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Abstract. The so-called smart grid is emerging in the energy domain
as a solution to provide a stable, efficient and sustainable energy sup-
ply accommodating ever growing amounts of renewable energy like wind
and solar in the energy production. Smart grid systems are highly dis-
tributed, manage large amounts of energy related data, and must be
able to react rapidly (but intelligently) when conditions change, leading
to substantial real-time business intelligence challenges. This paper dis-
cusses these challenges and presents data management solutions in the
European smart grid project MIRABEL. These solutions include real-
time time series forecasting, real-time aggregation of the flexibilities in
energy supply and demand, managing subscriptions for forecasted and
flexibility data, efficient storage of time series and flexibilities, and real-
time analytical query processing spanning past and future (forecasted)
data. Experimental studies show that the proposed solutions support
important real-time business intelligence tasks in a smart grid system.
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1 Introduction

Production from renewable energy sources (RES) such as solar panels and wind
turbines highly depends on weather conditions, and thus cannot be planned
weeks ahead. The EU FP7 project MIRABEL (Micro-Request Based Aggre-
gation, Forecasting and Scheduling of Energy Demand, Supply and Distribu-
tion) [1] addresses this challenge by proposing a “data-driven” solution for bal-
ancing demand and supply utilizing flexibilities in time and in energy amount
of consumption and production.

Figure 1 illustrates energy loads in the electricity grid before (left side of
the figure) and after (right side of the figure) the MIRABEL solution balances
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Fig. 1. Balancing consumption and RES production

energy in the grid. The solid gray area depicts non-flexible demand (e.g., usage of
cooking stoves, lamps, TVs) aggregated from many consumers and varying over
some time interval. The dotted area depicts aggregated flexible demand (e.g.,
usage of washing machines, charging of electric vehicles) that can potentially be
shifted to a time when surplus production from RES is available. The dashed line
shows available production from RES. The MIRABEL project aims to enable
the utilization of demand flexibility in time so that higher amounts of the RES
production can be consumed (see the right side of Figure 1).

The MIRABEL project designs and prototypes an electricity data manage-
ment system (shortly EDMS) that consists of many distributed nodes. These
nodes will eventually be deployed at the sites of different actors of the European
Electricity Market [2] and their deployment architecture will reflect the hierar-
chical organization of the European market (Figure 2(a)). Nodes at the lowest
level of the system will belong to consumers, producers, and prosumers (entities
that both produce and consume electricity), e.g., households, small and large in-
dustries. Nodes at the second level will belong to traders, e.g., utility companies
or balance responsible parties (BRPs). Finally, the nodes at the highest level
will be managed by transmission system operators (TSOs).

The whole EDMS will operate by exchanging and manipulating up-to-date
energy related data: (1) time series — measurements of energy consumption and
production at each fine-grained time interval, and (2) flez-offers — special energy
planning objects representing a prosumer’s intention to consume (or produce) a
certain amount of energy in a specified future flexible time interval. Figure 2(b)
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Fig. 2. The intended EDMS architecture and flex-offer for charging a car’s battery
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shows a flex-offer’s energy profile with minimum (dotted area) and maximum
(solid gray area) required energy at particular time slots, and the starting time
flexibility (shaded area). A flex-offer can also represent demand (or supply) flex-
ibility of a group of prosumers.

In order to meet the project’s goals, it is crucial that the EDMS (with all its
nodes) is able to efficiently propagate such type of energy data up and down in
the hierarchy. Higher level (TSOs, BRPs) nodes must allow storing, querying,
forecasting and updating of such data in a timely manner, while lower level
(prosumer) nodes might support only the subset of the functionality. In this
respect, the MIRABEL system is unique due to its real-time requirements, very
distributed and hierarchical nature, handling of flex-offers, and the combination
of past and future (i.e., predicted) values in querying.

This paper focuses on the data management aspects of a higher level (BRP
or TSO) node while leaving those aspect associated with the distribution of
nodes for future work. First, it exemplifies the real-time aspects encountered
in the EDMS by providing a real-world MIRABEL use case. Then, it presents
the initial work done designing and implementing a real-time data warehouse
that operates locally in a node and offers near real-time data management and
querying of the two essential entities in MIRABEL — time series and flex-offers.
The paper thus presents 1) the architecture of the data warehouse, 2) underlying
real-time business intelligence challenges, 3) internal warehouse components, and
4) initial results of experiments on individual components.

The rest of the paper is organized as follows. Section 2 presents the use case
example of the MIRABEL system. Section 3 introduces the data warehouse ar-
chitecture and the data flow between internal components. The individual com-
ponents and their underlying real-time challenges are presented in Sections 4-8.
Initial experimental results for some components are presented in Section 9, fol-
lowed by related work in Section 10 and the conclusions and future work in
Section 11.

2 MIRABEL Use-Case

In order to demonstrate the typical flow of events in the MIRABFEL system, we
employ the example of charging an electric vehicle utilizing the system.

1. A user of an electric car comes home at 10pm and wants to charge the battery
of the car before next morning for the lowest possible price. Once plugged
in, the outlet recognizes the car and chooses a default energy consumption
profile, according to which the totally required energy is 50kWh and the
default charging completion time is 7am.

2. The consumer’s node of the EDMS automatically generates a flex-offer (see
Figure 2(b)) and sends it to the trader’s node of the EDMS where it is ag-
gregated with other similar flex-offers and then scheduled. While taking into
account external weather and locally computed energy production and con-
sumption forecasts, the trader’s node schedules this particular flex-offer as a
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part of a larger (aggregated) flex-offer so that charging starts at lam. This
lowers the energy demand peak at 11pm and consumes surplus production of
RES (e.g., wind) at lam. The trader sends to the consumer node a schedule
satisfying the original flex-offer.

3. Simultaneously, the trader’s node collects streams of energy measurements
to be able to forecast demand and supply in the future. When newly ar-
rived measurements differ substantially from current forecasted values, the
respective forecasting model parameters are updated transparently.

4. At 12pm, the TSO notices an upcoming shortfall of supply at lam—2am
and instructs the trader to reduce its demand by a specific amount during
this period. The trader, consequently, reschedules the consumer’s flex-offer
to start energy consumption at 3am and sends an updated schedule back to
the consumer’s node, also with an updated price of the energy.

5. The consumer;s node starts charging the battery of the electric vehicle at
3am and finishes the charging at Ham.

6. Next month, the trader sends to the consumer an energy bill which reflects
the reduced energy costs for user’s offered flexibility.

In MIRABEL, each flex-offer has two attributes (assignment-before and start-
time) which indicate the latest possible time a flex-offer is allowed to be sched-
uled and the latest possible time the delivery of the energy has to be started,
respectively. These timing attributes of a flex-offer impose that critical real-time
constraints must be respected by the EDMS. Consequently, the forecasting, ag-
gregation, and scheduling! must start as soon as new data is available and com-
plete before the deadlines imposed by the flex-offer timing attributes values. This
is not trivial as a node (at trader or TSO level) must deal with millions of flex-
offers (expected number) collected from a few hundred thousands of prosumers.
In addition, for a longer term energy planning (day-ahead, week-ahead) or risk
analysis, a support for advanced analytics over such volatile data is required.
As a consequence, a node of the EDMS must be equipped with an efficient data
warehouse to be able to process and analyze queries on energy data in near
real-time. These queries can also be on past or future data. To meet these re-
quirements in real-time, our proposed approach stores the underlying time series
as models (see Section 4). In the next section, we present the architecture of such
an energy data warehouse. Note, we use the term real-time when referring to
the “soft” real-time or the near real-time concept.

3 System Architecture

The MIRABEL EDMS consists of distributed, non-centralized (although hier-
archical) nodes with homogeneous communication interface. In this section, we
present the architecture of the single EDMS node and focus on our envisioned
energy data warehouse which is based on PostgreSQL.

! The reliability of nodes and the latency of communication is not considered in this
paper.
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Fig. 3. Internal node architecture

The MIRABEL use-case leads to multiple preliminaries and requirements for
the needed warehouse. First, time series and flex-offer data storage and query-
ing need to be supported inherently (among other types of energy data). Large
volumes of updates of such volatile data must be efficiently processed. Second,
forecasting of time series values must be performed efficiently and the querying
of such forecasted values must be supported. Finally, advanced queries offer-
ing different processing times and accuracy of results must be enabled. Such
queries are needed in MIRABFEL as various data processing tasks require differ-
ent precision and different access times of data, e.g., invoicing requires precise
and detailed data, but there are no constraints on the processing time (i.e., no
near real-time processing is involved). Real-time monitoring, on the other hand,
requires fast access time, but tolerate approximate or aggregated results. Thus,
queries should provide different results — approximate (trend-analysis, long term
energy planning), with some imprecision (grid load balancing), and very precise
(billing, risk analysis). In the following paragraphs, we present the real-time data
warehouse and show how it handles such energy data and queries.

On the right side of the Figure 3, we show the EDMS node architecture.
It is composed of a Communication component, the Node Business Logic, and
a real-time data warehouse (RT DW). In this paper, we discuss issues of the
real-time data warehouse (depicted in gray). It is a layered system consisting of
seven individual components, namely, Storage Management, Aggregation, Fore-
casting, Subscription Processor, Standard Query Processor, Model-based Query
Processor, and Querying Interface. The real-time data warehouse receives ana-
lytical and update queries and provides query results as well as notifications to
the node business logic. Part of this business logic is the Scheduling component
(see more details in Tusar et. al. [3]), which implements a particular flex-offer
scheduling strategy depending on the business goals of the market player (owner
of the node). The node business logic communicates with the other nodes to
receive and propagate data such as measurements, flex-offers, or schedules.
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Storage Management provides eflicient storage for energy data including
flex-offers and time series, such as weather data as well as consumption and
production measurements. This component is equipped with an intermediate
main-memory data store, which accumulates arriving data, makes it available for
queries, and materializes it later on (in standard PostgreSQL Heap Storage). Ad-
ditionally, Storage Management stores time series models and their parameters
(in Time Series Storage). Aggregation is responsible for incrementally and effi-
ciently aggregating multiple flex-offers into fewer ones with larger energy amount
values. Based on time series values, Forecasting builds and maintains forecast
models and makes future values of time series available for queries. Subscrip-
tion Processor monitors Aggregation and Forecasting and notifies subscribers
when aggregated flex-offers or forecast values change substantially (compared to
previous notifications). There are two query processors employed by our data
warehouse: Standard Query Processor and Model-based Query Processor. Stan-
dard Query Processor (PostgreSQL) accesses Heap Storage and provides exact
results for user-issued queries. Such queries might be complex and long-running
and might involve aggregated and non-aggregated data such as flex-offers and
time series. Model-based Query Processor relies on historical and future time
series models (stored in Time Series Storage) and allows approximate but ef-
ficient answering of historical, future, and combined queries. Finally, Querying
Interface offers a unified interface for queries and query results.

STTITTN ( eUmeceriotione N S trulit N
/' Subscription \ [Nhgpadglugengind / [ /

(Notifications
\ queries "1 Subscription Processor J; [
N 7

.+ Time 'series "+ - Time series updates
© update | ¥ > Forecasting ]
.. Queries ..’ ™

-— ==~
/ Approximate '\

Storage = s
L omee . e——»|  Model-based \
Management L _3torage _ 4 Query results /
I Heap Storage_: Query Processor - [
4“ {/Exact query \
Flex-offers Flex-offers updates Standard Query| « _results _/
——— B

>
-
“Ss:z e Processor I
! {_ Approximate queries > (PostgresaL)
ITTTTN oo "= = =
[ Analytical \ \_ _ Fxactqueries _ Aggregation :I
\ queries / J
N ———
Querying Interface Querying Interface

Fig. 4. Data flow during query processing in the real-time data warehouse

Figure 4 visualizes the flow of the queries and the data during query pro-
cessing in the real-time data warehouse. Each query type is first processed by
Querying Interface and then handed to the appropriate components. The flow
path of queries and data differs depending on the type of queries being executed
in the data warehouse:

Subscription queries are handled by Subscription Processor. Such queries
allow users to (un-)subscribe (from) to notifications that are generated every
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time results of a user-specified continuous query changes more than a specified
threshold. Two important types of continuous queries (among others) are sup-
ported by our data warehouse: flex-offer aggregation and time series forecasting
queries. One example of a subscriber is the Scheduling component which is only
informed when forecasts or aggregated flex-offers change substantially.

Time series update queries (value inserts and deletes) are passed to
Storage Management and Forecasting simultaneously. The Storage Management
component handles the materialization of these updates, while the Forecasting
component uses these updates to incrementally maintain existing forecasting
models. Those models are monitored by Subscription Processor.

Flex-offer update queries are processed similarly to the time series update
queries and passed to Storage Management and Aggregation simultaneously. If
aggregated flex-offers change substantially, a notification is generated by Sub-
scription Processor.

Analytical queries can be either exact or approximate queries. Exact
queries are routed to Standard Query Processor, while approximate queries
are passed to Model-based Query Processor. While processing exact queries, the
Standard Query Processor component accesses Heap Storage and can take ad-
vantage of Aggregation to answer analytical queries over flex-offers. Similarly,
Model-based Query Processor can utilize Forecasting to answer queries on fu-
ture (or both historical and future) data from Time Series Storage and utilize
Standard Query Processor to answer an exact part of the queries.

In the following sections, we discuss individual components of real-time data
warehouse in more detail.

4 Storage of Energy Related Data

In this section, we focus on the Storage Management component and discuss
flex-offer and time series storage as well as data loading.

4.1 Flex-offer Storage

To store flex-offer data, we employ a multi-dimensional schema that includes
several fact and dimension tables (more details about the schema can be found
in Siksnys et. al. [4]). The dimension tables represent time intervals, metering
points, possible states of flex-offers as well as legal entities. The fact tables repre-
sent flex-offers themselves. The schema is designed to enable convenient storage
of energy demand and supply flexibilities and efficient processing of the most
common analytical queries in the MIRABEL system.

Essentially, there are two fact tables called F_flexOffer and F_enProfileInter-
val. They hold flex-offer facts and information about energy profiles (composed
of multiple intervals) of a flex-offer, respectively. Each stored flex-offer is given a
unique identifier. For each stored profile interval, there are measures to specify
the duration of the profile interval as well as the lowest and highest amount
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of energy needed. The F_flexOffer table holds information about time dead-
lines associated with flex-offer, i.e., enProfile_startAfter time for initial or en-
Profile_startFixz time for scheduled flex-offer. As flex-offers can be aggregated
into larger flex-offers, we also have the table F_aggregationMeta which refer-
ences F_flexOffer twice to point to the aggregated “parent flex-offer” and the
smaller “child flex-offer” which has been aggregated, respectively.

Our proposed schema allows to read and write flex-offers efficiently, which
is important for flex-offer aggregation as well as other analytical queries, e.g.,
those used in the energy balancing.

4.2 Time Series Storage

We employ different time series storage schemes which are utilized in the pro-
cessing of approximate queries with allowed impressions and exact queries with
the precise result.

For exact queries, we utilize standard PostgreSQL Heap Storage to store the
original time series as a block-based array. The benefits of storing the time series
as a block-based array are as follows: (1) it alleviates the need for sorting the
time series, e.g., when optimizing forecast model parameters, (2) it eases the
access to values as only relevant pages (blocks) with requested values have be
accessed when answering a query. To determine the range of needed pages, the
WHERE clause of a query can be utilized.

For approximate queries, we compactly represent time series over past and
future using models and put them in the Time Series Storage. To achieve this,
we build a set of models that incorporate seasonal and non-seasonal behavior. As
time proceeds, the system incrementally updates the models and utilizes them
to answer approximate queries. To find the suitable set of models, we divide the
time series into non-overlapping sub-intervals (e.g., using approaches in [5, 6]).
To build a model over the interval, we decompose the portion of time series
over this interval into trend, seasonal, and remainder components utilizing the
information about the seasonal periods. A time series can have an arbitrary
number of seasonality periods (e.g., the time series shown in Figure 5 exhibits
the two seasonality periods P; and P»). Each model represents a segment of the
underlying time series with the predefined error guarantee (top of Figure 5). For
query optimization, we store statistics about the index in the system catalog.
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Specifically, we store the number of models segments and their average size.
These statistics are needed to estimate the expected cost for the approximate
query.

As explained in our previous work [7], models built for each portion of the
time series can also be composed into a hierarchical structure, where models at
different levels represent a time series with a certain (bounded) precision. To
summarize, time series are stored in the data warehouse as block-based arrays
and also as models that represent parts of time series at various precisions.

4.3 Data Bulk Loading

Flex-offers as well as values of time series are initially cached before they are
physically stored on disk. First, arriving data is recorded in an intermediate data
store in main memory similar to RiTE [8] such that the data is made available
for querying before it gets materialized on the disk. Finally, the data is physically
inserted into the underlying data warehouse in bulks.

The storage of the data, might, however, still be slow due to high update rate
(that might occur sporadically). Instead, for time series, measured values can be
ignored if forecast models predict the value within the bounded imprecision. If
not, the value can be used to update the forecast model while storing only new
model parameters in the data warehouse. Since only models are stored, there
are less data values to store and the processing is much faster.

The main advantage of the latter approach is that it supports fast (although
imprecise) data loading that enables approximate answering of analytical queries.
It also allows transparent processing both of queries that need only fast and
approximate answers and of queries that need more accurate answers since all
the data can be made available in forecast models. Further, the model-based
storage can lead to compression of the data which in turn means that the data
may fit in main memory.

5 Real-time Flex-offer Aggregation

Flex-offer aggregation is triggered when a consumer sends a new flex-offer or
trader wants to reschedule older flex-offers (see Section 2). The Aggregation
component combines a set of many micro flex-offers into a set of fewer macro
flex-offers. It is a complex operation as, even for two flex-offers, there are many
different ways to combine them into one flex-offer. Each of these combinations re-
sults in different flexibility loss, which often needs to be minimized. Fortunately,
by grouping flex-offers carefully, it is possible to aggregate many flex-offers ef-
ficiently (in linear time) while still preserving lots of their flexibilities [9]. As
presented in Section 2, a very large number of flex-offers need be scheduled in
MIRABEL. Since scheduling is an NP-complete problem [10], it is infeasible
to schedule all these flex-offers individually within the (short) available time.
Instead, flex-offers should be aggregated first, then scheduled, and finally dis-
aggregated. In this process, the additional disaggregation operation transforms
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macro scheduled flex-offers into micro scheduled flex-offers. As the aggregation
plays a major role during the scheduling, we focus on real-time aspects in this
particular use-case of the aggregation in the following sub-sections.

5.1 Real-time Aggregation Challenge

In MIRABEL, a higher level (e.g., BRP) node receives a continuous stream of
flex-offers from many lower level (e.g., prosumer) nodes. Simultaneously, exe-
cution deadlines of the previously received flex-offers are approaching and thus
their respective individual schedules (assignments) have to be prepared and dis-
tributed back to the original issuers of the flex-offers. When aggregating those
flex-offers, a number of requirements have to be satisfied [9,11]:

Disaggregation requirement Aggregation must ensure that it should be al-
ways possible to correctly disaggregate scheduled macro (aggregated) flex-
offers into scheduled micro (non-aggregated) flex-offers while matching two
schedules produced before and after disaggregation. Here, two schedules
match when total energy amounts at every time interval are equal.

Compression and flexibility trade-off requirement Aggregation should
allow controlling a trade-off between the number of aggregated flex-offers
and the loss of flexibility, i.e., the difference between the total time/amount
flexibility before and after the aggregation.

Aggregate constraint requirement It must be possible to bound the total
amount defined by every aggregated flex-offer, e.g., in order to meet power
grid constraints.

After flex-offers have been aggregated, they have to be scheduled, and dis-
aggregated thus producing individual schedules that can be distributed back to
the lower level nodes, i.e., prosumers. In MIRABEL, the total time available for
the complete process of flex-offer aggregation, scheduling, and disaggregation is
15 minutes. This deadline should not be missed as a new set of flex-offers and
new forecasts are expected to be available after this period of time. There is a
challenge to build such a flex-offer aggregation solution which would satisfy all
above-mentioned requirements as well as be scalable enough to deal with mil-
lions of flex-offers while still providing a sufficient amount of time for scheduling
and disaggregation (from the totally available 15 minutes interval).

5.2 Real-time Aggregation Solution

Considering frequently changing flex-offers in the MIRABEL system, we build
an efficient incremental flex-offer aggregation solution [9], which satisfies all the
above mentioned requirements and aims to address the real-time challenge.
First, the disaggregation requirement is inherently satisfied by the solution,
because the aggregated flex-offer always defines less (or equal) flexibilities com-
pared to the original flex-offer and thus it is always possible to disaggregate
scheduled flex-offers. Second, we introduce the set of aggregation parameters,
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Fig. 6. Input and output of the incremental aggregation solution

and different values of these parameters allow controlling the trade-off between
compression and the flexibility loss. Third, we introduce an intermediate bin-
packing step that ensures that a user-selected constraint, e.g., total maximum
amount is below 1000 kWh, is satisfied for every aggregated flex-offer. Finally,
our aggregation solution inherently supports incremental aggregation, which pro-
vides a huge saving in time when aggregating a flex-offer set that gradually
changes in time (as described above). When aggregating flex-offers incremen-
tally, micro and macro flex-offer sets are maintained. As visualized in Figure 6,
our incremental solution takes the sequence of micro flex-offer updates as input
and produces the sequence of macro (aggregated) flex-offer updates as output.
An update in the input contains a flex-offer and indicates whether the flex-offer
is added or removed to/from the micro flex-offer set. Our solution can process
such updates one-by-one at a time or in bulks. When the bulk of updates (or a
single update) is processed in the Grouping, Bin-packing, and Aggregation steps,
the solution updates the set of macro flex-offers and outputs those aggregated
flex-offers that either were added, removed, modified during this process. Such
incremental behavior is the key addressing the real-time challenge as it allows
efficiently processing flex-offers received from lower level nodes as well as those
with elapsed execution deadlines. Later in the experimental section, we evaluate
the throughput of updates which can be handled by our incremental aggregation
solution when one or more updates are processed at a time.

As future work, the support for other types of flexibilities will be provided,
e.g., a duration flexibility, which allows a BRP to supply a certain amount of
energy to prosumers in the preferred duration of time.

6 Real-time Time Series Forecasting

The Forecasting component enables predicting the future development of time
series data. In MIRABEL, forecasts of energy production and consumption time
series are crucial in order to enable the scheduling of aggregated flex-offers (see
step 3 of the MIRA BEL use-case in Section 2). Additionally, the Forecasting com-
ponent needs to efficiently process new energy measurements to detect changes in
the upcoming energy production or consumption and to enable the rescheduling
of flex-offers if necessary.
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6.1 Overview Time Series Forecasting

Sophisticated forecasts require the specification of a stochastic model, a so-called
forecast model, that captures the dependency of future values on past values.
Specific characteristics of energy time series like multi-seasonality (daily, weekly,
annual) or dependency on external information like weather or calender events
require the employment of forecast models tailor-made for the energy domain
[12], [13]. Such models involve a large number of parameters leading to high
model creation times due to expensive parameter estimation. Thus, models are
pre-computed and stored in the database to support real-time answers.

However, a continuous stream of new measurements of energy production and
consumption leads to evolving time series and thus requires continuous mainte-
nance of the associated forecast models (Figure 7) [14]. For each new measure
value, we need to initiate (1) model update, which consists of an incremental
state adaption of the forecast model. Then, (2) model evaluation checks the
forecast model error with regard to the new measurements. Finally, (3) model
adaption might be triggered in order to re-estimate the model parameters and,
therefore, adapt the forecast model to the changed time series characteristic.
Model adaption is as expensive as the initial model creation since most param-
eters cannot be maintained incrementally.

As the calculation of forecast values from existing models can be done very
efficiently, model maintenance exhibits the major challenge in terms of real-time
processing. Here, we face two main challenges: (1) when to trigger forecast model
maintenance and (2) how to efficiently adapt the forecast model parameters.
Both aspects strongly influence the amount of time spent on maintenance as well
as the forecast accuracy. In the following, we further detail these main challenges
of model maintenance and sketch different solutions that utilize standard as well
as energy-domain-specific techniques.

6.2 Real-time Model Adaption

Model adaption might be triggered periodically by a fixed interval, either after a
fixed number of new measurements or after a fixed time interval. However, these
strategies exhibit the problem of determining the model adaptation interval.
Too short intervals lead to unnecessary adaptations of well-performing forecast
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models, while too long intervals lead to the problem of unbounded forecast errors
in the sense that arbitrarily large errors are possible between the defined points
of model adaptation. The other strategy is to utilize the continuous stream of
consumption and production measurements to continuously evaluate the forecast
model accuracy and trigger model adaptation when the forecast error violates
a previously defined threshold. While this strategy guarantees that a certain
forecast error is not exceeded, it exhibits a similar drawback as the fixed interval
model adaptation since it also depends on the definition of suitable thresholds. To
weaken the disadvantages of a single technique, we can combine both evaluation
approaches and trigger model adaption time- and error-based.

Model adaption re-estimates the model parameters and therefore, adapts the
forecast model to the changed time series characteristics. There, the d parameters
of a forecast model span a logical d-dimensional search space, in which we want
to find the global optimal solution with regard to the forecast error. In this
context, two challenges arise, first, where to start the parameter re-estimation
process and, second, how to efficiently re-estimate the parameters itself.

Our core assumption of start point determination is that forecast model pa-
rameters will not change abruptly but will be in close neighborhood of previous
model parameters. Thus, we should exploit context knowledge from previous
model adaption by either using the parameters of the outdated model or a com-
bination of a set of older models. For the last approach, we store previous models
of a time series in conjunction with their context information (e.g., weather infor-
mation) in a repository. If a similar context occurs and maintenance is triggered,
we reuse these models to calculate suitable start points [15].

To actually determine the new model parameters, arbitrary global and local
optimization methods, each with advantages and disadvantages, can be utilized.
Global optimization methods might find a global optimum but need more time
to terminate, while local optimization methods follow a directed approach and
therefore converge faster to a solution but exhibit the risk of starvation in local
sub optima. Again, we can combine both approaches to weaken their disadvan-
tages by starting with local optimization method and using a global optimization
method afterwards if there is still time available.

Additionally, we have developed several approaches that utilize character-
istics of energy-specific forecast models to speed up the parameter estimation
process itself. First of all, energy demand models often involve multi-equation
models [13] that create a different forecast models for different time intervals
(e.g., for each hour of the day). As multi-equation models consists of several in-
dependent individual models, we reduce the parameter estimation time by par-
titioning the time series and parallelizing the estimation process [16]. Second,
energy demand and supply models often require the inclusion of many external
sources (e.g., weather information) to increase the accuracy. The naive approach
of adding each external time series directly to the forecast model highly increases
the model maintenance time due to the large parameter space. Therefore, our
approach separates the modeling of external sources from the actual forecasting
model and combines both models after parameter estimation.
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Up to now, we have only discussed how to efficiently maintain a forecast
model for a single time series. However, we might also exploit the hierarchical
organization of the data within one node or over several nodes to reduce the
overall number of forecast models and thus the maintenance overhead [17].

7 Subscription Processor for Forecasts and Flex-offers

Within MIRABEL, forecasts and aggregated flex-offers are continuously required
by scheduling and, thus, might be continuously polled from the data warehouse
in each interval. This is very inefficient if flex-offers and/or forecasts changed
only marginally leading to high application costs. To prevent the polling, con-
tinuous queries can be registered in the data warehouse leading to notifications to
subscribers every time when results of these queries change substantially (due to
data changes in the warehouse). Such subscriptions and notifications are handled
by the Subscription Processor component. In the following sections, we provide
examples of continuous flex-offer aggregation and forecasting queries and explain
how the respective notifications are generated.

7.1 Flex-offer Notifications

Continuous flex-offer aggregation queries must define an error threshold, which
define a condition for a notification. For example, the following continuous ag-
gregation query requests aggregated flex-offers for the upcoming day specifying
the error threshold of at most 10kW h:

SELECT *
FROM AggregateFlexoffers (

SELECT flexOfferId FROM F_flexOffer

WHERE enProfile_startAfter = now() + INTERVAL ’24 hours’)
NOTIFY ON energy_error > 10000

A notification is sent to the subscriber when inserts and deletes of flex-offers
cause that the result of aggregated flex-offers changes higher than 10kWh in the
terms of energy amount. A subscriber can specify whether the notification should
include the new set of aggregated flex-offers or only the difference compared to
the previously reported aggregation result. The proposed flex-offer notification
schema implements data pushing rather than pulling approach, thus it prevents
the repeated aggregation of the same set of flex-offers in cases when up-to-date
aggregates are required (which is common in the MIRABEL). Furthermore, they
can lower node’s communication costs associated with the propagation of flex-
offers throughout the hierarchy of the EDMS.

7.2 Forecast Notifications

Similarly to continuous aggregation queries, subscription-based forecast queries
can be utilized. The following continuous forecast query requests forecasts for at
least the next 12 hours providing an error threshold of 10%.
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SELECT hour(time), SUM(energy) energy_per_hour
FROM TS_PowerConsumption GROUP BY hour(time)
FORECAST energy_per_hour ON hour(time)

NOTIFY ON MIN HORIZON ’12 hours’ AND THRESHOLD 0.1

For this query, a notification is sent to the subscriber if either (1) time has
exceeded and the subscriber holds forecast values for less than 12 hours (time-
based) or (2) if new forecasts are available that deviate by more than 10% from
old forecasts sent before (threshold-based). As the subscriber only specifies a
minimum number of forecast values, the system can internally decide how many
values to send and thus regulate costs. If only a small number of forecast values
are propagated, many time-based notifications occur. In contrast, propagating a
larger number of forecast values leads to a higher forecast error and thus more
threshold-based notifications. Thus, the forecast horizon can either be chosen
manually by the subscriber or automatically [18] to ensure accurate forecasts
and smaller number of notifications.

8 Query Processing

The real-time data warehouse has two types of query processors called Standard
Query Processor and Model-based Query Processor, respectively. In the following
sections, we elaborate the types of queries these two processors support and
provide examples of the most important query types in our system.

8.1 Standard Query Processing

Standard Query Processor supports both simple (point, range) and analytical
(aggregate, join) queries over historical time series and flex-offer data. All tuples
(from Heap Storage) relevant for a query have to be retrieved from the main-
memory or disk storage in order to process the query, hence processing complex
analytical queries over large datasets (of time series or flex-offers) might take a
long time. To improve performance, a user can explicitly require the flex-offer
aggregation in a query. In this case, Standard Query Processor might take ad-
vantage of materialized aggregated data (e.g., from Aggregation), thus lowering
not only data access costs, but also computational costs (e.g., when exploring
the flexibility space of flex-offers). In all these cases, the result of a query is
always exact. To implement Standard Query Processor, a traditional query pro-
cessor (PostgreSQL) can be utilized and extended with additional user defined
functions specific for handling energy data such as flex-offers.

We now give some examples of queries handled by Standard Query Processor.
The query below shows how the balance between produced and consumed energy
at the granularity of 15 minutes can be computed for January of 2012:

SELECT hour_quarter(time), SUM(p.energy) AS Prod,
SUM(c.energy) AS Cons, SUM(p.energy - c.energy) as Balance
FROM TS_PowerProduction p, TS_PowerConsumption c
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WHERE year(time) = 2012 AND month(time) = 1
GROUP BY hour_quarter (time)

The next query finds maximum and minimum energy amounts that poten-
tially can be scheduled at every time interval (of 15 minutes) utilizing all un-
scheduled flex-offers:

SELECT MAX(en_high) as MaxEnergy, MIN(en_low) as MinEnergy
FROM forAllFlexofferTimeShifts(
aggregateFlexoffers(
SELECT flexOfferId FROM F_flexQOffer
WHERE enProfile_startFix is not NULL))
GROUP BY timelIntervalld

Here, the function aggregateFlexoffers aggregates flex-offers with ids specified
by a sub-query; for every flex-offer, the function forAllFlezofferTimeShifts enu-
merates its possible alternatives to fix (to schedule) flex-offers in time. The lat-
ter function outputs several alternatives containing the minimum (en_low) and
maximum (en_high) energy amounts for each time interval (timeIntervalld).
Enumeration of such alternatives might be very expensive if aggregation is not
performed. Thus, the applied aggregation operation substantially improved the
performance of such query. Materialized results of flex-offer aggregation might
further improve the performance of such queries.

8.2 Model-based Query Processing

Model-based Query Processor is designed for time series, primarily. It operates
on time series models (Time Series Storage) rather than tuples. It is usually
faster than Standard Query Processor as less data needs to be accessed on disk.
Furthermore, queries supported by the processor can be executed on both his-
torical and predicted data thus allowing to look into the history and future. To
query historical data, a user may explicitly specify error thresholds (absolute
error and confidence) that describe how large impressions are allowed to be.
Smaller values of the threshold leads to longer query execution times as a larger
number of models have to be retrieved from storage (see Section 4.2). If histori-
cal models cannot guarantee a required precision, the Heap Storage is accessed
through Standard Query Processor. To query forecasted data, the functionality
of Forecasting is utilized.

For example, the following query finds the energy consumption of households
for the previous 24 hours and upcoming 2 hours with max 5% error:

SELECT hour(time), SUM(energy) AS energy_per_hour
FROM TS_PowerConsumption
WHERE category=’household’ AND
time BETWEEN (now() - INTERVAL ’24 hours’) AND
(now() + INTERVAL ’2 hours’)
GROUP BY hour(time) ORDER BY hour(time)
RELATIVE_ERROR 0.05;
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Such type of queries focusing on recent history and near future is important
in real-time monitoring and intra-day planning of energy. In this process, the
timely delivery of the query result is vital.

To summarize, two query processors are supported by the real-time data
warehouse. A user might chose to execute his query on either of them, depending
on the available time for query execution and the required precision of the result.

9 Experimental Results

We now present some initial experimental results on the storage, aggregation and
forecasting components. No other smart grid system does what the MIRABEL
system does, e.g., with respect to flex-offers, and thus we do not compare with
other systems.

9.1 Storage Experiments

We evaluate query performance for the storage component presented in Sec-
tion 4.2 using real-world time series dataset of 110,000 tuples. These experiments
were run on a computer with Intel Corel-7 with 8 GB of RAM, and Ubuntu 2.6
(x86 64) OS. In this set of experiments (Figure 8), we compare the performance
of representing the time series as a database table (solid line) and natively as
a disk-block array (dotted line) by measuring the query time for: (a) a simple
query which only accesses the materialized time series and (b) the overall time
for accessing the time series and building the forecast model. We increase the
selectively of the query from 0.1% to 100% of the dataset.

In Figure 8(a), we achieve 4.5 times speed up for small range queries (i.e.,
selectively of 0.1%) and up to 1.8 times speed up for almost the entire dataset
by using time series represented as arrays. It should be noted that small range
queries are typical in the MIRABFEL scenario of a real-time smart grid applica-
tion. This is achieved by keeping the heap organized, only accessing the needed
pages and minimizing the disk bandwidth. Figure 8(b) shows a higher speed up
by eliminating sorting the time series data. More precisely, we achieve 100 times
speed up for small range queries (i.e., selectively of 0.1%) to 1.3 times speed up
for almost the entire dataset.

9.2 Aggregation Experiments

We evaluate the throughput of flex-offer updates in the incremental aggregation
solution. We use the same experimental setup as in our previous two works [3,9].
Here, the dataset [3] represents synthetically generated energy consumption re-
quests issued for a single day from multiple consumers, and the aggregation
parameters are set so that the best scheduling result is obtained. In the exper-
iment we initially aggregate 500000 flex-offers. Then, we continuously feed new
flex-offers (for the same 24 hours interval) and remove existing flex-offers while
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keeping the total number of micro flex-offers equal to 500000. We process such
inserts and deletes in bulks. When the bulk of a certain size is formed, we trigger
the aggregation. Here, the size of the bulk determines the level of aggregation
result up-to-dateness, i.e., small bulks yield up-to-date results while larger bulks
yield slightly outdated results. Furthermore, we evaluate our approach with bin-
packing (BP) feature on and off. The BP-on means that macro flex-offers are
guaranteed to have the time flexibility of no less than 2 hours.

Figure 9(a) visualizes the 500000 flex-offer aggregation performance. When
the BP is off, 500000 micro flex-offers are aggregated into 90 macro flex-offers.
When the BP is on, the number of macro flex-offer is only 50 as some of the
original flex-offers are excluded since they result in macro flex-offers with time
flexibility lower than 2 hours (which is not allowed by the aggregate constraint).
Times spent aggregating flex-offers with BP-off and BP-on are 3 and 58 sec-
onds, respectively. Figure 9(b) shows the throughput of updates our aggregation
solution (with BP-off) can handle when 1) incrementally maintaining macro flex-
offers with the bulks of flex-offer updates (blue line); 2) aggregating 500000 flex-
offers from scratch when a new bulk arrives (green line). Similarly, Figure 9(c)
shows the throughput when the BP is on. As seen in the figures, the throughput
of updates increases when we process updates in larger bulks (applies for both
incremental and the from-scratch aggregation, BP-on and -off). For small bulk
sizes, the incremental aggregation offers better throughput (even of two orders of
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magnitude). However, when the bulks are very large (few hundreds of updates in
the BP-off case) the better throughput is achieved when aggregating flex-offers
from scratch on each bulk of updates. In general, to handle the workload of a
particular update rate and to provide as fresh aggregation results as possible, an
appropriate bulk size has to be chosen and either incremental or the from-scratch
aggregation has to be applied.

9.3 Forecasting Experiments

We evaluate the influence of different model evaluation and adaption strategies
(discussed in Section 6) using a publicly available energy production data set [19].
It consists of a single aggregated wind energy time series from 2004 to 2006 in 10
min resolution. The experiment is conducted using Holt-Winters Triple Seasonal
Exponential Smoothing, a forecast model tailor-made for the energy domain
[12]. To measure the forecast accuracy, we use the symmetric mean absolute
percentage error (SMAPE), which is a scale-independent accuracy measure and
takes values between 0% and 100%. The following experiments were executed
on an IBM Blade (Suse Linux, 64 bit) with two processors and 4 GB RAM.

In a first experiment, we explore the influence of different model evaluation
strategies. A first model evaluation strategy never adapts the model parame-
ters, while a second strategy always adapts the forecast model after each new
measurement. Finally, our third strategy triggers model adaption based on a
combined time- and threshold-based approach. For this last approach, we set
the time limit to 24 hours and the threshold to 2.5%. Figure 10(a) shows the
development of the model accuracy for a series of inserts on the time series for
each of the three strategies, while Figure 10(b) shows the estimated number of
inserts per second we can achieve with the corresponding strategy. First of all, we
can observe that model adaption always leads to a lower forecast error compared
to no adaption at all and thus is required to achieve the best possible accuracy.
However, if we adapt the model after each new measurement we achieve a much
lower throughput than a strategy that never adapts the model parameter. In
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comparison, our time- and threshold-based approach still leads to a low forecast
error but increases the throughput.

In a second experiment, we examine a single model adaption step more closely
by comparing the error development of three important parameter estimation
strategies (Figure 10(c)). In detail, we measure the accuracy over time of a single
adaption step using Simulated Annealing, Random Search and Random Restart
Nelder Mead. As it can be seen, all algorithms converge to a result having similar
accuracy, where Random Restart Nelder Mead requires much less time than, for
example, Simulated Annealing. Thus, the model adaption strategy has a high
impact on the required time and needs to be set accordingly.

10 Related Work

In this section, we list other similar smart grid projects, and present work related
to the data management components of the MIRABEL EDMS.

There are hundreds of ongoing and finished smart grid projects only in Eu-
rope [20] with budgets over 3.9 billion euro in total. The most notable are:
ADDRESS (25 partners from 11 countries), BeyWatch (8 partners from 6 coun-
tries), E-Energy Project “MeRegio” (6 partners from Germany), Energy@home
(4 partners from Italy), INTEGRAL (9 partners from 5 countries), Internet
of Energy (40 partners from 10 countries), SmartHouse-SmartGrid (6 partners
from 3 countries). The listed ones aim to specify and prototype data exchange
infrastructures to demonstrate active customer involvement in the electricity
grid operation. The MIRABEL project is unique for the “data driven” approach
of customer involvement, since the other projects either require end-consumers
to negotiate the price and thus actively participate in the electricity market, or
are oriented to the distributed energy producers and grid operators. Further,
MIRABEL is the only project supporting flex-offers. See also Section 1 for a
discussion of MIRABEL’s unique characteristics.

The MIRABEL approach exhibits multiple real-time business intelligence
requirements and no single system category can cover all of them. Event en-
gines [21], for example, do not support complex analytical queries and advanced
analytics (e.g., time series forecasting). Pure data stream management systems
(e.g., [22]) can cope with high-rate input streams and rather complex queries;
however, ad-hoc data analysis and advanced analytics on historical data are
impossible. From the more traditional DBMS side, read-optimized data organi-
zation such as column-oriented data management or hybrid OLTP/OLAP so-
lutions [23] provide efficient ad-hoc data analysis but exhibit drawbacks with
regard to write-intensive applications. In the data warehouse area, real-time
data warehouse approaches try to cope with a continuous stream of write-only
updates and read-only queries at the same time [24]. However, the unique con-
cept of flex-offers as well as the requirement of continuous time series forecasting
demand an architecture tailor-made for the MIRABFEL system.
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11 Conclusions and Future Work

We have described the real-time business intelligence aspects of the MIRABEL
system that facilitates a more efficient utilization of renewable energy sources
by taking benefit of energy flexibilities. Within MIRABEL, real-time advanced
analytical queries (including forecasting) have to be supported on a continu-
ous stream of fine-granular time series data and a large number of flex-offers. To
cope with these requirements, we introduced a real-time data warehouse solution
consisting of the following individual components: first, the storage management
component stores time series and flex-offer data as well as models for histori-
cal and future data. With these models, we can provide (1) accurate forecasts
of future data, (2) fast approximate results of historical data and (3) increased
performance of data loading. Second, the aggregation component enables the
handling of a large number of flex-offers by grouping similar flex-offers with
minor flexibility loss using an efficient incremental approach. Third, the fore-
casting component enables real-time forecast queries with high accuracy by the
continuous and efficient maintenance of energy-domain specific forecast models.
Finally, a subscription service for flex-offers as well as forecasts is provided and
the standard query processor is extended to support not only exact queries but
also approximate queries on past as well as future data. Preliminary experi-
ments on storage management, aggregation, and forecasting components show
the applicability and efficiency of the corresponding approaches.

The remaining challenges for the future work are the following: (1) a distribu-
tion of the EDMS nodes, e.g., how to ensure consistency and efficiency and lower
the amount of communication when propagating the data, (2) a support more
types of flexibilities, e.g., price flexibility, and extend data storage management
and aggregation components accordingly, (3) a tight integration of forecasting
and data loading techniques to enable real-time data warehousing on massive
amounts of data in distributed nodes.

With our proposed solution, we thus take an important step in enabling the
integration of larger amounts of distributed and renewable energy sources into
the electricity grid.
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