at that instant.
ProxiMate leverages two properties of the wireless chan-

nel. First, wireless channels at two locations in close
proximity are highly correlated. However, this corre-
lation diminishes fast as the distance between the two
locations increases, and typically vanishes completely
beyond λ/2. Second, both the strength and the phase
of the wireless channel vary randomly in time due to
changes in reflectors and scatterers. However, the sig-
nal is highly correlated at times t and t+ δ if δ is small.
The correlation vanishes as δ increases. The smallest
δ for which the channel is statistically independent at
times t and t + δ is termed the coherence time Tc of
the channel. In other words, the coherence time of the
channel indicates how often the channel appears ran-
dom again. Thus, samples of the signal at times t and
t+ Tc are statistically independent [5].

3. PROXIMATE

In this section, we describe how Alice and Bob, two
devices in close proximity, can derive a shared secret key
by tuning into an ambient wireless signal. ProxiMate

is based on the observation that measurements of the
wireless channels between an RF source and devices in
proximity are highly correlated. Channel measurements

3

Symbol Meaning
s(t) Signal transmitted by the public source, Peter.
X

U
Complex samples collected by user U

h
PU

Complex channel measurements between Peter and U
QU Quantizer threshold of user U
S

U
U’s estimate of s(t) gotten by demodulating X

U

K
U

Result of quantizing |h
PU

| w.r.t. QU .
C An (n, k) linear block error correcting code.

fc(x) n-bit Codeword in C that is closest to n-bit sequence x
P Offset of K

a
w.r.t. closest codeword in C

Table 1: Summary of notation. Underlined sym-
bols indicate vectors. In subscripts, the letter
‘U ’ refers to user and can be Alice, Bob or Eve.

consist of amplitude and phase components (see Figure
3 and Section 2.2), and since the two components vary
independently of one another but are correlated at Alice
and Bob, secret bits can be extracted from both sepa-
rately. Extracting bits from phase has the advantage of
being secure against a strong attacker who controls the
public wireless source that is being used by Alice and
Bob, as we show in Section 4.7.
Below, we first provide an outline of the logical steps

involved in extracting secret-bits from a general cor-
related quantity at Alice and Bob. We will then spe-
cialize this algorithm for the specific cases when the
correlated quantity is amplitude of the wireless channel
(Section 3.8), and when it is the phase (Section 3.9).

1. Alice and Bob periodically sample an ambient wire-
less signal coming from Peter. Each user uses the
samples to obtain a sequence of channel measure-
ments.

2. Each user also uses samples of the received signal
to demodulate the signal transmitted by Peter.

3. Each user uses its channel measurements to esti-
mate the coherence time Tc of its channel.

4. Alice obtains a sequence of bits from her channel
measurements. The exact mechanism for obtain-
ing bits from channel measurements depends upon
whether amplitude of phase is used for extracting
bits. Each successive bit is obtained from channel
measurements separated in time by at least Tc, as
calculated in step 3.

5. Alice sends Bob a snippet of her demodulated sig-
nal from step 2. This is meant to help Bob syn-
chronize to Alice’s time-frame so that he can ex-
tract similar bits as Alice. After synchronizing to
Alice’s time frame, Bob extract bits from his chan-
nel measurements, just like Alice did in step 4.

6. Along with the snippet in step 5, Alice sends Bob,
in the clear, a function of the bit-sequence that she
obtains from her measurements in step 4. Bob uses
this information along with his own bits, which he
obtains in step 5, to arrive at Alice’s bits with high
probability. This step is called reconciliation [6].

7. Alice and Bob discard part of their bits to elimi-
nate any information that leaked out to Eve during
step 6. This step is called privacy amplification [7].

Below we expand and elaborate on each of the steps
described above. Refer to Table 1 for the summary of
notation used. Underlined variables represent arrays
(i.e. sequences of values rather than a single value).
Subsections 3.1 to 3.7 correspond to the numbering of
the 7 steps outlined above.

3.1 Collecting samples and channel measure-
ments

Every T seconds, each user samples the signal re-
ceived from Peter. T is a fixed parameter of the protocol
and is chosen to be much smaller than the expected ap-
proximate coherence time Tc. These samples are stored
into a time series Xu, where u = Alice/Bob/Eve, and
are used to measure the channel time series hPU . Since
the wireless channel has both amplitude and phase, each
element of the channel measurement vector hPU is rep-
resented by a complex number. It is the temporal vari-
ation of the amplitude portions of hPA and hPB that
is shown in Figure 2. It is important to understand
that the samples Xu of the received signal are not the
same as channel measurements hPU . Instead, channel
measurements are derived from the samples of the re-
ceived signal Xu. For example, if it is known that the
transmit signal is of constant amplitude (fixed power),
then the variation in the amplitude of the received sig-
nal |Xu| must be purely due to the variations in the
wireless channel and can therefore be treated as |hu|.

3.2 Demodulation

From the sequence of received samples Xa, each user
separately demodulates s(t), the signal transmitted by
Peter, to obtain the demodulated signal Su (u = Alice
or Bob). For example, if Peter is an FM radio transmit-
ter, the demodulated signal is simply the audio signal
on the FM station. The purpose of demodulating Pe-
ter’s signal is to use it to time-synchronize Alice and
Bob.

3.3 Estimating the coherence time

Each user separately estimates the coherence time of
the channel, Tc, using its sequence of channel measure-
ments hPU . In estimating Tc, we assume a Rayleigh
fading channel [8]. We tested this assumption in prac-
tice and found it to be correct [9]. That is, the dis-
tribution of channel amplitude measurements matches
closely a Rayleigh distribution.
The coherence time Tc of a Rayleigh fading channel is

related to the level crossing rate, LCR, of the channel,
i.e. simply the rate at which channel amplitude crosses
a specified level. For a Rayleigh fading channel, this

4

is [8]

LCR =
√
2πfdρe

−ρ2

(1)

where ρ the ratio between the level-crossing threshold
considered and the root mean square amplitude, and fd
is the Doppler spread. From this, Tc can be estimated
as [8]:

Tc ≈
1

4fd
=

3ρe−ρ2

2
√
2πLCR

(2)

For example, the coherence time of the channel being
monitored in Figure 2 is estimated to be 0.22 sec.

3.4 Obtaining bits

The process of translating channel measurements hPA

and hPB to bits lies at the heart of ProxiMate. Here we
will describe a general method to obtain bits from a
given correlated quantity at Alice and Bob and then we
will specialize it to the case of amplitude in Section 3.8
and to phase in Section 3.9. Suppose the quantity that
Alice and Bob are attempting to obtain bits from, is
stored as an array A at Alice and an array B at Bob.
For the case of amplitude, A = |hPA| and B = |hPB |,
and for phase, A = angle(hPA) and B= angle(hPB).
Alice and Bob separately compute the median Qu of
their measurements A and B. Alice quantizes A once
per Tc, using Qa as a quantizer threshold to extract
one bit per coherence time, to obtain a bit-sequence
Ka. That is, her quantizer output is a bit ”1” if the
value of an element in A is < Qa and ”0” otherwise.
Bob performs the exact same steps using his own mea-
surements B, after synchronizing to Alice’s time-frame
of reference (see next step - Section 3.5) and obtains the
array of bits Kb.

3.5 Synchronization

Alice sends Bob a snippet of her demodulated signal
Sa, e.g. demodulated audio in the case of FM-radio,
with the understanding that the start of this snippet
corresponds to time t = 0 in her frame of reference.
Bob can thus easily synchronize to Alice’s time-frame
of reference by correlating his own demodulated signal
Sb with Alice’s snippet. By synchronizing, the bits Kb

obtained by Bob correspond to the same time instants
as Alice’s bits Ka.

3.6 Reconciliation

After synchronization and quantization, Alice and
Bob end up with n-bit sequences, Ka and Kb respec-
tively, which may differ at any given bit position with
a probability ǫ. Reconciliation is the process of ‘repair-
ing’ the difference between Ka and Kb so that Alice
and Bob end up with the same bit-sequence and can
then use it as a key. The reconciliation process drasti-
cally reduces the errors between Alice’s and Bob’s bit
sequences (hopefully eliminating all errors), but it also

reduces the number of common bits that Alice and Bob
share. Hence, reconciliation trades off bit-error rate ǫ
with the key bit-rate.
A crucial observation that allows reconciliation is the

following: suppose we treat Alice’s bit sequence Ka as
the key and would like Bob to somehow deduce Ka.
Then Bob’s bit-sequence Kb can be thought of as a dis-
torted version of Ka. How can Alice convey to Bob
which bits in Kb are different from Ka without actu-
ally sending him Ka (that would reveal Ka to Eve)?
The answer lies in treating both Ka and Kb as dis-
torted versions of ‘some’ n-bit codeword of an (n, k)
error correcting code1 C. An (n, k) code C consists of a
one-to-one encoding function that maps any k-bit string
to a n bit string (n > k), and a many-to-one decoding
function that maps any n-bit string to one of 2k n-bit
strings called ‘codewords’ of C. The code C to be used
is known to all parties, including Eve.
Let fc(·) be the decoding function of C that maps any

n-bit sequence to the closest codeword in C. Alice first
computes fc(Ka), i.e. the codeword in C that is closest
to Ka and then computes the offset P = Ka − fc(Ka),
i.e. the bit-by-bit difference between this codeword and
Ka. Alice then sends P to Bob in cleartext. If the
value of ǫ is roughly known, a code with a suitable error
correcting ability can be chosen to allow Bob to decode
Ka using Kb and P by the following operation: P +
fc(Kb − P) which is equal to P + fc(Ka) with high
probability, which in turn equals Ka by the definition
of P . Therefore, at the end of this step, both Alice and
Bob possess Ka with high probability. We refer to this
construction as a quantization-based construction. We
will see below, that this construction is not suitable for
use for extracting a secret key from the amplitude of
channel measurements hu, but is suitable for extracting
the key from phase.

3.7 Privacy amplification

Since the offset P is sent by Alice in the clear, Eve ob-
tains partial information about Alice’s and Bob’s shared
key, Ka. That is, although she cannot guess Ka by ob-
serving P alone, she knows something about Ka – in
particular she knows that Ka − P = a valid codeword
of C. It can be formally shown that Eve’s learns n− k
bits of information about Alice’s and Bob’s n-bit strings
by observing P . Therefore, in order to ensure that the
key used by Alice and Bob is not even partially known
to Eve, in the privacy amplification step, Alice and Bob
reduce the size of their bit-string by n − k bits to ob-
tain k-bit strings, about which Eve has absolutely no
information. The simplest way to accomplish this is to
use the k-bit pre-image of the n-bit codeword fc(Ka),

1For simplicity, we will assume the C is a linear block error
correcting code (we use the (12, 23) Golay code in Section 4
in our experimental evaluation.)

5

Figure 4: An illustration of list-encoding. Alice
uses relative maxima and minima to generate
Ka. Discret-time indices Li, i = 1, . . . n of the se-
lected extrema are collected into the list L to be
sent to Bob.

which Alice and Bob possess.
We have now described how Alice and Bob can ex-

tract an identical secret key using ProxiMate from a
corellated set of channel measurements. Next, we tweak
the basic framework of ProxiMate above to make it suit-
able for extracting bits from amplitude (Section 3.8)
and phase (Section 3.9).

3.8 List-encoding

Unfortunately, the quantization-based construction
described in Section 3.6 has the problem that unless
the bit-error rate ǫ, between the bits of Ka and Kb is
extremely small, the code C needed to do reconciliation
successfully, must be of a very large block-length, i.e. n
must be very large. The Bit-error rate ǫ is related to
the distance between Alice and Bob d/λ (we evaluate
this relationship in Section 4), and for typical values of
d/λ in our problem, ǫ is moderately large (∼ 0.1− 0.2).
For example, when using an ATSC TV signal at 584.31
MHz (channel 33) and when Alice and Bob are only 1.5
inches apart, we have ǫ ≈ 0.15. Using a code C with
a very large block-length n requires that ProxiMate be
run for a long time in order for Alice and Bob to col-
lect n-bit long Ka and Kb. In this subsection, we show
how it is possible to lower ǫ for a given d/λ, by altering
the way in which Alice and Bob obtain bits from their
channel measurements.
We now present list-encoding, an alternative to the

quantization-based construction above for extracting bits
from the amplitude of channel measurements, that sig-
nificantly lowers ǫ to a value suitable for use of error
correcting codes with a reasonably small block length
n. Short codes, in turn, enable ProxiMate to pair Alice
and Bob in a shorter time-interval.
List-encoding uses the relative minima and maxima

in the temporal variations of |hPU | to create bits at Al-
ice and Bob (see Figure 2) instead of quantization with
a threshold Qu in the quantization-based construction.
It involves the following steps (see Figure 4)

1. Alice locates sharp upward peaks and deep down-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Distance between Alice and Bob (in λ)

P
ro

b
a
b
ili

ty
 o

f
b
it
 e

rr
o
r

Scalar quantization, 1 bit/T
c

List encoding, 0.5 bits/T
c

Figure 5: Bit-error rate between raw bits at
Alice & Bob for a simple quantizer and for list-
encoding (Section 3.8).

ward fades in the sequence of her channel measure-
ments.

2. Alice maps upward peaks to a bit ”1” and down-
ward fades to a bit ”0”. In this way Alice obtains
a bit-string Ka.

3. Each successive extremum chosen by Alice is sep-
arated from the previous extremum by at least Tc

to make sure that bits in the extracted key are
independent.

4. Alice collects the time-indices at which these ex-
trema occur into a list L.

5. Alice demodulates her received signal to obtain Sa,
just like in the ProxiMate’s basic algorithm.

6. Alice computes a code-offset P of Ka with respect
to a known linear block code C as before.

7. Alice sends Bob a package consisting of {P, Sa, L}

8. Bob synchronizes to Alice’s time-frame of reference
using Sa as before.

9. Bob determines for each time-index in L, the loca-
tion of the nearest extremum in his own sequence
|hPA| of channel measurements. If his nearest ex-
tremum is a maximum, he assigns the bit ”1”, and
for a minimum, he assigns a ”0”, and thus Bob
builds his bit-sequence Kb.

10. Bob performs reconciliation using P and Kb and
knowledge of the code C as before.

11. Alice and Bob locally perform privacy amplifica-
tion as before.

Even though the values of the channel measurements
hPA and hPB at Alice and Bob are not necessarily bet-
ter correlated at the location of extrema in Alice’s pro-
cess, the type of extrema (i.e. minimum or maximum)
at Alice and Bob at these locations are in much better
agreement, which lowers ǫ.

6

Tradeoff with rate. List-encoding has a subtle
tradeoff, which we will describe here but will defer de-
tailed results to [9] due to space limitations. While in
the basic version of the algorithm, Alice and Bob con-
tribute 1 bit to Ka and Kb respectively per Tc, using
extrema in the manner described above, reduces this
to less than one bit per Tc. Therefore, the drop in ǫ
comes as the cost of a drop in key bit-rate. However, it
can be shown [9] that the overall effect of list-encoding
on key bit-rate after reconciliation is that the improve-
ment in ǫ due to list-encoding more than makes up for
the drop in key bit-rate. Figure 5 shows, via simulation,
the error bit-rate (ǫ) due to list-encoding and that due
to the basic version of ProxiMate, for different values of
the distance between Alice and Bob. Notice how list-
encoding results in a significantly lower ǫ, but produces
half the number of bits per Tc generated by the basic
version.

3.9 Extracting bits from phase

The phase of the signal alone cannot be directly used
for extracting bits at Alice and Bob because the mea-
surement of phase also depends upon the phase of the
local oscillators (LO) at both the transmitter and the
receiver. Since it is not pragmatic to assume phase syn-
chronization between the LOs of Alice and Bob, we use
the change in phase or phase differential over a fixed
time interval ∆, instead of the actual value of the phase
to extract bits. ∆ must be at least as large as the
coherence time Tc so as to ensure that successive bits
are independent. We use the differential phase values in
place of the amplitude of hPU in the quantization-based
construction of ProxiMate and the rest of the algorithm
remains the same.

4. EVALUATION

In this section, we describe our experimental setup,
discuss our evaluation metrics and present results from
our prototype implementation of ProxiMate. Specifi-
cally, we first experimentally evaluate what must the
distance between Alice and Bob be in order to success-
fully generate a shared key, and how far Eve must be in
order for this key to be secret. Then, we determine how
many secret-bits per second Alice and Bob can generate
and we explore the use of multiple sources in parallel in
order to increase this rate. Finally, we experimentally
study the case of a malicious public RF source.

4.1 Experimental Setup

We evaluated ProxiMate using an experimental pro-
totype built on top of GNUradio [10]. GNUradio is
an open source software toolkit, written in C++ and
Python, that allows the creation of custom modular
blocks for receiving, processing and transmitting RF
signals. GNUradio interfaces via USB with a piece of

Figure 6: The GNUradio setup corresponding
to two devices (Alice and Bob).

hardware called the USRP (Universal Software Radio
Peripheral), which acts as the bridge between the RF
and software worlds. While software-based manipula-
tion of radio signals at the level of detail needed by
ProxiMate is not currently possible using commercial
off-the-shelf wireless devices such as cellphones or Wifi
cards, the rapid adoption of software-defined radio sys-
tems will likely make this possible in the near future.
For any given scenario in our evaluations below, each
user was mapped to a USRP radio front-end, connected
to a laptop running GNUradio (see Figure 6 showing
Alice and Bob). This setup allows each user to collect
complex samples (i.e. each sample has amplitude and
phase) of the RF frequency band it is tuned into.
In evaluating ProxiMate we used real RF signals in

the television broadcast band between 512 and 608 MHz
(channels 21-36 in the US), and the FM-radio broad-
cast band between 88 and 108 MHz. Each broadcast
TV channel contains an always-on constant-amplitude
pilot tone, which we tune into, and track its ampli-
tude to obtain channel measurements (i.e. |hPU |). For
FM-radio signals, we make use of the fact that the FM
radio signal has a very narrow spectrum (200 kHz) and
is transmitted at constant power by the transmitter.
Thus, we measure the total received power over the 200
KHz band for a given FM radio channel as our channel
measurement |hPU |. For extracting bits using phase,
we retain the phase of each sample, which is then used
to compute the phase-differential across a time interval
∆ > Tc. Overall, we collected close to 1.5 hours of data
from the TV bands and 1 hour of data from the FM
bands, spread over 6 days of measurements.

4.2 Evaluation Metrics

In evaluating ProxiMate, we employ three metrics:
key bit-rate, bit-error rate and mutual information.
Key bit-rate reflects the rate at which two devices

can generate secret bits. For example, if a key bit-rate
is 1 bit/sec, then a 128 bit key can be generated in 128
seconds. The higher the key bit-rate, the faster two
devices can generate a key of a given length. Key bit-
rate depends on the encoding scheme and the coherence
time of the channel. Recall from Section 2.2 that the
coherence time is an indicator of how often the channel

7

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

Distance between receivers (in λ)

B
it
 e

rr
o
r

ra
te

TV

FM

Figure 7: The bit-error rate ǫ between the bits obtained (prior to reconciliation) by two devices as
the distance between them is varied, using (a) list-encoding with channel amplitudes, and (b) phase-
differentials, for a TV signal (584.31 MHz) and an FM signal (88.7 MHz). Errorbars indicate the min
and max values in each case across 20 experiments of 120 seconds each.

can provide fresh random secret bits. Once the coher-
ence time of a channel is estimated (using the method
in Section 3.3), we can calculate the key bit-rate.
Bit error rate (BER) is the number of bit-errors di-

vided by the total number of generated bits or, in other
words, the fraction of bits extracted by the two devices
that differ. For instance, random selection of bits by two
devices will result in a bit-error rate of ∼ 0.5, since, on
average, the devices will generate different bits roughly
half the time. The lower the BER, the higher the like-
lihood that two devices will generate exactly the same
key at the end of ProxiMate. Given a wireless channel,
BER depends on the distance between two devices. The
larger the distance between two devices, the more likely
they are going to observe different variations of the sig-
nal, and, therefore, the more likely they are to generate
different bits. Fixing the distance between two devices,
fixes their BER.
Mutual information [11] between two random quan-

tities X and Y , denoted I(X ;Y), is a non-negative mea-
sure of the amount of information in bits, that observ-
ing the value of either of the quantities, say Y , con-
veys about the value of the other, X . If mutual infor-
mation between X and Y is zero, then observing the
value of one does not convey any information about the
other. We use mutual information to measure the sim-
ilarity between observations of two legitimate devices
and the dissimilarity between observation of an adver-
sary and either of the legitimate devices. A mutual
information of close to 0 between the channel measure-
ments of an adversary and those of the legitimate de-
vices would indicate adversary’s inability to obtain any
useful information about the legitimate device’s mea-
surements from its observations. Further, since bits are
extracted from channel measurements (whether ampli-
tude or phase), this would also necessarily indicate the
adversary’s inability to get any information about the

bits generated by the legitimate devices. Such bits can
therefore be considered secret bits. Mutual informa-
tion between two quantities X and Y can be empir-
ically computed [12] if a large number of data pairs
(Xi, Yi), i = 1, . . . is available.

4.3 What should be the distances between Al-
ice, Bob and Eve?

In order to evaluate: (a) the ability of Alice and Bob
to extract the same bits, as a function of the distance be-
tween them, and (b) the inability of Eve to extract the
same bits as Alice or Bob, we run instances of ProxiMate

for various distances between two USRP receivers. Fig-
ure 7(a) shows the bit-error rate ǫ between bits obtained
using list-encoding at two receivers for the TV and FM
bands as a function of physical distance between the
receivers. Figure 7(b) shows the BER for bits obtained
from phase alone, using the simpler quantization pro-
cedure described in Section 3.9. The BERs shown in
Figure 7 are before the application of error correcting
code.
The first insight from these plots is that the BER

approaches 0.5 as the distance between the receivers
approaches ∼ 0.4λ. Second, in the case of amplitude,
the BER between receivers that are within d < 0.1λ
is within ∼ 0.03, but in the case of phase, the error
performance is worse ∼ 0.03 at d = 0.05λ. However,
phase-based extraction has the additional quality of be-
ing resistant to a malicious public source, as we show
in Section 4.7. Such low bit-error rates can be handled
by error correcting codes with short block lengths. Our
results suggest that adversary should be located farther
than 0.4λ, and the legitimate devices should be within
d = 0.1λ or less for amplitude-based bit extraction and
d = 0.05λ for phase-based bit extraction.
In order to characterize the information available to

Eve about the channel measurements of Alice and Bob,

8

(a) (b) (c)

Figure 8: Scatterplots of the channel estimates
of (a) Alice Vs. Bob, (b) Alice Vs. Eve and
(c) Bob Vs. Eve, made using a three-user mea-
surement on an FM radio channel. Eve is at a
distance of λ/2 from both Alice & Bob, who are
d = 0.05λ apart. Each plot also shows an estimate
of the mutual information per pair of channel es-
timates, computed using the algorithm in [12].

we conducted measurements with three GNUradio re-
ceivers representing Alice, Bob and Eve, simultaneously
tuned in to the same FM-radio channel. Figure 8 shows
pairwise scatterplots of the amplitude of channel mea-
surements of each pair of users when Eve is at a dis-
tance of 0.5λ from both Alice and Bob and Alice and
Bob are 0.05λ apart. The upper left corner of each plot
also shows the empirically computed mutual informa-
tion between the measurements of the two users being
compared.
The plots and the mutual information computations

show that Eve obtains only a negligible amount of in-
formation about Alice’s and Bob’s measurements. One
channel measurement provides Bob with 1.473 bits of
information about Alice’s corresponding measurement.
In contrast, one channel measurement provides Eve with
only 0.092 bits of information about Alice’s correspond-
ing measurement and 0.083 bits of information about
Bob’s measurement. This means Alice and Bob have
15 ∼ 16 times more information about each other’s
measurements than what Eve knows about their mea-
surement. The intuitive meaning of this result is that if
Alice and Bob generate a 15 bit key, then the theoreti-
cal maximum that Eve can know about this key is 1 bit
and no more. If Alice and Bob use this 15 bit key, it is
exactly equivalent to Alice and Bob generating a per-

fectly secret 14 bit key about which Eve has completely
no (0 bits) information.

4.4 How many secret bits can be extracted per
unit time?

We would like Alice and Bob to be able to establish
an identical secret key of a given size in the shortest
possible time. The rate at which secret bits can be
extracted is determined by 3 factors: (i) The rate at
which the Peter-Alice and Peter-Bob channels vary with
time. The faster these channels vary, the faster, fresh
randomness becomes available to Alice and Bob. This
notion is captured by the coherence time Tc, which we

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 (

s
e
c
)

Stationary

moving
 slowly moving

 fast

(a)

0.45

0.65

0.85

1.05

1.25

1.45

T
im

e
 (

S
e

c
)

Stationary

moving
 slowly moving

 fast

(b)

Figure 9: Average estimates of the coherence
time made using equation 2 for (a) TV (584.31
MHz) and (b) FM (98.7 MHz) signals. Each es-
timate is computed using six one-minute traces.
Error bars indicate the min and the max esti-
mates in each case.

will evaluate in this section. (ii) The distance between
Alice and Bob. The greater the distance between Alice
and Bob, the greater the bit-error rate ǫ between the
bits extracted by them. Making their secret bits identi-
cal by the process of reconciliation necessarily requires
a reduction in the number of bits, because the use of
an error-correcting code trades off one for the other.
Therefore, in evaluating the effect of channels with dif-
ferent Tc’s, we will use the same distance between Al-
ice and Bob to keep the BER roughly the same. (iii)
The number of separate sources of randomness (differ-
ent public sources) that Alice and Bob are monitor-
ing. As long as the channels between different public
sources and Alice/Bob are independent, the sources can
be treated as independent sources of randomness. We
will explore multiple sources further in Section 4.5.
The coherence time Tc of a given wireless channel tells

us how often a time-varying channel can provide fresh
secret random bits. It is important to understand that
Tc has to do with the multiple paths between a trans-
mitter (in our case Peter) and the receiver (in our case
Alice/Bob), i.e. the propagation environment, rather
than the time-varying nature of the transmit signal s(t)
itself. It is possible to create an increased rate of ran-
dom temporal variation in a wireless channel by phys-
ically moving or shaking the receivers Alice and Bob
together. Moving Peter, or reflectors and scatterers in
the propagation path would also have the same effect,
but these entities are not under our control. Since a
lower Tc enables a higher secret bit-rate, it is useful
to investigate the extent to which physical movement
changes the Tc.
To evaluate the effect of physical movement on Tc,

we collected channel measurements at Alice and Bob for
three cases: stationary, moving slowly, and moving fast.
For the latter two cases, we physically waved Alice’s
and Bob’s antennas together in the air, first slowly, and
then vigorously. Figure 9 plots the coherence time for
each of three cases for both TV and FM signals. The

9

(a) Amplitude (b) Phase

Figure 10: (a) Average secret-bits per sec-
ond before performing reconciliation, using (a)
list-encoding on amplitude measurements, and
(b)phase-differentials. Alice and Bob were sep-
arated d = 0.1λ.

figure shows that shaking devices together vigorously
can lower Tc by a factor or 2 to 2.5, and hence increase
the rate at which secret bits can be extracted by the
same factor. For example, a stationary Alice and Bob
can extract a new bit from a TV signal once every 0.27
sec (1.25 sec for FM), but if shaken vigorously, they can
get a new bit once per 0.12 sec (0.55 sec for FM).
Figure 10 plots the average key bit-rate at which se-

cret bits were extracted from a single RF source for the
three types of environments we have considered (sta-
tionary, moving slowly and moving fast). Alice and Bob
were positioned 0.1λ apart, which translates to 5 cm for
the TV signal and 34 cm for the FM radio signal. The
figure reveals two important results: (i) The key bit-
rate is roughly proportional to the frequency of the RF
signal used, for both amplitude-based and phase-based
extraction. (ii) Fast physical movement can improve
the key bit-rate by a factor of 3 ∼ 4 compared to the
stationary case.
The results in this plot are prior to reconciliation. For

reconciliation, we used the (23, 12) error-correcting Go-
lay code because it is a linear short-blocklength code,
with very simple linear encoding and decoding algo-
rithms. The Golay code takes 23-bit segments of bits,
Ka and Kb, and reduces them to 12-bit segments (i.e.
it reduces the bit-rates, shown in Figure 10, by a factor
of 12

23), reducing the bit-error rate ǫ drastically in the
process. For instance, applying the (23, 12) Golay code
on the bits obtained from the TV signal when Alice and
Bob were moved together fast results in a final secret
bit rate of 1.8 secret bits per sec, with a bit-error rate
of 2.4 × 10−3. When the same code is applied to bits
obtained from phase-differential measurements, the fi-
nal bit-rate is 4.3 secret-bits/sec with a bit-error rate
of 5 × 10−2, which is a very high bit-error rate. How-
ever, if the code is applied two times, i.e. if another
round of reconciliation is performed, then the rate is
2.2 secret-bits/sec, with an error rate of 10−5. Note
that each time reconciliation is performed, there is an
accompanying privacy amplification step to eliminate

Figure 11: Locations of three FM radio stations
we tested in the NY/NJ area, with respect to
the location of Alice and Bob (marked by a star).
The plot below shows five FM radio stations be-
ing monitored simultaneously by Alice’s GNU-
radio, including the three FM-stations we used
for evaluating independence.

information leaked out to Eve during reconciliation. As
a result, one round of reconciliation and privacy amplifi-
cation produces a reduction in the rate (secret-bits/sec)
by a factor of 12

23 (i.e. approximately half) when the
(23,12)-Golay code is used.

4.5 Monitoring multiple sources

Our analysis thus far has only considered a single
RF source. By simultaneously monitoring multiple RF
sources, Alice and Bob can increase the amount of com-
mon randomness available to them per unit time. In
fact, the number of secret bits per second achievable,
scales linearly with the number of added sources, so
long as the sources themselves are physically separated
by a distance of at least λ/2. In such a scenario, Alice
and Bob can treat each signal source as an indepen-

dent source of common randomness and run parallel
instances of our secret bit extraction algorithm. In our
evaluation of multiple sources, we focus on FM signals,
because the narrow bandwidth of each FM radio station
allows us to use the GNUradio platform to receive mul-
tiple FM stations simultaneously. With a bandwidth of
200 KHz per FM station, the maximum number of FM
sources that Alice and Bob can receive with a single
GNUradio+USRP setup is 40. While not all channels
in the FM band may carry an FM radio station with a
strong signal, most regions in the country have an ad-
equate FM radio coverage. Although we could observe
signals on all 40 channels, we sampled the channel re-
sponses for five radio stations within 1 MHz of block

10

Figure 12: Left: Mutual Information between
measurements of Alice on the three FM radio
stations, taken two at a time. Right: Mutual
information between channel measurements of
Alice versus those of Bob on three different FM
radio stations.

of spectrum (at 97.9, 98.3, 98.7, 99.1, and 99.5 MHz)
for this study. Figure 11 shows the locations of three
of these local FM stations from the NJ/NY area on a
map, and the inset shows the five successive FM radio
stations on the frequency dial within 1 MHz block of
spectrum.
To determine the extent to which wireless channels

corresponding to different FM-radio stations are inde-
pendent of one another, we employ Mutual Informa-
tion as a metric. Recall that if the mutual informa-
tion I(X ;Y) between two quantities X and Y is ∼ 0
thenX and Y are nearly independent because observing
one gives no information about the other. In particu-
lar, we evaluate the mutual information between Alice’s
channel measurements at a given instant of time, across
three of these FM stations, taken two at a time. Figure
12 shows the mutual information values for Alice’s chan-
nel measurements for the three stations, taken pairwise
on the left. For comparison, on the right are comptua-
tions of mutual information between the measurements
of Alice and Bob for each of the three stations. Our
results suggest that temporal variations in the channels
from different FM radio stations are in fact fairly in-
dependent. We ran our list-encoding algorithm on the
5 FM channels taken as parallel, independent sources
of randomness, and observed a combined average secret
bit rate of 1.08 bps, with an average error rate of 0.039
when Alice and Bob were stationary and 0.1λ apart,
and 4.27 bps with an average error rate of 0.042 when
Alice and Bob were moved together in unison. We con-
clude that, when compared to the results of a single
FM channel, sampling the abundance of public sources
could significantly increase key bit-rate.

4.6 Putting it all together

A large number of factors affect the performance of
ProxiMate: the distance between Alice and Bob, the
wavelength of the public source, whether Alice and Bob

Stationary Moving slow Moving fast
TV 33 10.2 7.5
FM 102.5 41.2 31.5

(a) Amplitude, Prob(key mismatch) ≤ 10−3

Stationary Moving slow Moving fast
TV 16.4 7 6
FM 50.2 33 29

(b) Phase, Prob(key mismatch) ≤ 10−5

Stationary Moving slow Moving fast
TV 11 4.2 3.3
FM 33.62 18.3 15

(c) Both Amplitude and Phase
4.3× 10−4 ≤ Prob(key mismatch)≤ 6.2× 10−4

Table 2: Number of seconds needed to form a
128-bit key with 10 sources, when Alice and Bob
are d = 0.05λ apart.

are held stationary or moved, the length of the desired
key, the amount of time available, the number of RF
sources being monitored, and the probability that the
final keys do not match in the end. In order to ob-
tain a simplified view into ProxiMate’s performance, we
decided to hold all but two of the factors constant.
Table 2 shows the amount of time needed by Alice

and Bob to form a 128-bit key, when they are d = 0.05λ
apart, and use 10 sources in parallel, such that the prob-
ability that the final 128 bit keys (i.e. after reconcilia-
tion) extracted by them do not match is fixed (see Ta-
ble 2). Table 2(a) is computed using the secret-bits/sec
rates in Figure 10(a), the bit-error rates shown in Fig-
ure 7(a) and assuming the application of one round
of reconciliation and privacy amplification using the
(23,12)-Golay code. Table 2(b) for phase-based bit-
extraction is computed using the secret-bits/sec rates
in Figure 10(b), the bit-error rates shown in Figure 7(b)
and assuming the application of two rounds of reconcili-
ation and privacy amplification using the (23,12)-Golay
code, because one round of reconciliation brings the key-
mismatch probability to only ∼ 10−1 (bit-error rate of
∼ 10−3), which is too high to be useable. Finally, we
combine the results of Table 2(a) and (b), in creating
Table 2(c) assuming that Alice and Bob run parallel
instances of ProxiMate on amplitude and phase. The
key mismatch probability is computed by first comput-
ing the average bit-error rate, assuming that the 128-bit
key consists of bits contributed by the amplitude and
phase instances of ProxiMate in the proportion of their
secret-bit rates. Instead of providing the key mismatch
probability for each of the six cells in Table 2, we sum-
marize its range below it.

11

Table 2(c) shows that the overall performance of ProxiMate

is impressive, given the extremely low key mismatch
probabilities. Further, the amount of time needed can
simply be scaled down linearly if more RF sources are
used. As a comparison, when both amplitude and phase
are used by ProxiMate, we deduce from the results in Ta-
ble 2(c), that the amount of time needed to establish
a key the size of the Bluetooth 4-digit PIN (13.2 bits)
is 0.34 sec with 10 TV sources shaken fast and 3.5 sec
with 10 FM sources when Alice and Bob are stationary.

4.7 Coping with an adversarial source

In this section, we first show analytically and then
validate empirically that our differential phase secret bit
extraction can tolerate a powerful attacker who controls
the transmission source.

4.7.1 Analytical Examination

A powerful attacker is able to manipulate the ampli-
tude of the signal received by Alice and Bob in a con-
trolled manner because the effect of the wireless chan-
nel on the transmit signal’s amplitude is multiplicative
– the amplitude of the received signal can be anywhere
between 0 and a very large number. That is, by increas-
ing or decreasing the amplitude of a transmitted signal,
an adversary can increase or decrease the amplitude of
the received signal, respectively. In contrast, the effect
of the wireless channel on the transmit signal’s phase is
additive, and the phase of the resultant received signal
must lie between 0 and 2π, as phase wraps around af-
ter 2π. In this case, the adversary has no control over
changes in the phase of the received signal. We next
illustrate this observation with a concrete example.
Suppose the adversary source transmits the signal

A(t) cos (2πfct+ φ(t)) instead of transmitting a signal
cos (2πfct). That is, the adversary inserts the multi-
plicative amplitude term A(t), and the additive phase
term φ(t), both of which can be arbitrary functions of
time. The receiver’s channel estimate is then

h(t) = H(t)A(t) · ej(φ(t)+θ(t)) (3)

where H(t) is the true channel amplitude and θ(t) is
the true channel phase at time t if the transmitter is
not adversarial. The adversary has inserted A(t)ejφ(t)

in front of the true channel state H(t)ejθ(t), causing the
channel to appear to have amplitude of A(t)H(t) and a
phase of φ(t) + θ(t).
If Alice and Bob use only amplitude of their channels

to extract bits, then an active Eve can vary A(t) to in-
fluence the bits extracted by Alice and Bob in a manner
chosen by her, and would therefore possess some infor-
mation about the extracted key. However, the phase
θ(t) added by the channel, and hence the phase of the
signal received at Alice & Bob θ(t)+φ(t) is not control-
lable by Eve, because phase is a number in the range 0

Figure 13: Differential phase measurements of
Alice vs Bob (left), compared with those of Alice
vs Eve (right). The axes represent the interval
[−π, π] radians. Each plot shows a mutual infor-
mation estimate between the differential phases
of the corresponding two users, computed using
the algorithm in [12].

to 2π radians (i.e. 360 degrees), as phase wraps around
0 after going beyond 2π.

4.7.2 Empirical Validation

We evaluated our differential phase method for ex-
tracting secret bits by creating our own FM source (Eve)
using the GNUradio as a transmitter this time. We
generates a transmit signal at Eve’s GNUradio with
arbitrarily varying amplitude and phase. Alice and
Bob were located in a different room d = 0.04λ apart.
Each user, Alice, Bob and Eve is made to collect phase-
differential across a time interval ∆, which is conser-
vatively chosen to be greater than the Tc, known from
our previous evaluations (Section 4.4). We compared
Alice’s and Bob’s phase-differentials against the phase
differentials in Eve’s transmit signal.
Figure 13(a) shows a scatterplot between Alice’s and

Bob’s phase-differentials, and Figure 13(b) shows a scat-
terplot of Alice’s phase-differentials versus the phase-
differentials in Eve’s transmit signal. Each plot also
shows an estimate of the mutual information (in bits per
phase-differential). These results indicate that phase-
differential in the received signals at Alice and Bob are
highly correlated, and can therefore be used to extract
bits using the basic quantization procedure of ProxiMate.
On the other hand, the phase-differentials in Eve’s trans-
mit signal are nearly independent of those of Alice or
Bob. Therefore, Eve has no useful information about
the change in phases at Alice and Bob, or to be precise,
she has 1.803

0.023 ≈ 78 (from the mutual information esti-
mates in Figure 13) times less information about Alice’s
and Bob’s measurements than they do about each oth-
ers’ measurements. Therefore if Alice and Bob generate
a 78-bit key, it is equivalent to a 77-bit secret key.

5. DISCUSSION AND LESSONS LEARNED

In this section, we discuss the security aspects of

12

ProxiMate, its limitations, and lessons learned during
our work.
Spatial security. Our experimental evaluation in

Section 4.3 shows that if an adversary is more than
0.4λ away from both Alice and Bob, then the fraction
of Eve’s bits that differ from those of Alice or Bob, is
very close to 0.5, which is the same as having Eve ran-
domly guess Alice’s and Bob’s bits. For an FM and TV
signals, 0.4λ corresponds to ∼ 1−1.3 m and 20−50 cm,
respectively. Further, mutual information between the
measurements of Eve and those of Alice or Bob, provide
an upper bound on the amount of information available
to Eve about Alice’s & Bob’s measurements. For ex-
ample, from the mutual information numbers in Figure
8, we see that when Alice & Bob are 0.05λ apart and
Eve is 0.5λ away from each other, the amount of infor-
mation that Eve has about Alice’s or Bob’s measure-
ments is more than an order of magnitude lower than
the information Alice and Bob have about each other’s
observations. This implies that for each sequence of 10
bits generated by Alice & Bob, Eve can guess at most

1 bit.
Active adversary. An active Eve may transmit a

signal in addition to Peter’s public signal in an attempt
to influence Alice’s and Bob’s estimates of their chan-
nels from Peter. This is a weaker form of the attack in
which Eve has full control of the signal transmitted by
Peter (Section 3.9). As before, using phase differentials
in place of amplitudes of the channel measurements al-
lows Alice and Bob to form a key without revealing any
bits to Eve.
Adversarial channel-manipulations. If an at-

tacker can manipulate the wireless channel by control-
ling scatterrers and reflectors in the path of the signal
between Peter and Alice/Bob (see Figure 3), she can,
in principle, influence the temporal variations observed
by Alice and Bob. However, this is hard to accomplish
in a controlled manner (i.e. to produce desired tempo-
ral variations in the channel measurements at Alice and
Bob), especially when the public source is distant, as is
likely to be the case with public broadcast sources such
as FM and TV transmitters.
Adversarial channel-modeling. What if a pas-

sive Eve attempts to model the temporal variation in
the channels between the public source and Alice/Bob
by placing herself at the location of Alice/Bob, before
or after the key extraction protocol? Such an adversary
cannot get any useful measurements about the mea-
surements made by Alice and Bob, provided that at
least one coherence time interval (hundreds of millisec-
onds, in the case of TV signals) had elapsed between the
instance of the key-generation protocol and the adver-
sary arriving at location of Alice/Bob. This is because
the wireless channel decorrelates over a coherence time
interval, and channel models are only a statistical de-

scription of the channel.
Statistical randomness of secret bits. The bits

in the secret key must be statistically independent in or-
der to be suitable for use as a cryptographic key. This
is ensured in list-encoding by having Alice wait for at
least one coherence time interval between successive bit
extractions. As explained in Section 2.2, the coherence
time, is by definition, the amount of time needed for
the channel state to become random after an observa-
tion, and is estimated in ProxiMate by Alice using an
empirical estimate of the level crossing rate.
Access to low level samples. The current gener-

ation of radio device (e.g. cellphones, WiFi cards) do
not provide access to sample level information in soft-
ware. This presents a challenge to the immediate adop-
tion of security mechanisms such as ProxiMate as well
as earlier efforts [4, 13–15] that propose the use of ra-
dio signals for improving security primitives in software
alone. It is of this reason that we have had to use the
USRP/GNUradio platform for our experimental evalu-
ation. However, we believe that with sufficiently ben-
eficial use-cases, and increasing adoption of software-
defined highly programmable radios, such functionality
is likely to become available in future generations of
devices.
Tradeoffs. In evaluating the system through real ra-

dio signal measurements, we learnt that ProxiMate has
a number of tradeoffs. Longer wavelength (λ) signals
make ProxiMate more useable than small wavelengths,
considering the typical distances at which Alice and Bob
might want to pair in typical pervasive computing sce-
narios. However, longer wavelengths also increase the
coherence time of the channel, almost proportionally,
thus requiring longer to form the same size key. Fur-
ther, a longer wavelength also implies that the minimum
distance for an adversary, viz. λ/2 is larger. Also, it is
easier to monitor multiple FM-radio stations, than it
is to monitor multiple TV signals because many FM-
radio stations can fit into a given block of monitored
spectrum due to the much narrower bandwidth of FM
radio (200 KHz) as compared to TV signals (6 MHz).

6. RELATED WORK

Amigo [2] was the first to propose the use of com-
mon radio environment as a proof of physical prox-
imity. Ensemble [16] extended Amigo by having the
pairing devices transmit instead of receive packets, and
showed how an ensemble of trusted body-worn devices
can determine proximity of the pairing devices by mon-
itoring their transmissions. Both these techniques used
the Diffie-Hellman protocol to exchange secret keys and
used RSSI values in WiFi packets to detect proxim-
ity. In contrast, ProxiMate doesn’t require the Diffie-
Hellman protocol, but derives the secret key directly
from the radio environment. In addition, ProxiMate

13

works with any radio technology and it extracts bits
from the raw signal, as opposed to the more limited av-
eraged RSSI values. Finally, by using the differential
phase, ProxiMate is secure against a powerful adversary
who controls the transmission source.
Several prior works have shown how two devices can

derive a secret key based on fluctuations of the radio
environment between them [4, 13, 15]. These tech-
niques focus on securing the wireless link and assume
that the two communicating devices have been authen-
ticated before, whereas ProxiMate provides both au-
thentication and security. In addition, the reliance on
random fluctuating channel between communicating de-
vices makes these techniques unsuitable in a setting
where two communicating devices are in close physical
proximity. This is because the randomness in a wire-
less channel arises from RF propagation along multiple
time-varying paths, and in a proximity setting, the di-
rect path dominates, making the channel predictable,
rather than random.
Recent work shows how shaking of devices equipped

with accelerometers can be used to authenticate de-
vices [17, 18]. Unfortunately, this require the presence
of accelerometers on devices, they might be suscepti-
ble to attacks where an adversary replicates the shak-
ing movement, and may not be appropriate in certain
scenarios, such as an authentication between a public
display and a laptop. Finally, one cannot rely solely on
the short-range nature of technologies such as Bluetooth
and near-field communication (NFC) [19] because they
are susceptible to attacks by eavesdroppers with direc-
tional antennas [20, 21].

7. CONCLUDING REMARKS

This paper shows how wireless devices in proximity
can pair autonomously by using their correlated chan-
nel measurements from ambient wireless signals to form
a shared crypto-key. The speed with which users can
securely pair depends on their physical separation, and
on the rate of temporal variation in the chosen chan-
nels. Pairing can be accelerated by monitoring mul-
tiple sources simultaneously, or by manually shaking
the legitimate devices together. We showed that using
changes in phase, in place of amplitude variations proves
to be robust against active attacks. Finally, ProxiMate

can easily be extended to allow establishing a common
secure association for more than two devices.
We believe that a number of useful optimizations

of ProxiMate can improve its functionality and perfor-
mance even further. For example, if Alice and Bob do
not end up with identical bits after using an error cor-
recting code, they do not need to discard them and start
over, but can instead employ further rounds of error cor-
rection. Another direction for improvement would be to
explore the use of non-binary quantization for improved

extraction rates.

8. REFERENCES
[1] W. Diffie and M. Hellman, “New directions in cryptography,”

IEEE Trans. on Information Theory, vol. 22, no. 6, pp.
644–654, 1976.

[2] A. Varshavsky, A. Scannell, A. LaMarca, and E. de Lara,
“Amigo: Proximity-based authentication of mobile devices,” in
In Proceedings of UbiComp 2007: Ubiquitous Computing,
2007, pp. 253–270.

[3] D. Liu and P. Ning, “Establishing pairwise keys in distributed
sensor networks,” in Proceedings of the 10th ACM conference
on Computer and communications security, ser. CCS ’03.
New York, NY, USA: ACM, 2003, pp. 52–61. [Online].
Available: http://doi.acm.org/10.1145/948109.948119

[4] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari,
and S. V. Krishnamurthy, “On the effectiveness of secret key
extraction from wireless signal strength in real environments,”
in Proceedings of the 15th Annual International Conference
on Mobile Computing and Networking (MobiCom ’09),
September 2009, pp. 321–332.

[5] A. Molisch, Wireless Communications. Wiley-IEEE Press,
2005.

[6] G. Brassard and L. Salvail, “Secret key reconciliation by public
discussion,” Advances in Crytology Proc. - Eurocrypt ’93,
Lecture Notes in Computer Science, vol. 765, pp. 410–423,
1994.

[7] C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy
amplification by public discussion,” SIAM J. Comput., vol. 17,
no. 2, pp. 210–229, 1988.

[8] T. S. Rappaport, Wireless Communications: Principles and
Practice. Prentice Hall PTR., 2001.

[9] “Technical report WINLAB, Rutgers University, strongly
secure pairing of wireless devices in physical proximity,
http://www.winlab.rutgers.edu/∼ suhas/CliqueTR2010.pdf.”

[10] “http://gnuradio.org/trac.”
[11] T. M. Cover and J. A. Thomas, Elements of Information

Theory. John Wiley, 1991.
[12] Q. Wang, S. R. Kulkarni, and S. Verdu, “A nearest-neighbor

approach to estimating divergence between continuous random
vectors,” in Int. Symp. on Inform. Theory, 2006, pp. 242–246.

[13] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik,
“Radio-telepathy: Extracting a secret key from an
unauthenticated wireless channel,” in Proc. of the 14th annual
conference on mobile computing and systems (MobiCom
2008), San Francisco, CA, Sept 2008.

[14] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and
N. Mandayam, “Information-theoretically secret key generation
for fading wireless channels,” Accepted for publication at the
IEEE Trans. on Information Forensics and Security, June
2010, preprint available at http://arxiv.org/abs/0910.5027,
2010.

[15] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and B. Yener,
“Robust key generation from signal envelopes in wireless
networks,” in CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security, 2007,
pp. 401–410.

[16] A. Kalamandeen, A. Scannell, E. de Lara, A. Sheth, and
A. LaMarca, “Ensemble: cooperative proximity-based
authentication,” in Proceedings of the 8th international
conference on Mobile systems, applications, and services.
New York, NY, USA: ACM, 2010, pp. 331–344. [Online].
Available: http://doi.acm.org/10.1145/1814433.1814466

[17] R. Mayrhofer and H. Gellersen, “Shake well before use:
Intuitive and secure pairing of mobile devices,” IEEE
Transactions on Mobile Computing, vol. 8, no. 6, pp. 792–806,
2009.

[18] D. Bichleri, G. Stromberg, and M. Huemer, “Key generation
based on acceleration data of shaking processes,” Ubiquitous
Computing 2007, pp. 304–317, 2007.

[19] “Near field communications forum,
http://www.nfc-forum.org/.”

[20] J. Wright, Dispelling Common Bluetooth Misconceptions.
SANS Technology Institute Security Laboratory, 2007.

[21] E. Haselsteiner and K. Breitfuss, “Security in near field
communication (NFC),” Workshop on RFID Security
RFIDSec, 2006.

14

