
Incremental Light Bundle Adjustment for

Structure From Motion and Robotics

Vadim Indelman*, Richard Roberts

‡
, and Frank Dellaert

‡

Abstract
Bundle adjustment (BA) is essential in many robotics and structure-

from-motion applications. In robotics, often a bundle adjustment solution

is desired to be available incrementally as new poses and 3D points are

observed. Similarly in batch structure from motion, cameras are typically

added incrementally to allow good initializations. Current incremental

BA methods quickly become computationally expensive as more camera

poses and 3D points are added into the optimization. In this paper we

introduce incremental light bundle adjustment (iLBA), an e�cient opti-

mization framework that substantially reduces computational complexity

compared to incremental bundle adjustment. First, the number of vari-

ables in the optimization is reduced by algebraic elimination of observed

3D points, leading to a structureless BA. The resulting cost function is for-

mulated in terms of three-view constraints instead of re-projection errors

and only the camera poses are optimized. Second, the optimization prob-

lem is represented using graphical models and incremental inference is ap-

plied, updating the solution using adaptive partial calculations each time a

new camera is incorporated into the optimization. Typically, only a small

fraction of the camera poses are recalculated in each optimization step.

The 3D points, although not explicitly optimized, can be reconstructed

based on the optimized camera poses at any time. We study probabilistic

and computational aspects of iLBA and compare its accuracy against in-

cremental BA and another recent structureless method using real-imagery

and synthetic datasets. Results indicate iLBA is 2-10 times faster than

incremental BA, depending on number of image observations per frame.

1 Introduction
Bundle adjustment (BA) has been at the focus of many research e�orts for the
past few decades. While its origin is in the photogrammetry community, it is
an essential component in many applications in computer vision and robotics,

* Corresponding author, Department of Aerospace Engineering, Technion - Israel Institute
of Technology, Haifa 32000, Israel. Email: vadim.indelman@technion.ac.il.

‡Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta,
GA 30332, USA.

1

where it is also known as structure from motion (SfM) and full simultaneous
localization and mapping (SLAM). A thorough review of di�erent aspects in
BA can be found in [49].

Bundle adjustment can be considered as a large optimization problem, with
the optimized variables being the camera poses and the observed structure
(3D points/landmarks) and where one aims to minimize the di�erence between
the actual and the predicted image observations. Computational complexity is
scenario-dependent and is a function of several factors, including the number
of images, observed 3D points, and the actual image observations. Research in
recent years has been focused on developing e�cient and fast approaches for BA
optimization, which is required to process a large amount of information in a
reasonable time. Proposed approaches include exploiting the typical sparseness
of the problem, performing parallelization and distribution of the involved cal-
culations, and optimizing a reduced system that approximates the full system.

This paper introduces incremental light bundle adjustment (iLBA), an ef-
ficient optimization method that is applicable both to SfM and SLAM. The
method incorporates two key components to reduce computational complexity:
structureless BA and incremental smoothing.

The idea in the recently-developed structureless BA methods [41, 18, 21]
is to improve computational complexity by reducing the number of variables
involved in the optimization. Specifically, in structureless BA only the cam-
era poses are optimized, while the 3D points are algebraically eliminated using
multi-view constraints. The optimization minimizes the errors in satisfying these
constraints, instead of optimizing the re-projection errors as in standard BA.
iLBA utilizes three-view constraints [17], which in contrast to using only epipo-
lar constraints in structureless BA [41], allow consistent motion estimates even
when the camera centers are co-linear, a situation common in mobile robotics.
Alternatively, one can apply trifocal constraints [35, 15] within the same frame-
work. If required, all or some of the 3D points can be calculated using standard
structure reconstruction techniques using the optimized camera poses. Figure 1
shows an example of iLBA-optimized camera poses, which are then used for
sparse 3D reconstruction in two real-imagery datasets considered in this paper.

The second component in iLBA is incremental smoothing, an e�cient incre-
mental optimization that uses a recently-developed technique [27] to update the
solution using adaptive partial calculations each time a new camera (image) is
incorporated into the optimization. Being able to incorporate new information
and e�ciently perform the optimization is important in many applications, such
as robot vision, where the images are not given ahead of time (e.g. gradually
captured by a single or group of mobile robots) and the maximum a posteriori
(MAP) estimate is required each time a new image is received. Furthermore,
since a good initialization is essential not to be trapped in a local minima, incre-
mental optimization is also used in batch scenarios where all the imagery data is
available. Typically, incremental smoothing involves recalculating only a small
number of camera poses as opposed to always optimizing all camera poses in
previous incremental SfM [53] and structureless BA methods [47, 41, 18]. To
the best of our knowledge, incremental smoothing has not been suggested to

2

(a) Cubicle dataset: 148 cameras, 31,910 3D points and 164,358 image observations.

(b) Outdoor dataset: 308 cameras, 74,070 3D points and 316,696 image observations.

Figure 1: Optimized camera poses using iLBA followed by (sparse) structure
reconstruction. Computational time of iLBA is 8-10 times faster compared to
incremental BA.

3

structureless BA thus far.
We demonstrate, using di�erent real-imagery and synthetic datasets, that

these two components result in a significant reduction in computational com-
plexity while exhibiting high accuracy for reasonable image noise levels, com-
pared to standard BA. Our implementation of iLBA is publicly available1.

In this paper we also present a probabilistic analysis of iLBA, analyzing how
well the probability distribution corresponding to the iLBA cost function agrees
with the true probability distribution of the camera poses. The latter can be
calculated in standard BA from the joint probability of camera poses and 3D
points. An accurate and reliable uncertainty estimate is important in many
structure from motion and robotics applications, yet to the best of our knowl-
edge this is the first time that such an analysis is conducted for structureless
BA methods.

Consequently, this paper makes the following main contributions: a) An
e�cient incremental structureless bundle adjustment method is introduced. b)
Probabilistic analysis of thereof, as well as of previous structureless methods,
is presented. c) Accuracy and computational complexity are evaluated and
compared to other methods based on synthetic and real-imagery datasets.

The present paper is an extension of the work presented in [21, 22]. As a
further contribution, in this manuscript we present an extensive quantitative
evaluation of the performance and accuracy of iLBA, considering di�erent as-
pects such as number of image observations per frame, di�erent feature track
lengths, dense sequential loop closures and sensitivity to image noise.

The remaining part of this paper is organized as follows. Related work and
background material on standard and structureless BA are discussed in Sections
2 and 3, respectively. Light bundle adjustment (LBA), the first component in
our approach, is introduced in Section 4. The second component is then dis-
cussed in Section 5, where LBA is reformulated for a recently-developed incre-
mental factor graph optimization method, iSAM2 [27]. Computational com-
plexity and evaluation of timing performance using synthetic and real-imagery
datasets is provided in Section 6. Probabilistic analysis, and study of accuracy
and uncertainty estimation are given in Section 7. Concluding remarks and
directions for future research are suggested in Section 8.

2 Related Work
A vast body of work describes approaches for reducing the computational com-
plexity of BA, in particular when processing a large number of images. Lourakis
and Argyros [32] and Konolige [29] develop methods that fully exploit the spar-
sity of the involved matrices in the optimization. Snavely et al. [44] construct
a skeletal graph using a small subset of images and incorporate the rest of the
images using pose estimation, while Konolige and Agrawal [30] carefully choose

1Code is available on the website of the first author.

4

and optimize a reduced non-linear system, that approximates well the full sys-
tem. Another family of methods used to reduce the complexity of optimizing
the standard BA problem use preconditioned gradient descent [1, 4, 24, 25].

Increased e�ciency and substantial improvement in running time have been
obtained by using parallel and distributed computations. For example, Ni et
al. [39] optimize in parallel several submaps that are merged afterwards, and
Wu et al. [52] e�ciently solve large 3D reconstruction problems by exploiting
multicore CPU and GPU. GPU-based parallelization is also used by Frahm et
al. [12], whose method can be applied both to large collections of images and
to video streams. Klein and Murray [28] developed an approach for high rate
parallel tracking and mapping using a monocular camera, while Newcombe et
al. [38] presented an approach for real time camera tracking and dense recon-
struction. Agarwal et al. [2] presented a 3D reconstruction system that exploits
parallelization, using multi-core and cloud computing, to be able to handle
large-scale image sequences.

Incremental bundle adjustment is a topic of recent research. Most existing
work maintains real-time performance by optimizing a small subset of the most
recent poses each time a new image is added. For example, Engels et al. [7]
optimize a number of the most recent camera poses and landmarks using the
standard BA optimization, and Mouragnon et al. [37] perform a similar opti-
mization but including keyframe selection and using a generic camera model.
Zhang and Shan [53] perform an optimization over the most recent camera
triplets, experimenting with both standard BA optimization and a reduced op-
timization where the landmarks are linearly eliminated. However, since these
methods optimize a sliding window of the most recent past poses, the necessary
cameras will not be readjusted after large loop closures.

Other incremental bundle adjustment methods optimize more than just a
fixed number of recent poses, instead adaptively identifying which camera poses
to optimize [46, 42, 36]. However, in contrast with incremental smoothing [27],
these methods result in approximate solutions to the overall least-squares prob-
lem, and do not reuse all possible computations. Additionally, these methods
leverage specific properties of SfM problems, whereas incremental smoothing
is a fully general incremental nonlinear optimization system, making possible
immediate integration of additional robot-specific measurements such as GPS
and IMU [23]. It is for these reasons incremental smoothing is our method of
choice in this work.

The above methods e�ciently minimize the overall re-projection errors, a
procedure that involves optimizing both the camera poses and the observed 3D
points (with the exception of Zhang and Shan). In contrast, structureless bundle
adjustment approaches, which is also the approach in our work, algebraically
eliminate the 3D points from the optimization and optimize the residual error
in satisfying applicable multi-view constraints.

Early approaches suggested applying multi-view constraints for solving the
SfM problem in a given sequence of images. For example, Fitzgibbon and Zis-
serman [11] suggested estimating the trifocal tensors [15] between consecutive
triplets of images as well as the observed 3D points in each such triplet, fol-

5

lowed by registration of the triplets sequence and the involved structure into
a single reference frame. Nistér [40] generalized this scheme by constructing a
hierarchical structure of trifocal tensors, allowing to identify cameras with reli-
able estimated tensors and large parallax. The structure and motion problem is
then solved using a standard bundle adjustment applied on these cameras and
the associated feature correspondences.

The concept of avoiding structure estimation as an intermediate step has
been proposed in several works. For example, Avidan and Shashua [3] used
trifocal tensors to consistently concatenate sequential fundamental matrices,
while Zhang and Shan [53] proposed local BA applied on a sliding window of
triplets of images and correcting the image observations instead of estimating
the 3D points that they represent. In [50], SfM is solved using a constrained least
squares optimization, with the overall re-projection errors minimized subject to
all independent two-view constraints.

While neither of the above methods have proposed a global optimization that
is solely based on multi-view constraints, they paved the way to structureless
BA where explicit 3D reconstruction is avoided altogether [47, 41, 18]. The first
structureless BA method was introduced, to the best of our knowledge, by Stef-
fen et al. [47], who optimized the corrections of image observations subject to
satisfying trifocal tensor constraints. The authors used a relative parametriza-
tion of camera poses, with the pose of each camera expressed relative to the
previous camera, resulting in improved numerical stability and faster conver-
gence. A similar concept was developed in [18] using three-view constraints [19]
instead of the trifocal tensor. While structure reconstruction is avoided, the
number of variables in the optimization is larger than in case of a standard bun-
dle adjustment, since in addition to the camera poses it also involves corrections
to images observations. Rodríguez et al. [41] obtained a reduced computational
complexity by reformulating the optimized cost function and refraining from
correcting the image observations. The cost function in their formulation is
expressed directly in terms of residual errors of two-view constraints.

Another related approach to SfM and SLAM is to optimize only the camera
poses but using a graph of pairwise or triplet-wise relative pose constraints. In
robotics, this is referred to as pose-SLAM, e.g. [9, 16], or FrameSLAM [30].
Similar approaches in SfM solve camera poses using graphs of pose constraints
on camera pairs and triplets [13, 14]. The cost function in this approach is
formulated using relative pose constraints, which are estimated in a separate
process. In contrast, the cost function in structureless BA is expressed in terms
of individual multi-view constraints.

3 Standard and Structureless Bundle
Adjustment Methods

In this section we briefly explain two methods for bundle adjustment. Standard
bundle adjustment optimizes both camera poses and 3D landmark positions

6

given image feature observations. Structureless bundle adjustment algebraically
eliminates the 3D landmarks, thereby avoiding explicitly optimizing them.

3.1 Standard Bundle Adjustment
We consider a sequence of N images captured from di�erent and unknown cam-
era poses. Denote the camera pose that captured the ith image by x

i

and let
Z

i

represent all the image observations of that image, with a single image ob-
servation of some landmark l

j

denoted by z

j

i

œ Z

i

. Let X and L represent,
respectively, all the camera poses and the observed landmarks,

X

.= {x1, . . . , x

N

} , L

.= {l1, . . . , l

M

} , (1)

with M being the number of observed landmarks. These landmarks represent
3D scene points that generate the detected 2D visual features.

The joint probability distribution function (pdf) is then

p (X, L|Z) , (2)

where Z is the set of all image observations from all images: Z .= {Z

i

}N

i=1.
The maximum a posteriori (MAP) estimation of X and L is given by

X

ú
, L

ú = arg max
X,L

p (X, L|Z) . (3)

The joint pdf p (X, L|Z) can always be factorized in terms of any available
a priori information and the measurement models as

p (X, L|Z) = priors ·
NŸ

i

MŸ

j

p

1
z

j

i

|x
i

, l

j

2
. (4)

When assuming Gaussian distributions, each individual measurement term p

1
z

j

i

|x
i

, l

j

2

can be written as

p

1
z

j

i

|x
i

, l

j

2
Ã exp

3
≠1

2

...z

j

i

≠ proj (x
i

, l

j

)
...

2

�

4
.= f

proj

, (5)

where proj (·) is the projection function [15] for a standard pinhole camera
model, and ÎaÎ2

�
.= a

T �≠1
a is the squared Mahalanobis distance with the mea-

surement covariance matrix �. The priors term can be written accordingly and
is omitted, from now on, for conciseness.

Calculating the MAP estimate then becomes equivalent to minimizing the
following non-linear least-squares cost function (omitting the priors for clarity):

J

BA

(X, L) =
Nÿ

i

Mÿ

j

...z

j

i

≠ proj (x
i

, l

j

)
...

2

�
, (6)

a process known as bundle adjustment.

7

One can observe that optimizing (6) involves 6N + 3M variables and thus
becomes computationally expensive as the number of views and observed land-
marks increase.

This is particularly an issue if new images become available on a constant
basis, such as in robot vision applications, and a solution is required at some
frequency (e.g. each time a new image is received). Denoting by X

k

the cam-
era poses of all images up to the current time t

k

, and by L

k

all the observed
landmarks in these images, we are interested in finding the MAP estimate

X

ú
k

, L

ú
k

= arg max
Xk,Lk

p (X
k

, L

k

|Z
k

) , (7)

with Z
k

representing all the image observations. Note that not all cameras
observe all landmarks, making the bundle adjustment problem usually very
sparse.

3.2 Structureless Bundle Adjustment
Di�erent approximations to the BA cost function (6) have been proposed in
previous structureless BA methods [47, 41, 18]. One alternative is to express
the cost function in terms of corrections made to the image observations, subject
to satisfying applicable multi-view constraints [47, 18] (again omitting priors):

J

SLB

(X, P) =
Nÿ

i

Mÿ

j

...z

j

i

≠ p

j

i

...
2

�
≠ 2⁄

T

h (X, P) , (8)

where p

j

i

œ P denotes the “fitted” image observation z

j

i

œ Z, and P repre-
sents all the fitted observations. ⁄ is a vector of Lagrange multipliers and
h

.=
#

h1 . . . h

Nh

$
T represents all the multi-view constraints derived from

feature correspondences in the given sequence of views, with N

h

being the num-
ber of such constraints. Each such constraint h

i

is an implicit nonlinear function
of camera poses and image observations, involving di�erent views that observe a
mutual scene. For example, Rodríguez et al. use epipolar geometry constraints
[41], Ste�en et al. employ trifocal tensor constraints [47], while Indelman uses
three-view constraints [18]. Since our approach is also based on three-view con-
straints, we defer a detailed exposition of these constraints to the next section.
We denote the structureless BA approach (8) by SLB and use this method with
the mentioned three-view constraints in the rest of this paper.

Observe that since image observations are also optimized and each 3D point
is typically observed in several views, the number of variables in the SLB cost
function (8) is much higher compared to the BA cost function (6).

4 Light Bundle Adjustment (LBA)
In this section we describe the first component in our approach, LBA. In order
to introduce the details of LBA, we first explain it in a batch scenario. We then

8

proceed to the incremental framework in the context of robotics in Section 5.
LBA reduces the number of variables in the bundle adjustment optimization,

as compared with standard bundle adjustment, by eliminating the landmarks
and thus optimizing only the camera poses. Instead of a probabilistic variable
elimination from the pdf, LBA uses an algebraic elimination relying on mul-
tiview constraints to introduce a new pdf p

LBA

(X|Z) over only the camera
poses.

Key to the e�ciency of LBA is that its density over poses p

LBA

(X|Z)
is not equivalent to the exact marginalization of the landmarks p (X|Z) =´

L

p (X, L|Z) dL. Performing the latter marginalization would require first iter-
ative nonlinear optimization of the full bundle adjustment problem, including
landmarks, to find the MAP estimate of both the camera poses and landmarks
before applying a Gaussian approximation to compute the marginal. This non-
linear optimization of the full bundle adjustment problem is the expensive task
that LBA avoids.

The LBA pdf p

LBA

(X|Z) derives from Gaussian noise on a measurement
residual h (x, z) æ R derived from the multiview constraints (omitting priors),

p

LBA

(X|Z) Ã
NhŸ

i

exp
3

≠1
2

..
h

i

(X̄
i

, Z̄

i

)
..2

�i

4
. (9)

Here, i indexes over residual functions, and each h

i

!
X̄

i

, Z̄

i

"
is the residual of

one of the multiview constraints in Eqs. (10)-(12), involving either two or three
camera poses. We represent this ith subset of camera poses and the involved
image observations by2

X̄

i

µ X and Z̄

i

µ Z, respectively.
Unlike in standard bundle adjustment, there is not a 1-1 mapping between

residual functions and landmark observations. Instead, each residual function
is the result of eliminating a landmark from the observations of two or three
cameras. While a landmark may be observed by more than three views, al-
gebraically independent relations exist only between up to three cameras [34].
Therefore, algebraic elimination of a landmark is represented by a set of two-
and three-view constraints h

i

between the di�erent cameras observing this land-
mark. The procedure for selecting which residual functions are instantiated is
described in Section 5.3.

The covariance matrices �
i

are calculated as �
i

= A

i

�A

T

i

, where A

i

is the
Jacobian of the constraint h

i

with respect to the involved pixel observations.
Although to yield the best accuracy �

i

should be recalculated each time ap-
propriate variables are re-linearized, in LBA we opt to calculate these matrices
only once. We show in Section 7.3 that this has negligible e�ect on accuracy,
while computational cost is significantly reduced.

As opposed to the SLB cost function (8), and similar to [41], image obser-
vations are not corrected in the LBA formulation.

2Not to be confused with Xi and Zi.

9

xk

xl

xm

View l

Viewk

View
m

l13D point

(a)

−3 −2 −1 0 1 2 3
0

200

400

600

800

1000

1200

1400

Residual error

N
u
m

b
e
r

o
f
sa

m
p
le

s

(b)

Figure 2: (a) Three view geometry for some three views k, l and m observing
a 3D point l1. (b) Histogram of the three-view constraint residual g3v

, show-
ing a distribution that is very close to a Gaussian. The figure was generated
by contaminating ideal image observations in three given views with sampled
Gaussian noise (100000 samples). The standard deviation (std) of the fitted
normal distribution (red curve) is very close to the calculated std

Ô
�3v

(see
Section 4). A similar distribution is obtained for the two-view constraint g2v

,
as well as for di�erent camera configurations.

4.1 Residual Functions
The LBA residual function is a proxy for the reprojection error of a landmark
between two or three cameras. Consider the camera poses that observe some
common 3D point l1 as illustrated in Figure 2a. Writing down all the appropriate
projection equations, it is possible to algebraically eliminate l1, which results
in constraints between triplets of poses [51]. One possible formulation of these
constraints, recently developed in the context of vision-aided navigation [17, 19],
is the three-view constraints. Assuming three overlapping views k, l and m, these
constraints are

g2v

(x
k

, x

l

, z

k

, z

l

) = q

k

· (t
kæl

◊ q

l

) (10)
g2v

(x
l

, x

m

, z

l

, z

m

) = q

l

· (t
læm

◊ q

m

) (11)
g3v

(x
k

, x

l

, x

m

, z

k

, z

l

, z

m

) =
(q

l

◊ q

k

) · (q
m

◊ t

læm

) ≠ (q
k

◊ t

kæl

) · (q
m

◊ q

l

) (12)

where q

i

.= R

T

i

K

≠1
i

z for any view i and image observation z, K

i

is the calibra-
tion matrix of this view, R

i

represents the rotation matrix from some arbitrary
global frame to the i

th view’s frame, and t

iæj

denotes the translation vector from
view i to view j, expressed in the global frame. The first two constraints are
the two-view constraints g2v

between appropriate pairs of views, while the third
constraint, g3v

, involves all three views and facilitates maintaining a consistent
scale for the translation vectors t

kæl

and t

læm

. These constraints were shown

10

to be necessary and su�cient conditions for observing the same 3D point by
these three views [17]. In contrast to using only epipolar geometry constraints,
use of three-view constraints (10)-(12) as well as the trifocal tensor, maintains
a consistent scale even in co-linear camera configurations. The appendix pro-
vides further details regarding the relation of the three-view constraints to the
standard trifocal tensor.

Referring to the LBA pdf (9), each constraint h

i

is thus a single two- or three-
view constraint (h

i

œ {g2v

, g3v

}) that is a function of several camera poses and
image observations in the corresponding images.

When a landmark is observed by more than three views, a single two-view
(10) and three-view constraint (12) are added for each new view k and some
earlier views l and m. The reason for not adding the second two-view constraint
(between views l and m) is that this constraint was already used when processing
these past views. In case a 3D point is observed by only two views, we add a
single two-view constraint. We postpone the discussion on how the past views
l and m are chosen until Section 5.3.

The LBA pdf (9) assumes a Gaussian distribution of each of the residuals
(both g2v

and g3v

). To verify this is a reasonable assumption, ideal synthetic im-
age observations across di�erent views were contaminated with sampled Gaus-
sian noise in di�erent synthetic scenarios, followed by calculation of the residuals
for two- and three-view constraints. The statistics of these residuals is indeed
very close to Gaussian distribution, as shown in Figure 2b for the three-view
constraints g3v

.
Remark: In this paper we assume a projective camera model with known

calibration matrices K

i

. However, if the latter is not accurately known, it can
become part of the inference problem, in which case each of the constraints g2v

and g3v

will involve also the calibration matrices as variables. As a further pos-
sible extension, one can also consider writing the constraints without assuming
a linear camera model, and instead, incorporate appropriate additional terms
to account for non-linear e�ects such as radial distortion within the above def-
inition of q

i

[15]. Conceptually, this would allow applying the method directly
on captured imagery, without first rectifying it. However, it remains to be seen
if such an approach will accurately infer the parameters corresponding to the
nonlinear model.

Data Association Data association is a necessary step of determining which
image feature observations across several cameras are in fact observations of the
same 3D point. Shared observations comprise the constraints that allow opti-
mizing camera poses (and 3D landmark positions in the case of standard bundle
adjustment). In this paper we do not address the data association problem, in-
stead we decouple it from the bundle adjustment process as is typical in other
work. For our experiments we use data associations provided by Bundler [43].

11

We note, however, that in the context of robot navigation, data association
needs to be determined online. A common method to do so is using RANSAC
[10] with an underlying fundamental matrix model [15]. Similarly to LBA (and
other structureless BA approaches), this process also does not involve explicit
reconstruction of 3D points. Of course, data association is often imperfect and
outliers can be occasionally introduced into the inference process. One common
approach to deal with outliers is to resort to M-estimators with an appropriate
robust loss function (e.g. Cauchy function), see e.g. [48]. While not at the
focus of this paper, we note that these techniques can be also applied to LBA
formulation (9) by accordingly weighting the residual error of each constraint
h

i

. We leave further investigation of these aspects to future research.

4.2 Factor Graph Representation
At this point it is beneficial to represent a factorization of the joint pdf p (X)
over variables X using a graphical model, a factor graph [31], which will be later
used for e�cient incremental inference (see Section 5.1):

p (X) Ã
Ÿ

i

f

i

(x
–

, x

—

, . . .) . (13)

Here, f

i

æ R is a factor that involves some subset {x

–

, x

—

, . . .} of the variables
X. The membership of this subset of variables, called the involved variables, is
predetermined for each factor f

i

. These sets of involved variables comprise the
sparsity of the function. The factors f

i

represent measurement likelihoods or
prior terms.

The factor graph is a bipartite graph with two type of nodes: variable nodes
x

–

œ X and factor nodes f

i

. An edge e

–i

between the factor node f

i

and the
variable node x

–

exists if and only if the factor f

i

involves the variable x

–

.
The pdfs of both standard BA (4) and of LBA (9) are already given in

the form (13). In particular, for LBA we define two- and three-view factors as
follows:

f2v

(x
k

, x

l

) .= exp
3

≠1
2 Îg2v

(x
k

, x

l

, z

k

, z

l

)Î2
�2v

4
(14)

and
f3v

(x
k

, x

l

, x

m

) .= exp
3

≠1
2 Îg3v

(x
k

, x

l

, x

m

, z

k

, z

l

, z

m

)Î2
�3v

4
, (15)

with the covariances �2v

and �3v

:

�2v

.= (Ò
zk,zlg2v

) � (Ò
zk,zlg2v

)T

, �3v

.= (Ò
zk,zl,zmg3v

) � (Ò
zk,zl,zmg3v

)T

.

(16)
Consequently, the LBA pdf (9) can be written as:

p

LBA

(X|Z) Ã
NhŸ

i=1
f2v/3v

!
X̄

i

"
, (17)

where, as before, X̄

i

is a subset of camera poses.

12

x1 x2 x3 x4

projection
factors

Views:

Landmarks: l1

(a) Bundle adjustment (BA)

x1 x2 x3 x4
2-view
factor

2-view
factor

2-view
factor

3-view factor3-view factor

Views:

Landmarks: l1

(b) Light bundle adjustment (LBA)

x1 x2 x3 x4

equivalent factor

Views:

Landmarks: l1

(c) Marginalizing out a landmark

x1 x2 x3 x4
2-view
factor

2-view
factor

2-view
factor

3-view factor3-view factor

Views:

Landmarks: l1

GPS factor

(d) LBA with GPS

Figure 3: Factor graph formulation for (a) BA and (b) LBA in a simple scenario
of 4 cameras observing a single landmark l1. (c) Factor graph after marginalizing
out the landmark l1. (d) LBA factor graph incorporating also GPS factors.

Similarly, the projection factor f

proj

is defined in Eq. (5) and the BA pdf
can be written accordingly. Figures 3a-3b illustrate factor graph representations
of BA and LBA in a simple scenario of 4 cameras observing a single landmark.

4.3 LBA in Robotics
While so far we considered only visual observations, in actual robotic appli-
cations di�erent additional sensors are typically available. Combining all the
available measurements from di�erent sensors then becomes a matter of informa-
tion fusion. The joint pdf (17) will include, in addition to two- and three-view
factors, also factors that represent measurement likelihood terms from these
additional sensors [20].

For example, considering GPS measurements and assuming for simplicity
the image and GPS measurements arrive at the same rate, the joint pdf can be
written as (omitting priors)

p (X
k

|Z
k

) Ã
kŸ

s=0

A
p (z

GP S

|x
s

)
nsŸ

i=0
f2v/3v

!
X̄

si

"
B

, (18)

where the GPS basic measurement likelihood is represented by the unary factor
p (z

GP S

|x
s

), and n

s

is the number of two- and three-view factors that are added

13

between camera pose x

s

and past camera poses (i.e. X̄

si ™ X

s

). Figure 3d
illustrates a factor graph corresponding to Eq. (18) in a simple scenario.

Given a factor graph representing a factorization of the joint pdf, one can
calculate the MAP estimate X

ú
k

using the batch optimization described in Sec-
tion 4.4. The same framework can also be used for inferring additional variable
types, such as the robot’s velocity and calibration parameters of appropriate
sensors.

4.4 Batch Optimization
Minimizing the negative log-likelihood of the LBA pdf (17),

X

ú = arg min
X

≠ log p

LBA

(X|Z) , (19)

or a general pdf p (X|Z) that includes additional sensors, leads to a nonlinear
least-squares optimization over only the camera poses.

Gauss-Newton nonlinear optimization is suitable when the system is initial-
ized su�ciently close to the solution. As with standard BA, the initialization
must be of su�cient quality to not be trapped in local minima, though in prac-
tice we observe LBA to be more robust to bad initialization than standard BA.
As opposed to BA, initialization of 3D points is not required in LBA. Addi-
tionally, standard BA typically requires a trust-region optimization like Dogleg
or Levenberg-Marquardt for convergence [49], which adds computational com-
plexity to the optimization. LBA, on the other hand, in all of our experiments,
has converged using standard Gauss-Newton, without the use of trust-region
methods.

Nonetheless, obtaining a good initialization prior to optimizing all camera
poses is in fact quite di�cult. Often in most SfM pipelines, instead of attempt-
ing to initialize all cameras at once, cameras or camera groups are added incre-
mentally, with past cameras sometimes requiring nonlinear optimization before
adding a new set [49]. LBA could also be used, instead of batch optimization
each time a new camera is added, to speed up this procedure.

4.5 Structure Reconstruction
All, or some of the observed 3D points can be reconstructed based on the opti-
mized camera poses following standard techniques (see, e.g., [15]). The optimal
procedure, taking into account that both cameras and 3D points are random
variables, is a full BA optimization (6). In practice, one may consider sub-
optimal approaches that typically yield reasonable accuracy at lower computa-
tional cost. One sub-optimal approach is to reconstruct the jth 3D point l

j

,
observed in several views with indices represented by the set A

j

, by minimizing
the following cost function

J (l
j

) =
ÿ

iœAj

...z

j

i

≠ P (x
i

) l

j

...
2

�
, (20)

14

where P (x
i

) represents the projection matrix calculated using the estimated
pose x

i

and the known calibration matrix K

i

, so that P (x
i

) l

j

© proj (x
i

, l

j

).
While computational complexity of the optimization (20) depends on the car-
dinality of the set A

j

, it is typically inexpensive, in particular since it involves
linear equations as camera poses are given and not optimized. The above for-
mulation can be changed to include the camera pose uncertainty covariances
and also account for correlation between di�erent camera poses.

We stress again that structure reconstruction is not required by LBA, and
should therefore be performed only when requested externally (e.g. by the user).
It is for this reason that in the reported timing results for LBA (see Section 6),
structure reconstruction is performed only once, after finishing processing the
entire dataset. As discussed in the sequel, these results indicate LBA, including
structure reconstruction, is significantly faster compared to BA.

5 Incremental Light Bundle Adjustment (iLBA)
In this section we describe the second component of our approach, extending
LBA to the context of incremental inference in robotics. In robotics, information
from cameras and other sensors typically comes in incrementally, and the best
estimate incorporating all this available information should often be calculated
as fast as possible. The main focus in this section is on LBA, and incorporating
additional sensors is handled in the very same framework [23]. In order to e�-
ciently handle the optimization component of iLBA, we use a recently-developed
incremental smoothing method, iSAM2, which we review next.

5.1 Incremental Inference Using iSAM2

Our goal is to e�ciently calculate the MAP estimate of the LBA pdf at time
t

k+1, i.e. optimize all camera poses X

k+1 that have appeared by time t

k+1,
given all measurements Z

k+1 that have arrived by that time:

X

ú
k+1 = arg min

Xk+1
≠ log p

LBA

(X
k+1|Z

k+1) . (21)

For this we use iSAM2, a recently-developed algorithm for very e�cient incre-
mental nonlinear optimization that reuses information obtained from optimizing
the camera poses in the previous time step t

k

.
Since understanding how iSAM2 operates is essential for understanding com-

putational complexity, we now briefly discuss the basic concept of iSAM2.
iSAM2 applies graph algorithms to a factor graph representation of the op-
timization problem to incrementally update an exact QR or Cholesky factor-
ization of a linear approximation of the problem, while also fluidly relinearizing
variables that move too far from their linearization points.

When a new image is obtained, each image correspondence between that
image and previous images will generate new factors in the graph. This is

15

A B C D E d
A
B
C
D
E

E

C D

A B

Bayes net Augmented matrix

(a) Bayes net and corresponding augmented ma-
trix.

πjj

j dj

R d

(b) Example matrix entries
corresponding to a conditional
Gaussian.

Figure 4: Correspondence between a simple Gaussian Bayes net and the aug-
mented matrix [R d], obtained by variable elimination (i.e. QR or Cholesky
decomposition). Hatched matrix entries are non-zero.

equivalent to adding new block-rows to the measurement Jacobian A of the lin-
earized least-squares problem. The key insight is that optimization can proceed
incrementally because most of the calculations are the same as in the previous
step and can be reused.

iSAM2 works by incrementally updating a Gaussian Bayes net, equivalent to
the upper-triangular matrix R resulting from QR or Cholesky decomposition of
A – this decomposition is the main task in calculating the linear solution vector
step ”x in each iteration of the Gauss-Newton algorithm. The equivalency of a
Gaussian Bayes net with sparse matrices is shown in Figure 4 and is as follows:

• A Gaussian Bayes net is the result of variable elimination on a Gaussian
factor graph. Each node in the Bayes net represents a row of the sparse
upper-triangular matrix R and the entry in the r.h.s. vector d with the
same index as that row.

• Probabilistically, a Bayes net node, just as a row of the augmented matrix
[R d], represents the conditional Gaussian

p (x
j

|�
j

) Ã exp

Q

a≠1
2

...R

j,j

x

j

+
1 ÿ

kœfij

R

j,k

x

k

2
≠ d

j

...
2
R

b
, (22)

where j is the variable index (i.e. row index), R·,· is an entry of the matrix
R, and d

j

is the corresponding r.h.s. entry (see illustration in Figure 4b).
�

j

is the set of immediate ancestor variables of x

j

in the Bayes net, and
fi

j

are the variable indices of these ancestors, equivalently the variable
indices (i.e. column indices) with non-zero entries in row j of R.

iSAM2 proceeds to e�ciently update the Bayes net with new variables and fac-
tors by leveraging the calculation dependencies represented by the Bayes net

16

structure to identify the set of variables that need to be recalculated or relin-
earized and then performing the elimination. We will often refer to this oper-
ation as re-elimination. A simplified version of the algorithm to determine the
set of variables to be recalculated is listed in Algorithm 1. A formal exposition
of the iSAM2 algorithm is given by Kaess et al. [27].

Algorithm 1 Identification of variables x

affected

to be recalculated in the Bayes
net

1: Input: Bayes net, new factors, new variables
2: Initialization: x

affected

= ÿ
3: Locate all the variable nodes that are involved in the new factors or whose

linear step ”x is larger than a predetermined threshold.
4: for each such node v do
5: Add v to x

affected

6: Locate all paths in the Bayes net that lead from the node eliminated last
in the elimination ordering (the root) to the node v

7: for each such path do
8: if a node v

Õ is on the path and v

Õ
/œ x

affected

then
9: Add v

Õ to x

affected

10: end if
11: end for
12: end for

Example As a basic example, consider a factor graph that represents the LBA
pdf with 3 and 4 camera poses, as shown in Figure 5. The former case (Figure 5a)
includes only two-view factors, while in the latter case, there is also a three-
view factor that relates between the forth, third and second camera poses. The
corresponding Bayes net to the factor graph from Figure 5a, assuming variable
ordering {x1, x2, x3}, is illustrated in Figure 6a. This Bayes net represents3 the
factorization

p

LBA

(X3|Z3) = p

LBA

(x3|Z3) p

LBA

(x2|x3, Z3) p

LBA

(x1|x2, Z3) . (23)

Updating this factorization with a new camera pose (x4) and two new factors,
shown in red in Figure 5b, requires recalculating only some of the variables
in the Bayes net. These variables, denoted by red color in Figure 6b, can be
identified by Algorithm 1. One can observe the resulting Bayes net represents
the factorization

p

LBA

(X4|Z4) = p

LBA

(x4|Z4) p

LBA

(x3|x4, Z4) p

LBA

(x2|x3, x4, Z4) p

LBA

(x1|x2, Z4)
(24)

where the term p

LBA

(x1|x2, Z4) is exactly the same as in the previous step (i.e.
p

LBA

(x1|x2, Z4) © p

LBA

(x1|x2, Z3)) and can therefore be re-used.
We proceed by addressing additional aspects in the iLBA framework.

3Explicit conditioning on the measurements is omitted from Figure 6.

17

x1 x2 x3

(a)

x1 x2 x3 x4

(b)

Figure 5: Example factor graph representation of (a) p

LBA

(X3|Z3) and (b)
p

LBA

(X4|Z4). Red color denotes a new camera pose and factors added at time
t4.

x1 x2 x3

pLBA(x3)pLBA(x2|x3)pLBA(x1|x2)

(a)

x1 x2 x3 x4

pLBA(x1|x2) pLBA(x2|x3, x4) pLBA(x3|x4) pLBA(x4)

(b)

Figure 6: Incremental Bayes net update. (a) Corresponding Bayes net to the
Factor graph from Figure 5a; (b) Corresponding Bayes net to the Factor graph
from Figure 5b. Red color denotes re-calculated nodes, without taking re-
linearization into account. In practice, typically only a small part of the Bayes
net is re-calculated.

5.2 Incremental Initialization of New Cameras
Consider all camera poses up to time t

k

have been already optimized, and a new
image is obtained at time t

k+1. The optimization requires an initial value for
the new camera pose x

k+1, and new two- and three-view factors between that
pose and earlier camera poses.

Calculating an initial pose of x

k+1 given some previously-processed two over-
lapping images involves two steps: we first calculate the relative motion between
the new image and one of these previous images. This can be done by using
the two-view constraints, or by calculating an essential matrix and extracting
the motion parameters from it [15]. Since the translation is known only up to
a scale, we optimize the translation magnitude using the three-view constraint
(12) on camera triplets while keeping the rest of the motion parameters fixed.

5.3 Incrementally Selecting LBA Multiview Constraints
Camera Sets

Next, new two- and three-view factors are created. For each new image observa-
tion z

j

k+1 œ Z

k+1 of some landmark j, we locate two earlier camera poses l and

18

m that observe the same landmark (i.e. z

j

l

œ Z

l

and z

j

m

œ Z

m

) and formulate
the appropriate two- and three-view factors f2v

(x
k+1, x

l

) and f3v

(x
k+1, x

l

, x

m

),
as explained in Section 4.2. As opposed to BA, where a projection factor would
be added between two specific variable nodes (new camera pose x

k+1 and land-
mark node l

j

), in LBA the past cameras l and m are not uniquely determined.
Indeed, if the set Dj

k

represents all the camera poses up to time t

k

that observe
the landmark l

j

Dj

k

.=
Ó

x

i

|zj

i

œ Z

i

Ô
, (25)

then any two camera poses in Dj

k

can be used to formulate the two factors
above4.

The choice of the past views l and m a�ects the graph topology and hence
the computational complexity. It also a�ects accuracy which depends on the
geometry between the camera poses, as well as on the number and distribution
of image matches. While a rigorous analysis of how to optimally set the past
views is left for future research, we have tried several di�erent methodologies and
use the following heuristic in this paper: we set m to be the earliest view in Dj

k

,
while l is chosen such that the relative translation vectors t

k+1æl

and t

læm

have
similar magnitudes. Specifically, in our current implementation, we initialize l

to m + Â(k ≠ m) /2Ê and gradually modify it while comparing between |t
k+1æl

|
and |t

læm

|. Typically, very few attempts are required until an appropriate view
l is found. However, if no such view l exists in Dj

k

, then the image observation
z

j

k+1 is skipped and no factors are created.

After creating new factors for all image observations Z

k+1 in the current
image, incremental inference is performed to calculate the MAP estimate (19),
as explained in Section 5.1.

6 Computational Complexity Analysis
In this section we investigate the computational complexity of incremental LBA
and compare it to incremental BA and incremental SLB in synthetic and real-
imagery datasets.

Computational complexity depends both on the cost for solving the lin-
earized system A� = b, and on the number of performed iterations, in which
appropriate variables are re-linearized. The LBA and BA Jacobians di�er in
size and in the number of non-zero elements, with LBA Jacobian having up to
twice the number of factors but many fewer variables, since landmark variables
are algebraically eliminated beforehand.

Computational complexity of incremental LBA depends on di�erent aspects:
graph topology, variable ordering, number of a�ected variables and the factors

4Moreover, the two- and three-view factors do not necessarily have to share the past
view l, and can be defined instead using di�erent past views l, l

Õ
, m, i.e. f2v (xk+1, xl) and

f3v (xk+1, xlÕ , xm).

19

that involve these variables, number of iterations, and linearization thresholds
of each variable type.

While computational complexity strongly depends on variable ordering, cal-
culating an optimal ordering is NP hard. Thus an ordering is typically deter-
mined using approximate heuristics such as COLAMD [5], and the resulting
complexity is therefore di�cult to predict. Moreover, variables’ re-linearization
depends on thresholds being used for each variable type and analyzing how many
variables are going to be re-linearized ahead of time is not trivial. For these rea-
sons, in this section we analyze computational complexity of incremental LBA,
compared to incremental BA, in an empirical study over a typical synthetic
scenario, while assuming the ordering is calculated by constrained COLAMD
in both cases. Additionally, we compare timing performance of incremental
LBA, BA and another structureless BA method (SLB, see Section 3.2) in two
real-imagery datasets.

Unless specified otherwise, all the methods in this study and in the remaining
part of the paper are optimized incrementally using iSAM2; we therefore omit
occasionally the explicit notation for incremental optimization (e.g., LBA refers
to incremental LBA).

Before presenting this study, it is useful to point out the relation between the
exact distribution over camera poses p (X|Z) and LBA distribution p

LBA

(X|Z),
in the context of computational complexity. The exact distribution can be ob-
tained by marginalizing out all the landmark variables, as in Eq. (26), thereby
assuming variable elimination ordering in which these variables are eliminated
first, followed by the camera pose variables. Such an ordering has been com-
monly used in SfM related problems in computer vision (e.g. partitioned sparse
LM optimization [15, 49]). Considering this specific ordering, LBA is guaran-
teed to have less fill-in since some of the inter-camera links are dropped (as
explained in Section 7.1), and therefore both elimination and back-substitution
steps will be faster.

In the next section, we consider the e�ect of the following aspects on com-
putational complexity of both LBA and BA: number of image observations per
frame, di�erent feature track lengths, and dense sequential loop closures.

6.1 Complexity Study using Synthetic Datasets
We study di�erent aspects in computational complexity of incremental LBA
using two datasets, shown in Figure 7, in which the camera points downwards
and observes 3D points while exploring di�erent regions and occasionally re-
visiting previously-observed areas. The first dataset consists of 450 views and
15000 3D points; the second dataset consists of 350 views and 16500 3D points.
While in these two datasets the camera points downwards, we consider also the
other common scenario of a forward looking camera and present experiment
results for two di�erent scenarios in Section 7.4.

Each new camera pose is initialized based on the optimized pose of the pre-
vious camera and the relative pose obtained from an estimated essential matrix.

20

A perfect and known data association is assumed. Relative translation scale is
determined using three-view geometry, as explained in Section 5.2. Landmarks,
in case of BA, were initialized using triangulation after two observations have
been made. The reason for using only two observations to initialize landmarks is
to ensure BA and LBA use the same available information at each time instant.

An important aspect that has a major e�ect on processing time is how to
choose linearization thresholds for each variable type (cf. Section 5.1). These
thresholds were chosen such that nearly identical accuracy5 is obtained com-
pared to incremental batch optimization, for each of the examined methods.

All results reported in this paper were obtained on a 2.2 GHz Core i7 lap-
top using a single-threaded implementation. iLBA and other methods used for
comparison were implemented using the GTSAM factor graph optimization li-
brary6 [6, 27]. C++ code of iLBA is publicly available on the website of the
first author.

Number of image observations per frame One reason that LBA is often
faster than standard BA is that upon adding a new camera to the standard
BA system, each observed landmark variable must be re-eliminated. Thus,
a lower bound on the number of variables to be re-eliminated in BA is the
number of image observations ÷ in the current image. This bound is not tight –
the actual number of re-eliminated variables is always higher: at least some
of the currently-observed ÷ landmarks will be ordered further away from the
last-eliminated variable (which is typically the previous camera pose if using,
e.g. constrained COLAMD [5]), and all variables on the path from this last-
eliminated variable to each of the observed landmarks will also be re-eliminated7.

In contrast, the number of a�ected variables in LBA is not a function of ÷.
Instead, this number depends on the variable ordering and on the method used
for choosing past camera poses when adding new two- and three-view factors to
the graph (cf. Section 5.2).

When adding new observations in iSAM2, in addition to re-eliminating the
observed variables, the Bayes net ancestors of the observed variables must
also be re-eliminated (see Algorithm 1). Therefore, the overall number of re-
eliminated variables depends on the original elimination ordering. We can get
further insight by examining a basic scenario without loop closures where the
Bayes net structure is predictable. We consider the LBA factor creation heuris-
tic used in this paper, according to which, given a new landmark observation,
one of the past cameras involved in the generated three-view factor is chosen to
be the earliest camera observing that landmark. If a sequential variable order-
ing is used, the number of re-eliminated variables is upper-bounded by k ≠ ’,

5The thresholds were set to the loosest values that result in maximum di�erence of 0.05
degrees in rotation and 0.5 meters in position and landmarks in the entire dataset, when
comparing with batch optimization.

6https://borg.cc.gatech.edu/download.
7As mentioned in Section 5.1, the total number of variables re-eliminated also depends on

linearization thresholds and on the number of required iterations until convergence.

21

−500

0

500

−500

0

500

1000

0
50

100

X [m]
Y [m]

Z
 [
m

]

(a)

−500

0

500

−500

0

500

0
50

100

X [m]Y [m]

Z
 [
m

]

(b)

Figure 7: Synthetic scenarios considered in Sections 6 and 7.3: Exploration with
(a) occasional loop closures and (b) dense loop closures. Camera points down-
wards, and is shown in red, observed 3D points are shown in black. Beginning
of scenario is denoted by a (blue) mark. Best viewed in color.

22

where k is the index of the new camera pose and ’ is the index of the earliest
camera observing any of the ÷ landmarks. If no loop-closures are present, i.e. all
the ÷ landmarks are consecutively observed, then k ≠ ’ is the maximum feature
track length. Note that this bound is not a function of the number of image
observations per frame ÷. As will be seen next, although the actual variable
ordering is not necessarily sequential, the number of variables re-eliminated in
LBA, without taking into account re-linearization and loop closures, remains
more or less the same for any value of ÷.

In more realistic and complex scenarios, the number of re-eliminated vari-
ables due to the LBA factor creation heuristic and the elimination order is best
studied empirically. The e�ect of di�erent number of image observations per
frame on computational complexity both in LBA and BA is examined in Figure 8
for the above-mentioned synthetic scenario. Constrained COLAMD, standard
in iSAM2, was used in both methods for calculating the variable ordering. As
seen in Figure 8c, increasing ÷ results in an increase on the lower-bound on
variables re-eliminated in BA. Here, lower-bounds refer to the number of vari-
ables to be re-eliminated in a single iteration, as determined by graph topology
and variable ordering and without considering re-linearization8. The number of
variables re-eliminated in LBA, on the other hand, remains roughly the same
as long as no loop closures occur and is very small (about 10 variables), re-
gardless of the number of image observations per frame. The actual number
of re-eliminated variables, taking into account all the performed iterations and
also re-linearization of variables, is shown in Figure 8d.

During loop closures, the number of variables re-eliminated increases both
in BA and LBA. One can clearly observe the spikes of variables re-eliminated in
BA, while in LBA, processing loop closures involves re-eliminating many past
camera variables, sometimes requiring re-eliminating all the variables. See lower
bounds for these numbers in Figure 8e for ÷ = 200. While these numbers are
much smaller than in BA, this is an undesired behavior which results from the
heuristic currently used for choosing what past camera poses to use when adding
new factors (see Section 5.3). Investigating methodologies to address this issue
is left for future research.

The number of factors that involve the re-eliminated variables, which is
determined by graph topology, is another component that significantly a�ects
computational complexity. Figure 8f shows the minimum number of factors
(lower bounds) for ÷ = 200, for LBA and BA. While away from loop closures,
the number of involved factors is similar in both methods. However, since the
number of re-eliminated variables is larger in BA, computational cost in LBA is
much lower. The number of involved factors in LBA drastically increase during
loop closures, which corresponds to the increase in re-eliminated variables as
discussed above.

Figures 8a and 8b summarize processing time and number of variables re-
eliminated for di�erent values of ÷. As seen, lower bounds and the actual number

8Calculation of lower-bounds is performed using ideal measurements and perfect variable
initialization so that indeed no re-linearization will be required and the number of variables
to be re-eliminated is determined only by graph topology and variable ordering.

23

of variables re-eliminated are significantly smaller in LBA (Figure 8b).
An average processing time per frame, taking into account also re-linearization

and including loop closures, is shown in Figure 8a. One can observe from this
figure that LBA processing time is smaller by a factor of 2-3 in all cases. This
speedup factor, i.e. the ratio between the shown two curves, increases with ÷,
implying that LBA becomes more attractive (in terms of processing time) than
BA as more image observations per frame are considered. For example, for
÷ = 400, the speedup factor is around 2.5. As we show in the sequel (Section
7.3.2), higher values of ÷, i.e. using more image observations per frame, leads to
better estimation accuracy.

We conclude by noting that in experiments we have observed LBA to be 8-10
times faster than BA (Section 7.4) due to higher values of ÷ being used (on the
order of 1000), as determined by extracting and matching SIFT [33] features.

Di�erent feature track lengths In this section the e�ect of di�erent feature
track lengths on computational complexity of LBA and BA is investigated.
Using the same dataset (Figure 7a), the typical feature track length was altered
by changing the baseline between cameras: Gradually decreasing the baseline
increases the typical feature track length. The same area is observed in all cases,
resulting in more camera frames for longer feature track values. A fixed number
of 200 image observations per frame is used.

Longer feature track length leads to more variables re-eliminated both in
LBA and BA. In LBA, this e�ect is barely noticeable as long there are no loop
closures: factors involve more distant pose nodes as typical feature track length
increases. Typically, adding a new multi-view factor requires re-elimination of
these pose variables. In contrast, we have observed that in BA the number of
variables re-eliminated substantially increases with feature track length: De-
pending on the variable ordering, observation of a previously seen landmark
involves more past cameras, and in case of BA also additional landmarks that
are observed from these cameras.

This can be seen in Figure 9b, which shows the lower bound on number
of variables re-eliminated (as determined by graph topology and the calculated
ordering) for feature track lengths of 5, 15 and 30 camera frames. In practice, the
actual number of variables re-eliminated is higher, as explained in the previous
section.

Actual average processing time per frame is shown in Figure 9a. One can
observe that LBA remains faster than BA also when feature track length in-
creases. The two methods share the same trend of increasing computational
time for longer feature track lengths, as these densify the graph, that contains
larger cliques, and lead to more camera poses involved in each loop closure.

Dense sequential loop closures The e�ect of sequential dense loop closures
on computational complexity is examined. The considered dataset, shown in
Figure 7b, contains segments in which consecutive views introduce loop closure
observations, i.e. the camera continuously re-visits previously observed areas.

24

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

image observations per frame

A
ve

.
p
ro

ce
ss

in
g
 t
im

e
 [
se

c]

LBA

BA

(a)

100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
ve

.
#
 V

a
ri
a
b
le

s
R

e
−

E
lim

image observations per frame

LBA Actual

BA Actual

LBA Lower Bound

BA Lower Bound

(b)

View Number
0 50 100 150 200 250 300 350 400 450

#
 V

a
ri
a
b

le
s
 R

e
-e

li
m

in
a
te

d

10
0

10
1

10
2

10
3

10
4

100 LBA
300 LBA
500 LBA
100 BA
300 BA
500 BA

(c)

View Number
0 50 100 150 200 250 300 350 400 450

#
 V

a
ri
a
b

le
s
 R

e
-e

li
m

in
a
te

d

10
0

10
1

10
2

10
3

10
4

10
5

100 LBA
300 LBA
500 LBA
100 BA
300 BA
500 BA

(d)

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

450

500

View Number

#
 V

a
ri
a
b
le

s
 R

e
−

e
li
m

in
a
te

d

200 LBA

200 BA

Total LBA

(e)

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8

9

10
x 10

4

View Number

#
 F

a
c
to

rs
 R

e
−

c
a
lc

u
la

te
d

200 LBA

200 BA

Total LBA

(f)

Figure 8: E�ect of changing number of image observations per frame on com-
putational complexity. Processing time of LBA is less than BA, and is less
sensitive to the number of image observations per frame being used: (a) Aver-
age processing time per image. (b) Average number of re-eliminated variables
per image. (c)-(d) Lower bounds and actual number of variables re-eliminated,
per camera frame for ÷ œ {100, 300, 500}. Loop closures are seen as spikes in
the BA method. (e)-(f) Lower bounds for number of re-eliminated variables and
the involved factors for ÷ = 200 image observations per frame. Total number
of variables and factors in LBA are also shown. Note scale in figures (c)-(d) is
logarithmic. 25

5 15 30
0

0.5

1

1.5

2

2.5

3

3.5

Maximum feature track length

A
ve

.
p
ro

ce
ss

in
g
 t
im

e
 [
se

c]

LBA

BA

(a)

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700

800

View Number

#
 V

a
ri
a
b
le

s
 R

e
−

e
li
m

in
a
te

d

5 LBA 15 LBA 30 LBA 5 BA 15 BA 30 BA

(b)

Figure 9: E�ect of di�erent feature track lengths (5, 15 and 30) on computa-
tional complexity aspects. Number of image observations per frame is ÷ = 200
in all cases. (a) Average processing time per image. (b) Lower bounds on
number of re-eliminated variables, determined by graph topology and variable
ordering (corresponds to a single optimization iteration, without accounting for
re-linearization). Loop closures can be clearly seen as spikes in the BA method
(spikes go well beyond the shown y axis).

This mimics common SfM problems where many cameras view the same building
or scene.

Lower bounds on the number of variables re-eliminated are shown in Fig-
ure 10a. Using the current heuristic for choosing past cameras when adding
new factors, and calculating ordering based on constrained COLAMD, sequen-
tial loop closures involve re-eliminating many past cameras in LBA. Observe
that in some cases all the camera poses are re-eliminated, as was already seen
in the previous dataset. One can see the trend in the figure, according to which
adding more cameras and loop closures will eventually result in BA having
smaller lower bounds on number of variables re-eliminated than LBA.

However, the identified lower bounds are loose; the actual number of vari-
ables re-eliminated in LBA, taking into account a�ected variables due to re-
linearization and the required iterations until convergence, is still much more
attractive in most cases, as shown in Figure 10b. The corresponding average
processing time per frame and total processing time is 0.59 and 210 seconds in
LBA, compared to 0.75 and 268.5 seconds in BA.

Is there a better method for choosing past cameras in LBA? Is constrained
COLAMD well-suited for LBA? These aspects are expected to impact both accu-
racy and computational complexity of LBA, and are left for future research. Fur-
ther computational gain can be obtained by calculating a reduced measurement
matrix [15] from the applied multi-view constraints, as was already presented
in [41] for two-view constraints and can be extended to three-view constraints
as well. Such an approach could remove the dependency of involved matrices

26

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

View Number

#
 V

a
ri
a
b
le

s
 R

e
−

e
li
m

in
a
te

d

LBA

BA

(a)

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

View Number

#
 V

a
ri
a
b
le

s
 R

e
−

e
li
m

in
a
te

d

LBA

BA

(b)

Figure 10: Number of variables re-eliminated in presence of sequential dense
loop closures. Number of image observations per frame is ÷ = 200 in all cases.
(a) Lower bounds; (b) Actual. Note the di�erent scale in y axis in both graphs.

Dataset Cameras Landmarks Observations
Cubicle 148 31910 164358
Outdoor 308 74070 316696

Table 1: Dataset details.

in the underlying optimization on the number of feature correspondences (or
multi-view constraints), resulting in significantly reduced memory footprint.

6.2 Complexity Study using Real-Imagery Datasets
In this section we show computational complexity results of incremental LBA
and compare it to other methods using real indoor and outdoor datasets that
were collected in our lab. In the first dataset (Cubicle) the camera observes a cu-
bicle desk in an open space environment from di�erent viewpoints and distances.
In the second dataset, Outdoor, the camera follows a trajectory encircling a
courtyard and building and performing loop closures as shown in Figure 11.
Figure 12 shows typical images from these datasets. Table 1 provides further
details regarding the number of views and 3D points, as well as the number of
total observations in the two datasets. Figure 1 visualizes the LBA-opitmized
camera poses and the reconstructed 3D points based on these camera poses for
both datasets.

Image correspondences, as well as the calibration matrices, were obtained
by first running Bundler9 [45] on each dataset. Incremental initializations of

9http://phototour.cs.washington.edu/bundler.

27

0 50 100 150

−140

−120

−100

−80

−60

−40

x position, m

y
p
o
si

tio
n
,
m

Bundle adjustment

LBA

(a)

View number
0 50 100 150 200 250 300

P
o

si
tio

n
 d

iff
e

re
n

ce
 n

o
rm

 [
m

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 11: (a) Estimated trajectory in Outdoor dataset. (b) Norm of position
di�erence between LBA and BA. Both figures demonstrate LBA and standard
BA produce very similar results.

28

(a) (b)

Figure 12: Typical images in the Cubicle (a) and Outdoor (b) datasets.

camera poses were calculated by estimating essential matrices between pairs
of images, as described in Section 5.2. Degenerate and ill-conditioned camera
configurations were identified by having either an under-determined or invalid
essential matrix. Initial values for landmarks, required for a standard BA, were
computed using triangulation. The bundler solution was not used to initialize
any camera poses or landmarks. To eliminate gauge freedoms, the first camera
was fixed to the origin and the overall reconstruction scale was determined by
constraining the range between the first and second camera to a constant.

We compare the processing time of LBA with BA, as well as with the other
structureless BA method: SLB. This method uses the formulation (8) with
three-view constraints (10)-(12), which is similar to the cost function used in
[47]. Recalling that in LBA, the covariances �

i

are calculated once and kept
fixed (cf. Section 4), we also present a comparison to the case in which these
covariances are re-calculated each time a linearization occurs. This variation is
denoted by LBA�. Incremental smoothing is used in all methods.

The computational complexity in the two real-imagery datasets is shown in
Figure 13 and summarized in Table 3. The total time required for all steps
of incremental optimization for processing the entire dataset is reported; cam-
eras are added one-by-one to the system for each method, and incrementally
optimized using iSAM2 after adding each camera pose.

The results indicate that LBA exhibits much lower computation time than
standard BA, approximately by a factor of 10. LBA computation time is sim-
ilarly lower than SLB (between a factor of 4 and 10). LBA is roughly twice as
fast as LBA�.

The above observation lines up with the results of the synthetic study (see
Section 6), where it was shown that the complexity of LBA increases less dra-
matically compared to BA when increasing the number of image observations
per frame. As seen from Table 1, the average number of observations per frame
in the two datasets is on the order of 1000, compared to up to 500 in the syn-
thetic study. These high values of ÷ were obtained by extracting and matching
SIFT [33] features by Bundler, as mentioned above.

29

0 2000 4000 6000 8000
Time, s

Incremental solving total time

BA

SLB

LBAΣ

LBA

(a) Cubicle

0 2 4 6

x 10
4Time, s

Incremental solving total time

BA

SLB

LBAΣ

LBA

(b) Outdoor

Figure 13: Comparison of computation time between algorithms for two real-
imagery datasets. Times are total for all steps of incremental optimization. Full
details are summarized in Table 3.

7 Accuracy of Solution and Uncertainty
Estimate

As demonstrated in the previous section, the computational complexity of in-
cremental LBA is significantly reduced compared to other methods. However,
this gain in performance comes at the cost of certain compromise in accuracy.
In this section we analyze the causes for this compromise in accuracy (Section
7.1), and demonstrate, using the same synthetic and real-imagery datasets from
Section 6, that this compromise is minor and high-accuracy results and reliable
uncertainty estimates are typically obtained (Sections 7.3-7.5). In particular,
we analyze the accuracy of incremental LBA, consider its sensitivity to di�er-
ent aspects and provide a comparison to BA, SLB and LBA� (all methods use
incremental smoothing).

7.1 Theoretical Probabilistic Analysis
This section analyzes how well the LBA distribution p

LBA

(X|Z) represents the
true density p (X|Z). An exact calculation of the latter would marginalize the
landmarks from the joint p (X, L|Z)

p (X|Z) =
ˆ

L

p (X, L|Z) dL. (26)

While in practice LBA represents a similar probability density over camera poses
as BA, there are two root e�ects that cause the LBA distribution to be an ap-
proximation of the true density: First, LBA discards some mutual information
in large camera cliques, by considering only the mutual information between
camera pairs and triplets introduced by them observing the same landmark.
Bundle adjustment, on the other hand, induces mutual information between

30

all cameras observing the same landmark. Second, LBA duplicates some in-
formation for image measurements used in multiple factors, double-counting
measurements that appear in multiple two- or three-view factors.

As an example of both of these e�ects, consider observing a landmark l by
four views x1, x2, x3 and x4, as illustrated in Figure 3. The joint pdf is given by

p (X4, l|Z4) Ã
4Ÿ

i=1
f

proj

(x
i

, l) , (27)

where X4 and Z4 denote the four camera poses and the four image observations,
respectively. On the other hand, the LBA pdf is

p

LBA

(X4|Z4) Ã f2v

(x1, x2) f2v

(x2, x3) f3v

(x1, x2, x3)
f2v

(x3, x4) f3v

(x2, x3, x4) (28)

which corresponds to the set of two- and three-view factors (see Figure 3b).
The first e�ect, discarding of mutual information, can be seen when com-

paring the LBA pdf with the pdf resulting from eliminating the landmarks from
the BA pdf,

p (X4|Z4) =
ˆ

X4

p (X, L|Z) dX4

= p (x1, x2, x3, x4|z1, z2, z3, z4) (29)

The result in the case of BA is a single clique over all camera poses (cf. Fig-
ure 3c). In general, there is no way to exactly factor such a dense clique in
a way that reduces complexity. The multiple factors of LBA over pairs and
triplets (Eq. (28)) reduce complexity instead by discarding some “links” that
would otherwise be introduced between cameras.

The second e�ect, duplication of some image measurement information, can
be seen in the sharing of cameras between LBA factors in Eq. (28). Any two
factors sharing a camera in common both use the information from the shared
camera, e�ectively duplicating it. For example, f2v

(x1, x2) and f2v

(x2, x3) both
use the information from the measurements in camera 2.

This duplication of information happens since the two- and three-view fac-
tors were assumed to have independent noise models, represented by the covari-
ance matrix �

i

for the ith factor, and therefore could be separately written in the
LBA pdf (9). This assumption is violated for factors that share measurements,
as in the example above. One approach to avoid double counting is therefore to
augment such factors, while accounting for the fact that the same measurement
is involved by appropriate cross-covariance terms in the (augmented) covari-
ance matrix. For example, for any two factors representing constraints g

a

and
g

b

, we can define f

aug

.= exp
1

≠ 1
2 Îg

aug

Î2
�aug

2
, with g

aug

.=
#

g

a

g

b

$
T and

the augmented covariance matrix �
aug

:

�
aug

.=
5

�
a

�
ab

�
ba

�
b

6
(30)

31

where the cross-covariance terms �
ab

are non-zero when the constraints share
measurements. However, since multiple factors are combined into a single multi-
dimensional factor that involves all the variables in these individual factors, the
factor graph becomes denser. Therefore, such an approach is expected to have
considerable impact on computational complexity.

As we show in the sequel, despite the above two aspects, the actual LBA dis-
tribution is very similar to the true distribution p (X|Z). In future research, we
plan to investigate how duplicating information can be avoided while maintain-
ing attractive computational complexity using conservative information fusion
techniques. In particular, we envision using covariance intersection [26] to avoid
double counting, which would correspond to appropriately modifying the co-
variance of involved poses while still treating multi-view factors of the same
3D points separately, e.g. without the need to account for �

ab

in Eq. (30). It
is worth mentioning that the presented probabilistic analysis is valid for other
existing structureless BA methods [47, 41, 18] as well.

7.2 Quantitative Evaluation of Probabilistic Accuracy
While p (X|Z) can be calculated from the BA pdf p (X, L|Z) (see Eq. (26)),
this calculation is not tractable in closed form and we therefore use an alternate
method to compare the pdfs of LBA and BA. This method evaluates how well
LBA and BA agree in both the absolute uncertainty of each camera pose in a
global frame, and the relative uncertainty between all pairs of cameras.

In order to compare uncertainties, we first assume that both p

LBA

(X|Z)
and p(X|Z) are well-approximated as multivariate Gaussian distributions about
their MAP estimates

p

LBA

(X|Z) = N (µ
LBA

, �
LBA

) , p (X|Z) = N (µ, �) . (31)

In the following sections, we first discuss accuracy in MAP estimates of LBA
(µ

LBA

), and compare it to MAP estimates of BA (µ), and also to SLB and
LBA� methods. Results both for synthetic and real-imagery datasets are pro-
vided (Sections 7.3 and 7.4, respectively). Using synthetic datasets we also
study accuracy sensitivity to di�erent aspects. Finally, in Section 7.5 we exam-
ine uncertainty estimation by comparing the estimated covariance matrices in
LBA (�

LBA

) and BA (�).

7.3 Experiments with Synthetic Datasets
We study the sensitivity of accuracy of both iLBA and incremental BA to the
following aspects: di�erent image noise levels, di�erent number of image obser-
vations per frame, and dense loop closure observations. These e�ect of these
aspects on computational complexity was already analyzed in Section 6.2.

32

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20
E

rr
o
r

[m
]

Intermediate Errors

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

E
rr

o
r

[m
]

Final Errors

View number

σ = 0.5 LBA

σ = 1 LBA

σ = 1.5 LBA

σ = 0.5 BA

σ = 1 BA

σ = 1.5 BA

(a) Position

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

E
rr

o
r

[d
e

g
]

Intermediate Errors

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

E
rr

o
r

[d
e

g
]

Final Errors

View number

(b) Rotation

Figure 14: Accuracy performance for di�erent levels of image noise (‡ œ
{0.5, 1.0, 1.5} pixels). Position (a) and rotation (b) intermediate and final av-
erage estimation errors, per camera frame. Shown errors are averaged for 20
runs for each noise level; 200 image observations per frame are used in all cases.
While LBA exhibits higher sensitivity to image noise, its processing time is typ-
ically smaller, by a factor of 3 in this dataset, compared to BA (see Table 2).
Figure best viewed in color.

7.3.1 Sensitivity to Image Noise

Position and rotation estimation errors, calculated with respect to ground truth,
are shown in Figure 14 for di�erent levels of image noise for the first dataset
(Figure 7a). Both intermediate and final estimation errors are shown. Inter-
mediate estimation errors are calculated for each time instant t

k

based on all
the available measurements Z

k

by that time, while final estimation errors are
calculated after the entire dataset has been processed, based on all the mea-
surements of the dataset. The shown values are averages over 20 runs that were
performed for each noise level, for each method. 200 image observations per
frame are used in all cases.

Figure 15 summarizes the intermediate accuracy results and also presents
landmark and re-projection final errors. Table 2 presents the further details of
average processing time per frame, total processing time for the entire dataset,
and a comparison with SLB and LBA� methods.

Referring to Figure 14, intermediate estimation errors develop as more im-
ages are processed and until loop closure observations are made, which signifi-
cantly reduce the errors. In contrast, final estimation errors are smoothed, with
the maximum error typically located far away from loop closure frames.

For a given image noise level, estimation errors in LBA develop faster than
in BA, as long as no loop closures occur. This is expected since the LBA
formulation discards some of the available information (cf. Section 7.1). LBA
errors are significantly reduced by loop closure observations, usually approaching
BA error levels. For image noise ‡ = 0.5, LBA intermediate position and

33

0.5 1 1.5
0

5

10
M

e
a

n
 [
m

]

Position est. error

0.5 1 1.5
0

2

4

6

Image Noise σ [pix]

S
ta

n
d

a
rd

 D
e
vi

a
tio

n
 [
m

]

0.5 1 1.5
0

0.5

1

M
e
a

n
 [
d

e
g
]

Rotation est. error

0.5 1 1.5
0

0.1

0.2

0.3

0.4

Image Noise σ [pix]

S
ta

n
d
a

rd
 D

e
vi

a
tio

n

[d

e
g

]

LBA Intermediate

LBA Final

BA Intermediate

BA Final

(a)

0.5 1 1.5
0

2

4

6

8

M
e
a
n
 [
m

]

Landmark est. error

0.5 1 1.5
0

2

4

6

Image Noise σ [pix]

S
ta

n
d
a
rd

 D
e
vi

a
tio

n
 [
m

]

LBA

BA

0.5 1 1.5
0.5

1

1.5

2

M
e
a
n
 [
p
ix

]

Re−Projection errors

0.5 1 1.5
0.2

0.4

0.6

0.8

1

Image Noise σ [pix]

S
ta

n
d
a
rd

 D
e
vi

a
tio

n
 [
p
ix

]

(b)

Figure 15: Accuracy performance for di�erent levels of image noise, calculated
for 20 runs of each of the methods. Mean and standard estimation errors are
shown, respectively, in the first and second rows. (a) position and rotation
intermediate and final estimation errors; (b) Final landmark and re-projection
errors.

rotation errors are below 7 meters and 0.5 degrees for all camera poses, and are
further reduced in the final solution to values below 3 meters and 0.2 degrees.
Normalizing by the total distance traveled (10km), the level of intermediate
errors correspond to 0.07% in position and 5e

≠5 deg/m in rotation.
Processing time is reported in Table 2 for a typical run with image noise

‡ = 0.5. One can observe that LBA is about 3 times faster than BA, and is
by far faster than SLB and LBA�. The fact that SLB is considerably more
computationally expensive is not surprising since it has many more variables to
optimize over.

Increasing image noise levels deteriorates accuracy both in BA and LBA:
LBA is much more sensitive, since image observations are not corrected, as op-
posed to SLB method. Therefore, accurate feature correspondences are essential
for obtaining good accuracy in LBA. Note that nearly identical re-projection
errors are obtained in LBA and BA, for each image noise level (Figure 15b).
However, while LBA exhibits higher sensitivity to image noise, its processing
time is significantly smaller compared to BA for a given choice of ÷ (number of
image observations per frame), see Figures 8 and 13.

Referring to other structureless BA methods, one can observe that SLB
yields slightly improved accuracy results, however at a much higher processing
time. A very similar accuracy is obtained for LBA and LBA�, at a considerably
higher processing time of the latter.

34

Processing BA SLB LBA LBA�time [sec]
per µ 1.56 4.07 0.53 1.40

frame std 1.70 2.81 0.43 0.85
Total 779.8 2029 267.2 706.5

image noise Ave. position accuracy [m]
0.5 1.58 1.71 2.75 2.54
1.0 3.57 3.05 6.16 6.17
1.5 7.05 5.02 9.29 9.29

Table 2: Processing time in an exploration scenario with occasional loop closures
(Figure 7a) with image noise ‡ = 0.5 pixels and 200 image observations per
frame. All methods use incremental smoothing. Processing time is presented
per frame (average and standard deviation), and for incrementally processing
the entire dataset. Bottom part of the table shows average intermediate position
estimation errors for di�erent levels of image noise, comparing between LBA,
LBA�, BA and SLB methods.

7.3.2 Di�erent Numbers of Image Observations per Frame

The e�ect of di�erent number of image observations per frame ÷ on accuracy
is shown in Figure 16, comparing between LBA and BA. As in the previous
section, 20 runs were performed for each ÷. These runs are summarized in
Figure 16 in terms of mean and standard deviation (taken over these runs and
over the camera poses in the dataset).

As seen, incorporating more image observations improves the estimation
accuracy in both cases, however, as discussed in Section 6 and shown in Figure 8,
computational complexity tends to scale more gracefully in LBA and processing
time is typically at least 2-3 times faster.

7.3.3 Dense Sequential Loop Closures

Accuracy results for the dense loop closure scenario (Figure 7b) are summarized
in Figure 17. Di�erent image noise levels are considered, as in Section 7.3.1. As
expected, overall accuracy is improved due to frequent loop closures (compared
to results of the previous dataset, Figure 15), with LBA remaining more sensitive
to image noise than BA.

7.4 Experiments with Real-Imagery Datasets
In this section we compare the accuracy of LBA, BA, SLB and LBA�, all
using incremental smoothing, in the two real-imagery datasets (see Figure 7).
Specifically, we compare the re-projection errors and the di�erence in camera
pose estimation with respect to BA. In case of structureless BA methods (LBA,

35

100 150 200 250 300 350 400 450 500
0

2

4

6
M

e
a

n
 [
m

]

Position est. error

100 200 300 400 500
0

1

2

3

Image observations per frame

S
ta

n
d

a
rd

 D
e
vi

a
tio

n
 [
m

]

LBA Intermediate

LBA Final

BA Intermediate

BA Final

(a)

100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

M
e
a
n
 [
d
e
g
]

Rotation est. error

100 200 300 400 500
0

0.05

0.1

0.15

0.2

Image observations per frame

S
ta

n
d
a
rd

 D
e
vi

a
tio

n
 [
d
e
g
]

(b)

Figure 16: E�ect of di�erent number of image observations per frame on ac-
curacy. Exploration with occasional loop closures scenario is used in all cases.
Mean and standard deviation of intermediate and final estimation errors are
shown for (a) position and (b) rotation. Accuracy increases as more image
observations per frame are used.

LBA�, SLB), structure is reconstructed based on the optimized camera poses
after convergence.

Figure 18 and Table 3 show the obtained accuracy performance. The cost of
the improved timing performance of LBA (analyzed in Section 6.2) is modestly
higher errors. Re-projection errors are slightly higher than the other methods.
Average position discrepancy of LBA with respect to standard BA is 1.5mm on
the Cubicle dataset, which covers an area approximately 3m in width. Average
position discrepancy on the Outdoor dataset is 0.6m, where the area covered
is approximately 150m◊120m. Rotation discrepancy with respect to standard
BA shows the same trend.

In the next section we conclude this analysis by also examining the discrep-
ancy in uncertainty estimates between LBA and BA.

36

0.5 1 1.5
0

2

4

6

M
e

a
n

 [
m

]

Position est. error

0.5 1 1.5
0

1

2

3

4

Image Noise σ [pix]

S
ta

n
d

a
rd

 D
e

vi
a

tio
n

 [
m

]
0.5 1 1.5
0

0.5

1

M
e

a
n

 [
d

e
g

]

Rotation est. error

0.5 1 1.5
0

0.1

0.2

0.3

0.4

Image Noise σ [pix]
S

ta
n

d
a

rd
 D

e
vi

a
tio

n
 [

d
e

g
]

LBA Intermediate

LBA Final

BA Intermediate

BA Final

Figure 17: Accuracy performance for di�erent levels of image noise in explo-
ration scenario with dense loop closures. Performance is calculated for 20 runs
of each of the methods. Mean and standard deviation of position and rotation
intermediate and final estimation errors are shown.

0

0.2

0.4

0.6

R
e

p
ro

j e
rr

,
p

ix

Final mean reproj err

LBA LBAΣ SLB BA

(a) Cubicle

0

0.2

0.4

0.6

R
e

p
ro

j e
rr

,
p

ix

Final mean reproj err

LBA LBAΣ SLB BA

(b) Outdoor

Figure 18: Comparison of reprojection errors between algorithms for two real-
imagery datasets. Reprojection errors are computed after incremental optimiza-
tion of the last camera pose. Full details are summarized in Table 3.

37

Cubicle BA SLB LBA� LBA
Overall
time, s

6024 1813 978 581

Reproj
err, mean

0.53 0.53 0.54 0.54

Reproj
err, stdd

0.70 0.70 0.71 0.71

Avg pos’n
di�, m

N/A .0010 .0015 .0015

Avg rot’n
di�, rad

N/A 3e-4 4e-4 5e-4

‰

2 1.95 1.72 1.95 1.96

(a) Cubicle dataset

Outdoor BA SLB LBA� LBA
Overall
time, s

26414 41284 6076 3163

Reproj
err, mean

0.40 0.41 0.41 0.42

Reproj
err, stdd

0.53 0.53 0.53 0.53

Avg pos’n
di�, m

N/A 0.407 0.376 0.601

Avg rot’n
di�, rad

N/A 2e-3 1e-3 1e-3

‰

2 1.16 0.54 0.78 1.25

(b) Outdoor dataset

Table 3: Full result details corresponding to Figure 18. Mean and standard
deviation of final reprojection errors, and ‰

2 errors. ‰

2 error close to 1 indicates
that the distribution of the final residuals matches the Gaussian distribution
predicted by uncertainty propagation of the image observation noise. Camera
pose di�erences are reported with respect to standard bundle adjustment (BA).

38

7.5 Experimental Evaluation of Uncertainty Estimate
We study the estimated absolute and relative uncertainties in LBA, both en-
coded by the estimated covariance matrix �

LBA

, and provide a comparison to
BA, using the two real-imagery datasets. We now explain how these estimated
uncertainties are compared in practice.

In order to compare relative uncertainty between camera poses, we compare
conditional densities p (x

i

|x
j

, Z) between all pairs of cameras. This calculation
quantifies how well LBA agrees with BA in relative uncertainty. The condition-
als are obtained by integrating out all variables other than x

i

and x

j

,

p (x
i

|x
j

, Z) =
ˆ

X\{xi,xj},L

p (X, L|Z) /p (x
j

|Z) . (32)

This can be done analytically by approximating the joint as a Gaussian around
its MAP estimate, and applying sparse factorization,

p (X, L|Z) = p (X\ {x

i

, x

j

} , L|x
i

, x

j

, Z) p (x
i

|x
j

, Z) p (x
j

|Z) , (33)

from which the desired conditional p (x
i

|x
j

, Z) can be read o�.
Specifically, in our implementation we first calculate the joint marginal in-

formation matrix for each camera pair i and j

5
I

ii

I

ij

I

ji

I

jj

6
, (34)

from the appropriate joint pdf (p (X, L|Z) and p

LBA

(X|Z)). The information
form then allows to conveniently calculate the conditional covariance �i|j as
(see, e.g. [8])

�i|j = I

≠1
ii

. (35)

We compare the probability density of the camera poses estimated by LBA to
that of BA by comparing their discrepancy both in the marginal uncertainty
of each camera pose, and in relative uncertainty between each camera pair. To
make these comparisons, we define a discrepancy measure of the square roots
of the traces of each covariance matrix, which intuitively is an approximate
measure of the di�erence in their standard deviations,

discrepancy (�1, �2) �= c

1
tr (�1) ≠

tr (�2)

2
, (36)

where c is a scale factor that converts the unit-less 3D reconstructions into
meters. We determined this scalar by physically measuring the dataset collec-
tion area, or superimposing the trajectory onto a satellite image. We compute
this separately for the blocks of the covariance matrices corresponding to ro-
tation and translation. The units of the discrepancy are radians for rotation
(c = 1) and meters for translation, with c properly determined to correct the
reconstruction scale.

39

0 50 100 150
0

0.5

1

1.5
x 10

−4

View number

LBA

BA

(a)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

View number

Cov. trace #factors

(b)

Figure 19: Cubicle dataset: (a) Covariance trace of each camera pose. (b) Trace
of covariance and number of factors in LBA formulation, both are normalized
to 1.

For example, to compare the Gaussian-approximated conditional density
of LBA p

LBA

(x
i

|x
j

, Z) with covariance �i|j
LBA

with that of BA p (x
i

|x
j

, Z)
with covariance �i|j

BA

, we compute discrepancy

1
�i|j

LBA

, �i|j
BA

2
. Similarly for

marginals p

LBA

(x
i

|Z) and p

BA

(x
i

|Z), we compute discrepancy

!
�i

LBA

, �i

BA

"
.

A positive discrepancy value means that the uncertainty estimate of LBA is
conservative, whereas a negative discrepancy value means that the uncertainty
estimate of LBA is overconfident.

A comparison of the absolute uncertainty for the Cubicle dataset is given in
Figure 19 and Figures 20a-20b. Figure 19a compares, for each camera pose i,
between the covariance trace of �i

LBA

and �i

BA

. As seen, the initial uncertainty
is very small and it increases as the camera moves around the cubicle desk and
drops to low values when the camera captures previously-observed areas thereby
providing loop-closure measurements. Figure 19b describes the interaction be-
tween the uncertainty of each view and the number of factors that involve this
view. As expected, the covariance is higher when less factors are involved and
vice versa.

Overall, the absolute uncertainties in LBA and BA are very similar. This can
be also observed in Figures 20a-20b that show a histogram of the discrepancy
(36) both for position and orientation terms. Typical position discrepancies are
near ≠10≠4 meters. The discrepancies for relative uncertainties are given in
Figures 20c-20d for position and orientation terms.

Figure 21 shows the discrepancy histograms for the Outdoor dataset. The
absolute and relative discrepancies between LBA and BA are small, e.g. less
than 5 centimeters in the absolute position for a trajectory that spans an area
of 120 ◊ 150 meters (see Figure 11), and on the order of 10≠4 radians for the
absolute rotation uncertainty.

40

−2 −1 0 1 2

x 10
−4

0

5

10

15

Abs trans uncert discrep, m

C
a

m
e

ra
s

in
 h

is
t.

 b
in

(a)

−5 0 5 10

x 10
−5

0

5

10

15

20

25

Abs rot uncert discrep, rad

C
a

m
e

ra
s

in
 h

is
t.

 b
in

(b)

−2 −1 0 1 2

x 10
−4

0

500

1000

1500

Rel trans uncert discrep, m

C
a

m
e

ra
 p

a
ir
s

in
 h

is
t.

 b
in

(c)

−5 0 5 10 15

x 10
−5

0

500

1000

1500

Rel rot uncert discrep, rad

C
a

m
e

ra
 p

a
ir
s

in
 h

is
t.

 b
in

(d)

Figure 20: Discrepancy histograms for the Cubicle dataset: Absolute position
(a) and orientation (b); Relative position (c) and orientation (d) between every
camera pair in the sequence.

−0.02 0 0.02 0.04 0.06
0

5

10

15

20

Abs trans uncert discrep, m

C
a
m

e
ra

s
in

 h
is

t.
 b

in

(a)

−2 0 2 4

x 10
−4

0

10

20

30

40

Abs rot uncert discrep, rad

C
a

m
e

ra
s

in
 h

is
t.

 b
in

(b)

−0.05 0 0.05 0.1 0.15
0

1000

2000

3000

4000

Rel trans uncert discrep, m

C
a
m

e
ra

 p
a
ir
s

in
 h

is
t.
 b

in

(c)

−2 0 2 4

x 10
−4

0

1000

2000

3000

4000

5000

Rel rot uncert discrep, rad

C
a

m
e

ra
 p

a
ir
s

in
 h

is
t.

 b
in

(d)

Figure 21: Discrepancy histograms for the Outdoor dataset: Absolute position
(a) and orientation (b); Relative position (c) and orientation (d) between every
camera pair in the sequence.

41

8 Conclusions
In this paper we presented incremental light bundle adjustment (iLBA), an e�-
cient optimization that is applicable both to structure from motion and robotics
applications. The method incorporates two key components to reduce compu-
tational complexity. The number of variables in the optimization is significantly
reduced by algebraic elimination of 3D points, leading to a cost function that
is formulated in terms of three-view constraints and involves only the camera
poses. The resulting optimization problem is represented using graphical mod-
els and incremental inference is applied to e�ciently incorporate new imagery
information by exploiting sparsity and using adaptive partial calculations. Typ-
ically, only a small subset of past camera poses is recalculated when adding a
new camera into the optimization. While 3D points are not explicitly estimated,
all or any part of them can be reconstructed based on the optimized camera
poses whenever required. Additional sensors, typically available in robotic ap-
plications, can be naturally incorporated as well.

A probabilistic analysis of the proposed method was presented, investigating
how well the probability distribution of iLBA represents the exact probability
over camera poses that is calculated using bundle adjustment. Computational
complexity and accuracy of iLBA was studied and compared to incremental
bundle adjustment and another recent related method using both synthetic and
real-imagery datasets. This study showed that iLBA is considerably faster (by
a factor of 2-10) than bundle adjustment and scales more gracefully when in-
creasing the number of image observations per frame. iLBA’s accuracy ap-
proaches bundle adjustment for reasonable image noise levels. In particular,
average di�erence in position between iLBA and bundle adjustment in an out-
door real-imagery dataset that covers an area of 150m◊120m is 0.6 meters. The
real-imagery datasets were also used to analyze how well iLBA and incremental
bundle adjustment agree in estimated uncertainties, and exhibited very small
discrepancies between the two methods.

Adding each new camera pose into the optimization involves instantiating
three-view constraints that also involve past camera poses. Which past camera
poses are chosen impacts both computational complexity and accuracy of iLBA.
Being able to do so optimally and e�ciently remains an open problem that will
be addressed in future research. Another interesting aspect that is left for
future research is comparing computational complexity and accuracy between
using multi-view constraints and relative pose constraints. Finally, resorting to
GPU-accelerated computing is yet another promising direction to pursue.

Acknowledgments
The authors would like to thank Dr. Stephen Williams, College of Computing,
Georgia Institute of Technology, for insightful discussions.

42

Funding
This work was partially supported by the DARPA All Source Positioning and
Navigation (ASPN) program under USAF/ AFMC AFRL contract No. FA8650-
11-C-7137 and by the ARL Micro Autonomous Systems and Technology (MAST)
program under contract No. W911NF-08-2-0004.

Appendix
In this appendix we relate between the well-known trifocal constraints and the
three-view constraints (10)-(12). Assume some 3D point X is observed by sev-
eral views. The image projection of this landmark for each of these views is given
by ⁄

i

p

i

= P

i

X, where ⁄

i

is the unknown scale parameter and P

i

= K

i

#
R

i

t

i

$

is the projection matrix of the i

th view.
Choosing the reference frame to be the first view, the projection equations

turn into ⁄1K

≠1
1 p1 = X̆ and ⁄

i

K

≠1
i

p

i

= R

i

X̆ + t

i

for i > 1. Here X̆ denotes
inhomogeneous coordinates of the 3D point X. Substituting the former equation
into the latter equation eliminates the 3D point, yielding

⁄

i

K

≠1
i

p

i

= R

i

⁄1K

≠1
1 p1 + t

i

, i > 1 (37)

From this point the derivation of three-view and trifocal constraints di�ers. In
the former case, a matrix is constructed from Eq. (37) for the first view and
two other views i and j:

5
R

i

K

≠1
1 p1 ≠K

≠1
i

p

i

0 t

i

R

j

K

≠1
1 p1 0 ≠K

≠1
j

p

j

t

j

6 #
⁄1 ⁄

i

⁄

j

1
$

T = 0 (38)

while in the case of trifocal constraints, the additional scale parameter in Eq.
(37) is eliminated by cross multiplying with K

≠1
i

p

i

. Representing the resulting
equations in a matrix formulation yields the so-called multi-view matrix [34]:

S

WU

#
K

≠1
2 p2

$
◊ R2K

≠1
1 p1

#
K

≠1
2 p2

$
◊ t2#

K

≠1
3 p3

$
◊ R3K

≠1
1 p1

#
K

≠1
3 p3

$
◊ t3

...
...

T

XV
3

⁄1
1

4
= 0 (39)

Enforcing the rank-deficiency condition on the two matrices in Eqs. (38) and
(39) yields the three-view and the trifocal constraints [17, 34]. Although Eq.
(39) contains expressions for all the views, the resulting constraints relate only
between triplets of views.

References
[1] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment in

the large. In European Conf. on Computer Vision (ECCV), 2010.

43

[2] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building
Rome in a day. In Intl. Conf. on Computer Vision (ICCV), 2009.

[3] S. Avidan and A. Shashua. Threading fundamental matrices. IEEE Trans.
Pattern Anal. Machine Intell., 23(1):73–77, 2001.

[4] Martin Byröd and Kalle Åström. Conjugate gradient bundle adjustment.
In European Conf. on Computer Vision (ECCV), pages 114–127, Berlin,
Heidelberg, 2010. Springer-Verlag.

[5] T.A. Davis, J.R. Gilbert, S.I. Larimore, and E.G. Ng. A column approx-
imate minimum degree ordering algorithm. ACM Trans. Math. Softw.,
30(3):353–376, 2004.

[6] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization
and mapping via square root information smoothing. Intl. J. of Robotics
Research, 25(12):1181–1203, Dec 2006.

[7] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment rules. In Sym-
posium on Photogrammetric Computer Vision, pages 266–271, Sep 2006.

[8] R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard. Visually
navigating the RMS titanic with SLAM information filters. In Robotics:
Science and Systems (RSS), Jun 2005.

[9] R.M. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state
filters for view-based SLAM. IEEE Trans. Robotics, 22(6):1100–1114, Dec
2006.

[10] M. Fischler and R. Bolles. Random sample consensus: a paradigm for
model fitting with application to image analysis and automated cartogra-
phy. Commun. ACM, 24:381–395, 1981.

[11] A. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or
open image sequences. In European Conf. on Computer Vision (ECCV),
pages 311–326, 1998.

[12] J.M. Frahm, M. Pollefeys, S. Lazebnik, D. Gallup, B. Clipp, R. Raguram,
C. Wu, C. Zach, and T. Johnson. Fast robust large-scale mapping from
video and internet photo collections. ISPRS Journal of Photogrammetry
and Remote Sensing, 65(6):538–549, 2010.

[13] V. M. Govindu. Combining two-view constraints for motion estimation. In
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages
218–225, 2001.

[14] V.M. Govindu. Lie-algebraic averaging for globally consistent motion es-
timation. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2004.

44

[15] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[16] F.S. Hover, R.M. Eustice, A. Kim, B.J. Englot, H. Johannsson, M. Kaess,
and J.J. Leonard. Advanced perception, navigation and planning for au-
tonomous in-water ship hull inspection. Intl. J. of Robotics Research,
31(12):1445–1464, Oct 2012.

[17] V. Indelman. Navigation Performance Enhancement Using Online Mo-
saicking. PhD thesis, Technion - Israel Institute of Technology, 2011.

[18] V. Indelman. Bundle adjustment without iterative structure estimation
and its application to navigation. In IEEE/ION Position Location and
Navigation System (PLANS) Conference, April 2012.

[19] V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein. Real-time vision-aided
localization and navigation based on three-view geometry. IEEE Trans.
Aerosp. Electron. Syst., 48(3):2239–2259, July 2012.

[20] V. Indelman, A. Melim, and F. Dellaert. Incremental light bundle ad-
justment for robotics navigation. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), November 2013.

[21] V. Indelman, R. Roberts, C. Beall, and F. Dellaert. Incremental light
bundle adjustment. In British Machine Vision Conf. (BMVC), September
2012.

[22] V. Indelman, R. Roberts, and F. Dellaert. Probabilistic analysis of in-
cremental light bundle adjustment. In IEEE Workshop on Robot Vision
(WoRV), January 2013.

[23] V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert. Information fusion in
navigation systems via factor graph based incremental smoothing. Robotics
and Autonomous Systems, 61(8):721–738, August 2013.

[24] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.S. Kweon. Pushing the
envelope of modern methods for bundle adjustment. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2010.

[25] Y.-D. Jian, D. Balcan, and F. Dellaert. Generalized subgraph precondition-
ers for large-scale bundle adjustment. In Intl. Conf. on Computer Vision
(ICCV), 2011.

[26] S.J. Julier and J.K. Uhlmann. A non-divergent estimation algorithm in the
presence of unknown correlations. In American Control Conference, pages
2369–73, 1997.

[27] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert.
iSAM2: Incremental smoothing and mapping using the Bayes tree. Intl. J.
of Robotics Research, 31:217–236, Feb 2012.

45

[28] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In IEEE and ACM Intl. Sym. on Mixed and Augmented Reality
(ISMAR), pages 225–234, Nara, Japan, Nov 2007.

[29] K. Konolige. Sparse sparse bundle adjustment. In British Machine Vision
Conf. (BMVC), September 2010.

[30] K. Konolige and M. Agrawal. FrameSLAM: from bundle adjustment to
realtime visual mapping. IEEE Trans. Robotics, 24(5):1066–1077, 2008.

[31] F.R. Kschischang, B.J. Frey, and H-A. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Trans. Inform. Theory, 47(2), February
2001.

[32] M.I. A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic
Sparse Bundle Adjustment. ACM Trans. Math. Software, 36(1):1–30, 2009.

[33] D.G. Lowe. Distinctive image features from scale-invariant keypoints. Intl.
J. of Computer Vision, 60(2):91–110, 2004.

[34] Y. Ma, K. Huang, R. Vidal, J. Koöecká, and S. Sastry. Rank conditions on
the multiple-view matrix. In Intl. J. of Computer Vision, volume 59, pages
115–137, September 2004.

[35] Y. Ma, S. Soatto, J. Kosecka, and S.S. Sastry. An Invitation to 3-D Vision.
Springer, 2004.

[36] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. RSLAM: A
system for large-scale mapping in constant-time using stereo. Intl. J. of
Computer Vision, 94(2):198–214, 2011.

[37] E Mouragnon, M Lhuillier, M Dhome, F Dekeyser, and P Sayd. Generic
and real-time structure from motion using local bundle adjustment. Image
and Vision Computing, 27(8):1178–1193, 2009.

[38] R.A. Newcombe, S.J. Lovegrove, and A.J. Davison. DTAM: Dense tracking
and mapping in real-time. In Intl. Conf. on Computer Vision (ICCV), pages
2320–2327, Barcelona, Spain, Nov 2011.

[39] K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle adjustment for large-
scale 3D reconstruction. In Intl. Conf. on Computer Vision (ICCV), Rio
de Janeiro, October 2007.

[40] D. Nistér. Reconstruction from uncalibrated sequences with a hierarchy of
trifocal tensors. In European Conf. on Computer Vision (ECCV), pages
649–663, 2000.

[41] A. L. Rodríguez, P. E. López de Teruel, and A. Ruiz. Reduced epipolar
cost for accelerated incremental SfM. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 3097–3104, June 2011.

46

[42] G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative bundle
adjustment. In Robotics: Science and Systems (RSS), 2009.

[43] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from Internet
photo collections. Intl. J. of Computer Vision, 80(2):189–210, November
2008.

[44] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal graphs for e�cient struc-
ture from motion. In IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2008.

[45] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: Exploring photo
collections in 3D. In SIGGRAPH, pages 835–846, 2006.

[46] D. Steedly and I. Essa. Propagation of innovative information in non-linear
least-squares structure from motion. In Intl. Conf. on Computer Vision
(ICCV), volume 2, pages 223–229, 2001.

[47] R. Ste�en, J.-M. Frahm, and W. Förstner. Relative bundle adjustment
based on trifocal constraints. In ECCV Workshop on Reconstruction and
Modeling of Large-Scale 3D Virtual Environments, 2010.

[48] Charles V Stewart. Robust parameter estimation in computer vision. SIAM
review, 41(3):513–537, 1999.

[49] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjust-
ment – a modern synthesis. In W. Triggs, A. Zisserman, and R. Szeliski,
editors, Vision Algorithms: Theory and Practice, volume 1883 of LNCS,
pages 298–372. Springer Verlag, 2000.

[50] R. Vidal, Y. Ma, S. Hsu, and S. Sastry. Optimal motion estimation from
multiview normalized epipolar constraint. In Intl. Conf. on Computer Vi-
sion (ICCV), volume 1, pages 34–41, 2001.

[51] R. Vidal, Y. Ma, S. Soatto, and S. Sastry. Two-View Multibody Structure
from Motion. Intl. J. of Computer Vision, 68(1):7–25, 2006.

[52] C. Wu, S. Agarwal, B. Curless, and S.M. Seitz. Multicore bundle ad-
justment. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 3057–3064, 2011.

[53] Z. Zhang and Y. Shan. Incremental motion estimation through local bundle
adjustment. Technical Report MSR-TR-01-54, Microsoft Research, May
2001.

47

	Introduction
	Related Work
	Standard and Structureless Bundle Adjustment Methods
	Standard Bundle Adjustment
	Structureless Bundle Adjustment

	Light Bundle Adjustment (LBA)
	Residual Functions
	Factor Graph Representation
	LBA in Robotics
	Batch Optimization
	Structure Reconstruction

	Incremental Light Bundle Adjustment (iLBA)
	Incremental Inference Using iSAM2
	Incremental Initialization of New Cameras
	Incrementally Selecting LBA Multiview Constraints Camera Sets

	Computational Complexity Analysis
	Complexity Study using Synthetic Datasets
	Complexity Study using Real-Imagery Datasets

	Accuracy of Solution and Uncertainty Estimate
	Theoretical Probabilistic Analysis
	Quantitative Evaluation of Probabilistic Accuracy
	Experiments with Synthetic Datasets
	Sensitivity to Image Noise
	Different Numbers of Image Observations per Frame
	Dense Sequential Loop Closures

	Experiments with Real-Imagery Datasets
	Experimental Evaluation of Uncertainty Estimate

	Conclusions

