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Abstract

Purpose — The main purpose of this paper is to investigate two key elements of localization and
mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms
used for underwater localization and mapping, and to make suggestions for future research.
Design/methodology/approach — The authors first review various sensors and algorithms used
for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The
statistical analysis is carried out by studying 35 AUV platforms according to the application
circumstances of sensors and algorithms.

Findings — As real-world applications have different requirements and specifications, it is necessary
to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc.
Although highly accurate localization and mapping in an underwater environment is very difficult,
more and more accurate and robust navigation solutions will be achieved with the development of
both sensors and algorithms.

Research limitations/implications — This paper provides an overview of the state of art
underwater localisation and mapping algorithms and systems. No experiments are conducted for
verification.

Practical implications — The paper will give readers a clear guideline to find suitable underwater
localisation and mapping algorithms and systems for their practical applications in hand.

Social implications — There is a wide range of audiences who will benefit from reading this
comprehensive survey of autonomous localisation and mapping of UAVs.

Originality/value — The paper will provide useful information and suggestions to research students,
engineers and scientists who work in the field of autonomous underwater vehicles.

Keywords Autonomous Underwater Vehicle, Localization and mapping, Sensors, Algorithms,
SLAM, Underwater technology

Paper type Literature review

1. Introduction

For decades, autonomous underwater vehicles (AUVs) have been widely used for many
tasks, ranging from underwater search and rescue, mapping, climate change
assessment, marine habitat monitoring, shallow water mine countermeasures,
pollutant monitoring, etc. Navigation plays a significant role in the application of
AUVs and consists of two fundamental aspects: localization and mapping. Localization
provides AUVs with their position and orientation information so that they can find
way to go. In contrast, mapping provides AUVs with environmental information for
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their path planning, obstacle avoidance and goal seeking. This paper aims to review
the state of the art in these two key elements.

The key elements involved in localization and mapping of AUVs lie in two aspects,
namely hardware and software. In this paper, hardware means sensors while software
represents algorithms utilized in AUV navigation. To a large extent, the sensors’
accuracy and the selection of data processing algorithms determine the overall
accuracy of AUV navigation. When an AUV has only Global Positioning System
(GPS)/Inertial Navigation System (INS) sensors on-board, the accuracy of its position
estimation and environment mapping will depend on the accuracy of both GPS and
INS sensors, as well as the sensor fusion algorithms that are adopted, typically Kalman
filters rather than triangulation. Therefore, gaining sufficient knowledge of sensors
is the prerequisite of developing the localization and mapping systems for AUVs.
This is also the reason for Section 2 to summarize sensors accuracy for underwater
localization and mapping.

During last decades, various algorithms have been proposed to solve underwater
localization and mapping problems according to specific sensors used. Grasping a
comprehensive picture of what and how algorithms are applied for underwater
localization and mapping will be quite instructional for algorithm development in the
application of AUVs. As can be seen in this paper, especially in Section 3 and 4, most
of localization algorithms are based on triangulation and Kalman filter when
Underwater Acoustic Positioning System (UAPS) are used. Recently, various sensor
fusion algorithms have been developed to integrate several sensors such as GPS, INS
and Doppler Velocity Log (DVL). Once localization is conducted, mapping is realized
by utilizing Sound Navigation and Ranging (sonar) sensors such as multi-beam
sonar and side-scan sonar. After the year 2000, simultaneous localization and
mapping (SLAM) algorithms have been developed for autonomous robots, which in
turn have been applied in AUVs (Ribas et al., 2006; Leonard and Feder, 2001; Tena Ruiz
et al., 2004).

Up to now, several review papers on the navigation of AUVs have been presented.
Leonard et al. (1998) surveyed the navigation methods for AUVs and categorized them
into three groups: dead-reckoning and inertial navigation systems; acoustic navigation;
geophysical navigation techniques. However, the review discussed the general SLAM
instead of underwater SLAM since no SLAM algorithm had been used in AUVs at
that time. (Kinsey et al., 2006) surveyed advances in AUV navigation in the aspects
of sensor technology, underwater navigation methodologies and future challenges.
The structure in Kinsey et al. (2006) is similar to ours, but with less comprehensive
statistical analysis of sensors and algorithms used in underwater navigation. This
paper intends to provide a comprehensive review on various sensors and algorithms
used in AUVs according to their application situation, pros and cons, as well as
statistical analysis.

The rest of the paper is organized as follows. Section 2 overviews different types of
sensors used for underwater localization and mapping in terms of basic working
principle, characters, their advantages and disadvantages. Section 3 summarizes
various algorithms used for underwater localization and mapping according to their
application situations, advantages and limitations, etc. By studying the major AUV
application platforms published in literature, Section 4 provides the statistic graph
of the AUV platforms according to the usage of different sensors and the utilization of
various algorithms. Section 5 draws the conclusion from what has been discussed in
the paper and makes suggestions for future research.



2. Sensors used for underwater localization and mapping

To deal with dynamical changes in the real world, various sensors are deployed on
UAVSs for navigation and goal seeking. Since sensor characters determine the system
architecture and navigation algorithms, it is necessary to understand the
characteristics of various sensors used for localization and mapping prior to system
design and development. The popular sensors include, but not limited to, GPS, INS,
DVL, Mechanically Scanning Imaging Sonar (MSIS), sonar, visual sensor and UAPS,
etc. This section will outline these sensors briefly.

2.1 GPS/INS

GPS is a space-based Global Navigation Satellite System (GNSS) that provides location
and time information in all weather, anywhere on or near the Earth (Wikipedia, 2012a).
A small GPS receiver module is able to gain location and time information with
accuracy being 1-10 meters. However, GPS suffers from various errors including
numerical errors, atmospherics effects, ephemeris errors, multipath errors and other
effects (Grewal et al., 2007).

INS is a dead-reckoning navigation system that consists of a computer, motion
sensors (accelerometers) and rotation sensors (gyroscopes) to continuously calculate
the position, orientation and velocity (direction and speed of movement) of a moving
object without the need for external references (Wikipedia, 2012b). The main
advantages of inertial navigation over other forms of navigation include (Grewal ef al.,
2007): first, it is autonomous and does not rely on any external aids or on visibility
conditions. It can operate in tunnels or underwater as well as anywhere else. Second,
it is inherently well suited for integrated navigation, guidance and control of the
host vehicle. Third, it is immune to jamming and inherently stealthy. It neither receives
nor emits detectable radiation and requires no external antenna that might be
detectable by radar.

GPS is capable of improving its accuracy if it is integrated with an INS to
compensate for intermittent reception caused by either wave action or deliberate
submergence. Therefore, integrated GPS/INS systems have been applied to aircraft
and space shuttle guidance and navigation (Barnes ef al., 1996; Braden et al., 1990;
Gray and Maybeck, 1995), balloon navigation (Jekeli, 1992), missile systems (Ornedo
et al, 1998), land vehicles (Martin and Vause, 1998) and mobile robots (Barshan and
Durrant-Whyte, 1995; Sukkarieh et al, 1998). In these applications, GPS data are
continuously available in short intervals, and INS data are used to navigate between
GPS fixes. Similar to these applications, integrated GPS/INS system can also be
applied to AUVs working in shallow sea without a long period of submergence. When
AUVs are surfaced, they take advantage of GPS to localize themselves accurately,
while they are in underwater, INS replace GPS to localize though with relatively low
accuracy compared to the circumstance on the surface (Yun et al, 1999).

Although GPS/INS integrated system can achieve relatively high accuracy of
localization, it is limited to shallow water environment with short period of working
time. Since INS has accumulated errors, its localization error will continue to increase if
it is not corrected by GPS for a long time.

22 DVL

DVL has three or four downward looking beam transducers that are typically mounted
at about 30° to the instrument’s vertical axis. The Doppler sensor measures the
apparent bottom velocity along each of three or four beams and processes the four
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Figure 1.
Working sonars

responses to compute a vector of velocities in the instrument frame according to the
Doppler Effect (Rigby et al., 2006). The velocity vector in the instrument frame is
then rotated to the world frame by multiplying it with a rotation matrix composed
of roll, pitch and yaw angles with respect to the world frame. The velocities can then be
integrated to compute bottom track position. However, the integration process makes
the calculated position error unbounded, which results in the fact that DVL is rarely
used alone for underwater navigation. Therefore, DVL is often fused or combined with
other sensors such as INS (Hui and Fengle, 2002; Zhao and Gao, 2004) and UAPS
(Rigby et al., 2006).

2.3 MSIS

MSISs perform scans in a 2D plane by rotating a fan-shaped sonar beam through a
series of small-angle steps (Ribas et al., 2008). For each emitted beam, an echo intensity
profile is returned from the environment. Gathering all this information within a
complete 360° produces an acoustic image of the surrounding environment. The beam
usually has both vertical and horizontal beam widths, and the vertical beam width is
larger than horizontal one. It takes several seconds for MSIS to complete one 360°
scanning rotation, during which the MSIS motion will distort the image. Therefore, it is
necessary to correct the distorted image by the vehicle motion. When MSIS is used for
localization and mapping in AUVS, it is often used for providing the filtering algorithm
with the observation part, either represented in the form of feature extracted from
the image (Ribas et al, 2008) or in the form of template used in scan matching
(Hernandez et al, 2009).

2.4 Side-scan sonar and multi-beam sonar

Sonar sensors use sound propagation to achieve navigation, object detection and
communication. Sonar works better in underwater than on land since sound transmits
faster in water than in the air. Thus, sonar is the most widely used range sensor for
underwater vehicles. There are two types of frequently used sonars for underwater
localization and mapping, namely multi-beam sonar and side-scan sonar. They share
some common characters, though with some differences.

As shown in Figure 1(a), a multi-beam sonar is an instrument that can map
more than one location on the ocean floor with a single ping and with higher resolution
than those of conventional single-beam sounders (Instruments, 2000). Unlike the
single-beam echo sounder which can only trigger one beam of sound for one ping,

Notes: (a) Multi-beam sonar; (b) side-scan sonar
Source: Oceanic Imaging Consultants (2012)



a multi-beam sonar can perform the job of single-beam at several different angles
for one ping, which significantly makes the scanning much faster and more
accurate than a single-beam sounder. Generally, multi-beam sonar is installed on the
hull of a vessel looking down toward the seafloor and used for mapping, which
produces a high accuracy of location information of the vessel. Also, some researchers
employ forward-looking multi-beam sonar for obstacle avoidance or localization
(Petillot et al., 2001).

Side-scan sonar (see Figure 1(b)) is similar to that of multi-beam sonar, but is
dragged by the ship to near the ocean floor instead of being installed on the hull of the
ship. This is due to the fact that the sonar device obtains a higher resolution when it is
close to the seafloor (Survey, 2010). It is used to create images of the seafloor and debris
that lies on it. Side-scan sonar can be used in marine or underwater fields for various
purposes (Tena Ruiz et al, 2004). The collected image data from side-scan sonar is
processed by some algorithms so that extracted features could match with a priori map
for AUV to localize.

Although multi-beam and side-scan sonar are not simultaneously installed on the
same AUV in most cases, some researchers such as (De Moustier and Matsumoto,
1993) combined these two sonars and believed that a combination of them could be
a very effective tool to quantify sea bottom types on a regional basis and develop
automatic seafloor classification routines for mapping.

2.5 Visual sensor

Video camera and laser-based vision system are the two main visual based sensors
used for localization and mapping in an underwater environment because of their
low cost and rich information. Although video camera is limited to short range due to
low visibility and lighting factors in underwater circumstances, it is widely applied by
researchers conducting underwater localization and mapping experiment and practise
(Carreras et al., 2003; Salvi et al., 2008; Zhang et al., 2004).

A laser-based vision system is usually composed of a laser projector and a camera,
which cooperate with each other to recognize the 3D feature of objects. Compared
to a single camera, it is not subject to the low visibility and bad lighting condition of
underwater environments, as the laser projectors can emit very powerful laser beam
which can hardly be weakened by water. Therefore, a laser-based vision system can
realize more accurate localization than a single camera (Karras et al., 2006).

2.6 UAPS

UAPSs measure positions relative to a framework of baseline stations, which must
be deployed prior to operations. The location of baseline transponders either relative
to each other or in global coordinates must then be measured precisely using
triangulation. UAPS are generally categorized into four broad types: Long Baseline
(LBL) Systems, Short Baseline (SBL) Systems, Ultra Short Baseline (USBL) Systems
and GPS Intelligent Buoys (GIB). The former three baseline systems are defined
by the distance between acoustic baselines, i.e. the distance between the active
sensing elements.

2.6.1 LBL systems. The baseline length of LBL systems is from 100 to 6,000 +
meters. LBL systems use a sea-floor baseline transponder network and derive the
position with respect to the network. The transponders are typically mounted in
the corners of the operations site. The position is generated from using three or more
time of flight ranges to/from the seafloor stations using triangulation. LBL systems

Localization
and mapping
of AUVs

101




[JTUS
1,2

102

yield very high accuracy of generally better than one meter and sometimes as good as
0.01 meter along with very robust positions (Foley and Mindell, 2002). One of the
typical applications of LBL for localization and navigation of AUVs can be seen in
(Matos et al., 1999), where a LBL based navigation system was successfully developed
for an AUV.

2.6.2 SBL systems. The baseline length of SBL systems is from 20 to 50 meters. SBL
systems operate on a similar principle as LBL, but the receiving hydrophones
are usually mounted at fixed locations on the vessel floating on the water surface. Then
AUVs obtain their position by measuring the time of arrivals (TOA) between a
transponder attached on the AUV and the hydrophones on the vessel. Since the vessel
is subject to pitch, roll and yaw movements due to water current, the calculated
position of the underwater object has to be corrected using a vertical reference
unit (VRU) and a heading reference unit (HRU) (Vickery, 1998). In a contrast to the
widely used application of USBL in underwater navigation, quite few SBL systems
were applied to this field.

2.6.3 USBL systems. The baseline length of USBL systems is <10cm. USBL is
also known as Super Short Baseline (SSBL). Unlike LBL and SBL systems, which
calculate positions by measuring multiple distances and then applying triangulation,
the USBL transducer array is used to measure the target distance from the transducer
pole by using signal run time, and the target direction by measuring the phase shift of
the reply signal as seen by the individual elements of the transducer array. The
combination of distance and direction fixes the position of the tracked target relative to
the surface vessel (Surveyor et al., 2013). Like SBL systems, the calculated position of
the AUV has to be corrected using VRU and HRU. Therefore, USBL is generally
integrated with other dead-reckoning sensors such as DVL and INS for the accurate
localization and navigation of AUV, by adopting filtering algorithms such as Kalman
filter, Extended Kalman filter (EKF) and Particle Filter, etc. (L1 ef al., 2008; Morgado
et al., 2006; Rigby et al., 2006).

2.6.4 GIB systems. The GIB system consists of four surface buoys equipped with
DGPS receivers and submerged hydrophones. Each of the hydrophones receives the
acoustic impulses emitted periodically by a synchronized pinger installed on-board
the underwater platform and records their TOA (Alcocer et al., 2006). The TOA is then
converted to distances by multiplying it with the underwater speed of sound. The
position of the underwater platform can be calculated either by triangulation or EKF-
based triangulation (Alcocer et al., 2007).

In order to summarize the characters of aforementioned sensors, Table I is made
to show the characteristics of various sensors used for underwater localization and
mapping. Based on this table, it is easy to draw a conclusion about the major
advantages and disadvantages of these sensors which can be seen in Table II.

3. Algorithms used for underwater localization and mapping

After sensor data have been obtained from sensors described above, algorithms should
be designed and executed to calculate and present the location and mapping
information which will be used for navigation of AUVs. Since different sensors have
their own characteristics, the formulations of their corresponding algorithms vary.
This section will summarize the various algorithms used for AUVs over the past, and
analyze the advantages and disadvantages of each type of them. These algorithms
can be classified into: trilateration and triangulation, sensor fusion, scan matching
and SLAM.
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3.1 Trilateration and triangulation

Lateration is the simplest algorithm used for determining the position of an AUV,
given several distances from the vehicle to other beacons whose location is known in
advance. The AUV position can be calculated by solving a non-linear optimization
problem whose objective function is the minimization of the error between the actual
ranges and the expected ranges from the vehicle to the beacons. For a 2D localization
problem, the minimum number of known beacons for lateration is 3, which produces
the name of the localization approach — trilateration. For a 3D localization problem, the
minimum number is 4. When angles between beacons are involved, the approach is
called Triangulation. Several triangulation algorithms have been proposed, such as
Geometric Triangulation, Iterative Search, Newton-Raphson Iterative Search and
Geometric Circle Intersection (Cohen and Koss, 1993), triangulation using three circle
intersection (Fuentes ef al., 1995) and Generalized Geometric Triangulation Algorithm
(Esteves et al., 2003). Lateration and angulation work quite well as long as the ranges
and angles are properly and stably given by range sensors. This is also the reason for
why they are widely used in UAPS since all types of UAPS has pre-deployed beacons
with known either absolute or relative positions. However, there are at least two
common restrictions to these algorithms: first, areas of the plane with less than three
(for 2D and four for 3D) visible beacons are unsuitable for robot localization; second,
the algorithms will fail to calculate the robot position if the vehicle and the beacons all
lie in the same circumference. In particular, for 3D localization, the four beacons should
not be in the same plane, otherwise it is impossible to obtain 3D position of the vehicle.

3.2 Sensor fusion

Generally speaking, fusing data from multiple sensors is able to provide more accurate
and robust localization and mapping results than using only individual sensors
separately. Throughout the literature, the most widely applied algorithms for sensor
fusion are Kalman filter (Welch and Bishop, 1995) and their variants, due to their
easiness, real-time ability and robustness to implement. For underwater navigation,
sensor fusion is always related to INS which is typically considered as the core sensor
fused with other sensors such as GPS, DVL and both GPS and DVL. Therefore, a brief
review of various Kalman filtering-based algorithms used for underwater navigation is
presented as follows by taking INS/GPS, INS/DVL and INS/GPS/DVL as examples.

3.2.1 Kalman filter. A Kalman filter estimates the state of a dynamic system with
two different models namely kinematic and observation models. The kinematic models
describe the state transition of the system, while observation models represent the
relationship between the environment and the state of the system. By iteratively
calculating the Kalman equations regarding the kinematic model and the observation
model, it provides optimal estimation of the system state. Kalman filter solves problem
where both the system process and observation model are linear. However, almost all
the dynamic process in the real world is non-linear, therefore, instead of being used
directly in practice, Kalman filter is often considered as the basic theoretic framework
for its variants that are more practically utilized.

3.2.2 EKF. EKF is the most successful variant of Kalman filter as it is able to
achieve good accuracy of state estimation in most of practical circumstances where
system dynamic and observation models are non-linear. EKF performs calculation of
Kalman filter by linearizing the estimation around the current estimate using the first
order of partial derivatives (also known as Jacobians) of the process and measurement
functions (Welch and Bishop, 1995). Like its popular use in other applications of state
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estimation, EKF has been vastly employed for sensor fusion in underwater navigation.
For example (Faruqi and Turner, 2000) utilized EKF technique for the integration of
GPS and INS. In their system, the errors of position, velocity, attitude, accelerometer
bias, gyro drifts, GPS clock time and frequency bias are the system states that should
be estimated; the typical INS equations including integral of acceleration and gyro rate
compose the dynamic model and raw pseudo range and pseudo-range-rate data from
GPS are utilized as measurements to the filter. EKF has also been utilized for the
integration of INS/DVL (Hui and Fengle, 2002) and the fusion of INS/GPS/DVL (Zhao
and Gao, 2004).

It should be noticed that there is a fundamental disadvantage of EKF, that is, due to
the linearization in dynamic and observation models, the filter may quickly diverge
if the initial estimate of the states is wrong or if the models are not accurately built.
Furthermore, the higher the nonlinearities are, the larger the estimation errors will be
(Thrun et al., 2005).

3.2.3 Unscented Kalman filter (UKF). Instead of only taking first order
approximation of Taylor series expansion like EKF, UKF uses a deterministic
sampling approach to capture the mean and covariance estimates with a minimal set of
sample points namely sigma points. In the general case, these sigma points are located
at the mean and symmetrically along the main axis of the covariance. It has the third
order (Taylor series expansion) accuracy for Gaussian error distribution of any non-
linear system (Wan and Van Der Merwe, 2000). UKF is claimed to have obvious
advantage over EKF in terms of estimation accuracy although EKF is slightly faster
than UKF in practice. Another advantage of UKF over EKF is that it does not require
the computation of Jacobians, which are difficult in some circumstances (Thrun et al.,
2005). Bao and Zhou (2008), Shen et al. (2007), Shin (2001), Zhang et al. (2005) adopted
UKF in the algorithms integrating GPS and INS.

3.2.4 Adaptive Kalman filter. It is known that the optimality of estimation algorithm
in basic KF, EKF and UKF is closely related to the accuracy of a priori knowledge
about the process and measurement noise (Mehra, 1970). However, in these three
algorithms, it is assumed that the process covariance matrix () and the measurement
noise covariance (R) are known a priori and remain unchanged during the continuous
iteration. But in most practical applications, this assumption is not true, which will
result in estimation divergence when the actual covariance matrix is far away from the
unchanged one. Therefore, it is necessary for € and R to be adaptively determined.

Generally, there are two approaches that have been proposed for adaptive Kalman
filer: multiple model adaptive estimation (MMAE) and innovation adaptive estimation
(TAE) Mohamed and Schwarz, 1999). Both utilize the information in the innovation
sequence but with different implementation. The innovation is represented by the
difference between the actual measurement and its predicted value. In the MMAE
approach (Magill, 1965; White et al, 1998), a bank of Kalman filters runs in parallel
with different models for the statistical filter information matrices € and R. Each filter
of the bank has its own estimate, with a weight that is calculated based on the
innovation. Then the adaptive optimal state estimate can be obtained as the weighted
sum of the estimates produced by each of the individual Kalman filters.

For the TAE approach, the covariance matrices R and @ are adapted as the
measurements evolve with time by taking the innovation sequence into account.
According to the specific formats of using the innovation sequence, IAE can be
categorized into three types which are moving estimation window based IAE (Mehra,
1970, 1971), Maximum likelihood-based IAE (Mohamed and Schwarz, 1999) and fuzzy



logic-based IAE (Loebis et al., 2004; Sasiadek and Wang, 1999; Sasiadek et al., 2000).
Due to its simplicity and effectiveness, fuzzy logic-based IAE have been widely
adopted in the researches on INS/GPS integration, such as Xu et al. (2005), Zhang et al.
(2008), Zhang and Wei (2003), etc.

3.3 Scan matching

Scan matching aims to find the translation and rotation of a scan contour in such a way
that a maximum overlap occurs with either a known map (i.e. position estimation) or a
previous scan (i.e. motion estimation) (Martinez et al, 2006). According to Martinez
et al. (2006), the methods of scan matching can be classified into three categories:
feature-based techniques, compact data methods and point matching techniques.
Figure 2 chronologically gives the specific classification of the scan matching
algorithms and their related references. Among all the scan matching methods,
the Iterative Closest Point (ICP) algorithm is the most popular one (Besl and McKay,
1992) because of its simplicity and effectiveness. Based on the basic ICP algorithm,
several its variants were subsequently proposed to improve the performance in terms
of time efficiency and accuracy, such as IDC (Lu and Milios, 1997), NDT (Biber and
Straf3er, 2003), MbICP (Minguez et al., 2005), pIC (Montesano et al., 2005) and PSM
(Burguera et al., 2007).

While most of the scan matching algorithms focus on motion estimation for
terrestrial robots either with laser range readings or sonar range readings, few of
them are related to AUV navigation except MSISpIC (Hernandez et al, 2009) and
(Burguera et al., 2010). As an extension of the pIC (Montesano et al, 2005) algorithm,
MSISpIC proposed a scan grabbing algorithm using range scans gathered with a MSIS
to combine with pIC for localization of the AUV. Although the experiments show
satisfactory results, the environment is not long enough to give more convincing
effects. In addition, the experiment could not improve the efficiency of MSISpIC in a
cluttered environment since the environment used for experiments is semi-artificial.

Scan matching
—[ Feature-based techniques ]
—[ Corners (Shaffer et al., 1992) ]
—[ Line segments (Reina and Gonzalez, 2000) ]
—[ Edges (Weber et al., 2002) ]
———o Compact data methods ]
—[ Histograms (Weif3 et al., 1994) ]
——— Principle eigenvectors (Crowley et al., 1998) )
—[ Motion fields (Gonzalez and Gutierrez, 1999) ]
L Point matching techniques )
— Iterative Closest Points (ICP) (Besl and McKay, 1992) ]
—[ Iterative Dual Correspondence (IDC) (Lu and Milios, 1997) ]
—[ Normal Distribution Transform (NDT) (Biber and StraBer, 2003) ]
—[ Metric-based Iterative Closest Point (MbICP) (Minguez et al., 2005) ]
—[ Probabilistic Iterative Correspondence (pIC) (Montesano et al., 2005) ]
— GA-ICP (Martinez et al., 2006) ]
—[ Polar scan matching (PSM) (Burguera et al., 2007) ]
J

—[ MSISpIC (Hernandez et al., 2009) (Burguera et al., 2010)
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Figure 2.

Classification of scan
matching algorithms and
related references
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3.4 SLAM

It can be noticed that all the aforementioned algorithms mainly focus on localization
problems without taking mapping problems into account. However, the autonomy of
AUVs typically demands a map of the environment for path planning. Therefore,
finding a solution to the mapping problem is also necessary for autonomous navigation
of AUVs. It is normal that localization and mapping problem can be solved
independently. However, the SLAM algorithm enables a AUV to be placed at an
unknown location in an unknown environment so that it incrementally builds a
consistent map of the environment while simultaneously determining its location
within this map (Durrant-Whyte and Bailey, 2006).

Throughout last two decades, various SLAM algorithms have been proposed
and applied successfully to solve the SLAM problem. Table III summaries the most
popular SLAM algorithms widely used in the literature, in the aspects of their
related references which first proposed the corresponding algorithm, the optimizer the
algorithm utilizes, the map representation method that the algorithm is suitable for and
the advantages and disadvantages of the algorithm.

Underwater SLAM has many more challenging issues compared to land SLAM, due
to the unstructured nature of the underwater scenarios and the difficulty to identify
reliable features. Many underwater features are scale dependant, sensitive to viewing
angle and scale. Therefore, fewer research works have been conducted on applying
SLAM algorithms for underwater navigation of AUVs until now. In underwater SLAM
implementations, imaging sonar (Ribas ef al., 2006) is widely used, the most common
filtering technique is the EKF (Mahon and Williams, 2004; Ribas et al, 2008) and
point features (He et al, 2009; Leonard and Feder, 2001; Williams and Mahon, 2004)
are commonly used to represent the map. Some approaches use side-scan sonar
(Tena Ruiz et al, 2004) or optical cameras (Aulinas et al, 2011; Salvi et al., 2008).
The use of EKF-based SLAM is able to handle uncertainties properly; however,
the computational cost associated with EKF grows with the size of the map. In
addition, linearization errors accumulate in long missions, increasing the chance of
producing inconsistent mapping solutions.

4. Statistics of AUV platforms

In order to grasp the whole picture of AUV applications in terms of the usage of
sensors and utilization of algorithms, the statistical analysis on different AUV
platforms is presented in this section. In total, 35 AUV application platforms are
studied. Table IV lists their references, affiliations, platform name, core sensors, the
localization and mapping algorithms in the chronological order.

Figure 3 shows the ratio of sensors used in 35 AUV application projects, which
largely indicates the percentage of the specific sensor used on AUV platforms.
It can be clearly seen that INS and DVL are the first and second most frequently used
sensors. The reason for this phenomenon may be attributed to the fact that INS and
DVL are the most suitable sensors to provide the dead-reckoning information for
underwater vehicles due to their self-contained characteristics. The dead-reckoning
information from INS and DVL can then either be fused with other sensors by
application sensor fusion algorithms or be used for the prediction part in the SLAM
framework. It should be also noticed that the percentage of LBL, USBL and MSIS
demonstrates that they play important roles in the localization for some AUVs.

Unlike the sensors whose types are almost fixed within several kinds, the types
of algorithms used for localization and mapping of AUVs are more diverse than that of
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Figure 3.

Ratio of sensors used in
35 AUV application
projects

Figure 4.

Ratio of algorithms
used in 35 AUV
application projects

Visual-based
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sensors. Figure 4 gives the ratio of algorithms used in 35 AUV application projects.
Not surprisingly, due to its simpleness and real-time features, EKF are the most
popular algorithm used for both sensor fusion and filtering. Triangulation is also used
frequently since many AUV platforms take advantage of acoustic navigation systems
such as USBL, LBL and SBL most of which utilize triangulation to calculate the
location of AUVs. As the most typical algorithm, EKF-SLAM has the use percentage
more than other SLAM algorithms such as FastSLAM (Woock and Frey, 2010),
ESEIF SLAM (Walter et al., 2008), constant time SLAM (Newman et al., 2005) and
MHTF SLAM (Tena Ruiz et al., 2001).

It can also be concluded that most of localization algorithms are triangulation
and Kalman filter (when UAPS are used), including EKF-based sensor fusions to
integrate several sensors such as GPS, INS and DVL before 2000s. When localization is
completed, mapping is then realized by utilizing sonar sensors such as multi-beam
sonar and side-scan sonar. After the year 2000, SLAM algorithms have been
successfully applied in AUVs, exemplified by Ribas ef al (2006), Leonard and Feder
(2001) and Tena Ruiz et al. (2004).

Sensor fusion (Adaptive KF)

KF

EKF

Sensor fusion (UKF)

FastSLAM

Scan matching (pIC)

Exactly sparse extended information filter SLAM
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Inertial navigation equations
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5. Conclusion

Localization and mapping are considered as the most fundamental two aspects of
AUVs navigation. This paper outlines the two key elements in underwater localization
and mapping for AUVs, namely sensors and algorithms. Various sensors used
for AUVs have been reviewed in terms of basic working principle, characters, the
advantages and disadvantages of these sensors. Then, a variety of algorithms used
for underwater localization and mapping are explained according to their application
situations, advantages and limitations, etc. Additionally, 35 AUV platforms are
statistically analyzed based on the application circumstances of sensors and
algorithms that are practically used.

Although a great deal of research work has been conducted to realize autonomous
localization and navigation for AUVs, various challenging issues remains to be
addressed, including, first, The dynamic and unstructured characteristics of
underwater environments require sensors with a high resolution and accuracy. This
is very challenge. Second, if the environmental feature is not intuitive, it is necessary to
apply proactive SLAM to explore useful information by deploying artificial landmarks.
Third, since high accurate sensor systems such as LBL, USBL and SBL have a large
size and high cost, it is impractical to use these sensor systems for localization of small
bio-inspired vehicles such as robotic fish. Consequently, it is highly desirable to
conduct research on improving the accuracy of SLAM for the small AUVSs.

In spite of the difficulties existing in realizing highly accurate SLAM for AUVs,
we believe more and more accurate and robust localization solutions will be achieved
in the future with the development of both sensors and SLAM algorithms.
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