
FPGA or Cell for an Image Processing Application
Ryan N. Rakvica, Hau Ngoa, Randy P. Broussardb, Robert W. Ivesa

aDepartment of Electrical and Computer Engineering, U.S. Naval Academy, Annapolis, MD;
bDepartment of Systems Engineering, U.S. Naval Academy, Annapolis, MD;

Abstract— Modern advancements in configurable hardware,
most notably Field-Programmable Gate Arrays (FPGAs) have
provided an exciting opportunity to discover the parallel nature
of modern image processing algorithms. On the other hand,
PlayStation3 (PS3) game consoles contain a multi-core
heterogeneous processor known as the Cell, which is designed to
perform complex image processing algorithms at a high-
performance level. All the while, image processing algorithms are
still coded for off-the-shelf computers, such as the state-of-the-art
Xeon-based computer systems. In this research project, we study
the differences in performance of a modern image processing
algorithm on three hardware platforms. We show that the
heterogenous Cell based PS3 is able to outperform a state-of-the-
art Xeon processor by 7.7 times. However, our results on an
FPGA are 2.5 times better than the PS3. Although the CELL
processor greatly outperforms the Xeon processor, the FPGA is
the leader in performance.

Keywords— Iris recognition algorithms, cell processing,
reconfigurable computing, parallel computing, hamming
distance, biometrics

I. INTRODUCTION
For most of the history of computing, the amazing gains in

performance we have experienced were due to two factors:
decreasing feature size and increasing clock speed. However,
there are fundamental physical limits to this approach—
decreasing feature size gets more and more expensive and
difficult due to the physics of the photolithographic process
used to make CPUs and increasing clock speed results in a
subsequent increase in power consumption and heat dissipation
requirements. Parallel computation has been in use for many
years in high performance computing, however in recent years,
multi-core architectures have become the dominate computer
architecture for achieving performance gains. The signal of this
shift away from ever increasing clock speeds occurred when
Intel Corporation cancelled development of its new single core
processors to focus development on dual core technology.
Executing programs in parallel on hardware specifically
designed with parallel capabilities is the new model to increase
processor capabilities while not entering into the realm of
extensive cooling and power requirements.

The Cell processor is a joint effort by Sony Computer
Entertainment, Toshiba Corporation, and IBM that began in
2000, with the goal of designing a processor with performance
an order of magnitude over that of desktop systems shipping in
2005. The result was the first-generation Cell Broadband
Engine (BE) processor, which is a multi-core chip comprised
of a 64-bit Power Architecture processor core and eight
synergistic processor cores. A high-speed memory controller
and high-bandwidth bus interface are also integrated on-chip
[11].

The Cell processor, shown in Figure 1, has a unique
heterogeneous architecture compared to the homogeneous Intel
Core architecture. It has a main processor called the Power
Processing Element (PPE) (a two-way SMT PowerPC based
processor), and eight fully-functional co¬processors called the
Synergistic Processing Elements, or SPEs. The PPE directs the
SPEs where the bulk of the computation occurs. The PPE is
intended primarily for control processing, running operating
systems, managing system resources, and managing SPE
threads. The SPEs are single-instruction, multiple-data (SIMD),
shown in Figure 1, processors with a RISC core [12].

According to IBM, the Cell BE is capable of achieving in
many cases, 10 times the performance of the latest PC
processor [13]. The first major commercial application of the
Cell processor was in Sony’s PlayStation3 game system. The
PlayStation3 has only 6 SPU cores available due to one core
being reserved by the OS and 1 core being disabled in order to
increase production yields. Sony has made it very easy to
install a new Linux-based operating system onto the
PlayStation3, thereby making the game system a popular
choice for experimenting with the Cell BE.

Figure 1. Cell BE High Level Architecture Diagram

Historically programmers have thought in sequential terms,
and programming these multi-core processors can be difficult.
Often times, this involves completely redesigning an existing
program from the ground up and implementing complex
synchronization protocols. Parallel programming is based on
the simple idea of division of labor—that large problems can be
broken up into smaller ones that can be worked on
simultaneously. Making it more challenging is the fact that the
SPEs in the Cell do not share memory with the PPE.
Additionally, they are not visible to the operating system,
thereby leaving all management of SPE code and data to the
programmer.

Another popular approach to parallelization is to use Field
Programmable Gate Arrays (FPGAs). FPGAs are complex
programmable logic devices that are essentially a “blank slate”

2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies

978-0-7695-3915-7 2009

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ACT.2009.75

271

Authorized licensed use limited to: US Naval Academy. Downloaded on June 30,2010 at 16:20:42 UTC from IEEE Xplore. Restrictions apply.

integrated circuit from the manufacturer and can be
programmed with nearly any parallel logic function. They are
fully customizable and the designer can prototype, simulate and
implement a parallel logic function without the costly process
of having a new integrated circuit manufactured from scratch.
FPGAs are commonly programmed via VHDL (VHSIC
Hardware Description Language). VHDL statements are
inherently parallel, not sequential. VHDL allows the
programmer to dictate the type of hardware that is synthesized
on an FPGA. For example, if you would like to have many
ALUs that execute in parallel, then you program this in the
VHDL code.

In this work, we have parallelized a repeatedly executed
portion of an image processing algorithm with both an FPGA
and a Cell processor. In section 2 we present our image
processing algorithm. In Section 3, we present an approach
utilizing parallel logic with field-programmable gate arrays and
cell processors. In Section 4 we demonstrate this efficiency
with a comparison between the FPGA, the Cell processor and a
sequential processor. We provide concluding statements in
Section 5.

II. IRIS RECOGNITION BACKGROUND
Iris recognition stands out as one of the most accurate

biometric methods in use today. One of the first iris
recognition algorithms was introduced by pioneer Dr. John
Daugmann [1]. An alternate iris recognition algorithm, referred
to as the Ridge Energy Direction (RED) algorithm [2] will be
the basis for this work.

The iris is the colored part of the eye, protected by the
cornea that extends from the pupil to the white of the eye. Its
patterns remain stable over a lifetime. An example iris image
is depicted in Figure 2. Once a digital image of the iris is
captured, the system begins processing the image to transform
it from a two dimensional array of pixels to a two dimensional
encoded string of bits for comparison (see “Segment Iris into
Polar Coordinates” in Figure 2). In this, the first step is to
identify the iris among other facial elements such as the
eyelids, sclera (white part of the eye), pupil (dark circle in the
center of the eye) and eyelashes. The algorithm accomplishes
this via the segmentation method described in prior art [3]. This
establishes the central point of the iris within the image’s x and
y coordinates, allowing the computer to extract only the
meaningful portions of the iris.

Once the iris is segmented, the algorithm takes the iris and
divides it into m concentric annuli and n radial lines, which
results in an m x n representation of the iris. This step is
effectively a rectangular to polar coordinate conversion. The
energy of each pixel is merely the square of the value of the
infrared intensity within the pixel and is used to distinguish
features within the iris. The next step is to encode the iris
image from two dimensional brightness data down to a two
dimensional binary signature, referred to as the template
(“Template Generation” in Figure 2) To accomplish this, the
energy data are passed into two directional filters to determine
the existence of ridges and their orientation. The RED
algorithm uses directional filtering to generate the iris template,
a set of bits that meaningfully represents a person’s iris.

1) Segment Iris into Polar Coordinates

2) Template Generation
(directional filtering)

Vertical Filtering

Horizontal Filtering

Compare Template

Figure 2. RED Iris Recognition Algorithm. Visible is the associated two
dimensional encoding of the iris image into energy data [4].

The filter passes over this periodic array taking in 81 (9x9)
values at a time (note, in [2], 11x11 is used). Finally, the
template is generated by comparing the results of two different
directional filters and writing a single bit that represents the
filter with the highest output at the equivalent location. The
output of each filter is compared and for each pixel, a ‘1’ is
assigned for strong vertical content or a ‘0’ for strong
horizontal content. These bits are concatenated to form a bit
vector unique to the “iris signal” that conveys the identifiable
information. In this study, we assume a template consists of
2048 bits, representing the uniqueness of the iris.

A template mask is also created during this filtering
process. If both filter output values are not above a certain
threshold, then a mask bit is cleared for that particular pixel
location. The template mask is used to identify pixel locations
where neither vertical nor horizontal directions are identified.

Once encoded, the iris recognition system must be able to
reliably match the newly created template with a database of
previously enrolled templates. The newly encoded iris is
compared to a database of previously created templates using a
fractional Hamming Distance (HD) calculation, which is
defined in Equation 1. This is illustrated in Figure 3.

(1) (template A template B) mask A mask B
mask A mask B

HD

The exclusive-or operation is used to detect disagreement
between corresponding bit pairs in the two templates,
represents the binary AND function, and masks A and B
identify the values in each template that are not corrupted by
artifacts such as eyelids/eyelashes and specularities. The
denominator of (1) ensures that only valid bits are included in
the calculation, after artifacts are discounted. The lower the HD
result, the greater the match between the two irises being

272

Authorized licensed use limited to: US Naval Academy. Downloaded on June 30,2010 at 16:20:42 UTC from IEEE Xplore. Restrictions apply.

compared. The fractional Hamming distance between two
templates is compared to a predetermined threshold value and a
match or non-match declaration is made.

Figure 3. New template is compared with each template stored in a database.

The HD calculation, or iris matching, is critical to the
throughput performance of iris recognition since this task is
repeated many times, seen in Figure 3. Traditional systems for
HD calculation have been coded in sequential logic (software);
databases have been spread across multiple processors to take
advantage of the parallelism of the database search, but the
inherent parallelism of the HD calculation has not been fully
exploited.

III. IMPLEMENTATIONS

A. Sequential on a CPU
Currently, iris recognition algorithms are deployed globally

in a variety of systems ranging from computer access to
building security to national size databases. These systems
typically use central processing unit (CPU) based computers.
CPU based computers are general purpose machines, designed
for all types of applications and are, to first order programmed
as sequential machines, though there are provisions for multi-
processing and multi-threading. Recently, there has been
interest in exploring the parallel nature of this application [9]. It
is challenging to exploit the inherent parallelism of many
algorithms in such architectures.

In particular, the matching portion of the algorithm is
important since it needs to be repeated many times (depending
on the number of iris comparisons necessary). Illustrated in
Figure 4 is optimized C++ code for computing the fractional
HD between two templates. The optimizations in this code
include the use of 32 bit logical operations and the use of a
lookup table for bit counting.

We would like to highlight the sequential nature of this
code. For example, since the XOR function is performed 32
bits at a time, a loop (for loop denoted) is necessary. Since it is
computing 2048 bits, this loop is executed 64 times. Also, note
that the XOR and AND computations are also performed
sequentially. These instructions could be scheduled to execute
in parallel, but a modern CPU has a limited number of
functional units, therefore limiting the amount of parallel
execution. Summation of the bits is performed using look-up
tables. Finally, the HD score is computed as a ratio of the
number of differences between the templates to the total
number of bits that are not masked.

The code is compiled for a Xeon Processor, and hence IA-
32 assembly code is produced [8]. For each C++ computation,
there are at least 5 assembly language instructions required. For
example, the AND computation that is in C++ code generates 4
MOV instructions and one AND instruction. The MOV
instructions are required to move data to and from memory.
The AND instruction is a 32-bitwise computation performed by
an ALU functional unit in the processor. As stated before,
instruction execution bandwidth for a processor is limited by
the number of functional units that it has. Loop instructions
require overhead assembly instructions to again move the
proper data to and from memory. For each iteration of the loop,
there is required a total of 38 assembly instructions. Therefore,
this code requires 64 loops x 38 assembly instructions to
perform one template match.

Figure 4. C++ code for fractional Hamming Distance Computation.

B. Parallel on a FPGA
Field Programmable Gate Arrays (FPGAs) are complex

programmable logic devices that are essentially a “blank slate”
integrated circuit from the manufacturer and can be
programmed with nearly any parallel logic function. FPGAs
are commonly programmed via VHDL (VHSIC Hardware
Description Language). VHDL statements are inherently
parallel, not sequential. Ideally, if 2,048 matching elements
could fit onto the FPGA, all 2048 bits of the template could be
compared at once, with a corresponding increase in throughput.

Here we perform the same function as the aforementioned
C++ code, but now in parallel. There are 2,048 XOR gates and
4,096 AND gates required for this computation. This code is
contained within a “process” statement. In this code, the clock
signal is drawn from our FPGA board which contains a 50 Mhz
clock. Therefore, every 20ns, this hamming distance
calculation is computed.

C. Parallel on a CELL
We have also parallelized the HD calculation on the Cell

processor on the PlayStation3. As stated before SPE
management is left entirely to the programmer. We therefore
have completely separate code and compilations for the PPE

for(IntPtr1=(unsigned int *)&matrix[row][0],
IntPtr2=(unsigned int *)&InMatrix->matrix[0][0],
MaskPtr1=(unsigned int *)&Mask1->matrix[row][0],
MaskPtr2=(unsigned int *)&Mask2->matrix[0][0];
IntPtr1 <(unsigned int *)&matrix[row][ActualCols - 4];
IntPtr1++,IntPtr2++,MaskPtr1++,MaskPtr2++)
{

// AND two Masks using 32 bit pointers
Mask = *MaskPtr1 & *MaskPtr2;
// XOR templates, AND with Masks using 32 bit pointers
XOR = (*IntPtr1 ^ *IntPtr2) & Mask;
// Sum lower 16 bits of XOR using lookup table
Sum += Value[XOR & 0x0000ffff];
// Sum upper 16 bits of XOR
Sum += Value[(XOR>>16) & 0x0000ffff];
// Sum lower 16 of Mask
MaskSum += Value[Mask & 0x0000ffff];
// Sum upper 16 of Mask
MaskSum += Value[(Mask>>16) & 0x0000ffff];

};

Score->matrix[row][0] = (float)Sum/(float)MaskSum;

2048 Bit
Template2048 Bit
Template2048 Bit
Template2048 Bit
Template2048 Bit
Template2048 Bit
Template

2048 Bit
Template

2048 Bit
Template
2048 Bit
TemplateHD

HD

:
:

MATCH?

273

Authorized licensed use limited to: US Naval Academy. Downloaded on June 30,2010 at 16:20:42 UTC from IEEE Xplore. Restrictions apply.

and the SPEs. The code on the PPE works as a slave master,
spawning off threads of work to the 6 individual SPEs. The
work is divided up on iris template matching boundaries, not
within a template match. Therefore, each SPE is individually
responsible for 1/6th of the HD comparisons. To maximize
performance, the HD calculation is vectorized on the SPEs,
taking advantage of the SIMD capabilities of the SPU’s.

IV. RESULTS
The PlayStation3 is used for our Cell experiments. Fedora

Core 8 was chosen for installation onto the PlayStation3.
Fedora Core 8 is not the most recent release of Fedora but was
chosen because it is the most recent release that has been fully
adapted to the PlayStation3. Additionally, the installation
procedures available online for FC8 are the most detailed and
complete of any Linux distribution. Furthermore, the IBM
SDK, which is required for writing code that runs on the Cell’s
SPUs is specifically only released for the commercial Red Hat
Enterprise Edition Linux or the freely available Fedora Core.

The CPU experiment is executed on an Intel Xeon X5355
[5] workstation class machine. The processor is equipped with
8 cores, 2.66 GHz clock and an 8 MB L2 cache. The HD code
was compiled under Windows XP using the Visual Studio
software suite. The code has been fully optimized to enhance
performance. Additionally, millions of matches were executed
to ensure that the templates are fully cached in the on-chip L2
cache. We report the best-case per match execution time. The
optimized C++ code time is actually faster than some of the
times reported in the literature for commercial implementations
[10]. We attribute this difference to improvements in CPU
speed and efficiency between the time of our experiments and
the previous reports. However, this indicates that our C++
code is a reasonable target for comparison and that we may
reasonably expect similar improvements from application of
FPGA technology to other HD based algorithms.

The FPGA experiment is executed on a DE2 [6] board
provided by Altera Corporation. The DE2 board includes a
Cyclone-II EP2C35 FPGA chip, as well as the required
programming interface. Although the DE2 board is utilized for
this research, only the Cyclone-II chip is necessary to execute
our algorithm. The Cyclone-II [7] family is designed for high-
performance, low power applications. It contains over 30,000
logic elements (LE) and over 480,000 embedded memory bits.
In order to program our VHDL onto the Cyclone-II, we utilize
the Altera Quartus software for implementation of our VHDL
program. We are able to determine the size required of our
program on the FPGA, and the resulting execution time.

Figure 5 illustrates the execution times and acceleration
achieved for our implemented CELL based version on the PS3,
FPGA version on the Cyclone-II EP2C35, and a Xeon based
C++ version. The optimized C++ version takes 383 ns per
match, the CELL version with 6 SPEs takes 50 ns, and the
FPGA takes 20 ns per match. The Cell processor greatly
outperforms the Xeon machine by 7.7 times, scaling really well
across the cores, but still does not out-perform a modestly-sized
FPGA. Iris matching on a modest sized FPGA is approximately
19 times faster than a state-of-the-art CPU design and 2.5 times
faster than the image-processing Cell processor.

Figure 5. FPGA vs. CPU comparison for iris match execution.

V. CONCLUSION
In this research, we demonstrate a crucial portion of an

image processing algorithm can be parallelized on both a PS3
and an FPGA. The heterogenous CELL based PS3 is able to
outperform a state-of-the-art XEON processor by 7.7 times.
However, our results on an FPGA are 2.5 times better than the
CELL processor on the PS3. Although the CELL processor
greatly outperforms the Xeon processor, the FPGA is the leader
in performance. We plan to study the different advantages of
FPGAs, including energy consumption. An FPGA-based
option presents an exciting parallel alternative for future
parallal image-based algorithms.

REFERENCES
[1] J. Daugman, "Probing the uniqueness and randomness of IrisCodes:

Results from 200 billion iris pair comparisons." Proceedings of the
IEEE, vol. 94, no. 11, pp 1927-1935.

[2] Robert W. Ives, Randy Broussard, Lauren Kennell, Ryan Rakvic and
Delores Etter, “Iris Recognition Using the Ridge Energy Direction
(RED) Algorithm,” Proceedings of the 42nd Annual Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA,
Nov. 2008.

[3] L. Kennell, R.W. Ives, R.M. Gaunt, “Binary Morphology and Local
Statistics Applied to Iris Segmentation for Recognition,” presented at the
2006 IEEE International Conference on Image Processing, Atlanta, GA,
Oct. 2006.

[4] J. Daugman, "Statistical richness of visual phase information."
International Journal of Computer Vision, 45(1), pp 25-38.

[5] Intel Corporation, 16 June 2008,
<http://processorfinder.intel.com/details.aspx?sSpec=SL9YM>.

[6] Altera Corporation, 16 June 2008,
<http://www.altera.com/education/univ/materials/boards/unv-de2-
board.html>.

[7] Altera Corporation, 16 June 2008, <
http://www.altera.com/products/devices/cyclone2/cy2-index.jsp >.

[8] Intel Corporation, 25 June 2008, <
http://www.intel.com/products/processor/manuals/index.htm>.

[9] R.P. Broussard, R.N. Rakvic, R.W.Ives, “Accelerating Iris Template
Matching using Commodity Video Graphics Adapters,” 2008 IEEE
International Conference on Biometrics: Theory, Applications and
Systems, Crystal City, VA, Sep. 2008.

[10] J.Daugmann. “How iris recognition works,” IEEE Transactions on
Circuits and Systems for Video Technology vol. 14, January 2004.

[11] "Synergistic Processing in Cell's Multicore Architecture".
http://www.research.ibm.com/people/m/mikeg/papers/2006_ieeemicro.p
df. IEEE.

[12] Cell Broadband Engine Programming Handbook. IBM Developer
Works.
http://www¬01.ibm.com/chips/techlib/techlib.nsf/techdocs/1741C509C5
F64B3300257460006FD68D.

[13] Cell Broadband Engine. http://www-
01.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine.

Optimized
Xeon Code

CELL (with 6
SPEs)

Cyclone-II
EP2C35 (50 MHz)

Time per match
(ns)

383 ns 50 ns 20 ns

Speedup over
Xeon

n/a 7.66 19.15

274

Authorized licensed use limited to: US Naval Academy. Downloaded on June 30,2010 at 16:20:42 UTC from IEEE Xplore. Restrictions apply.

