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Abstract

We present an efficient method for feature correspon-
dence and object-based image matching, which exploits
both photometric similarity and pairwise geometric consis-
tency from local invariant features. We formulate object-
based image matching as an unsupervised multi-class clus-
tering problem on a set of candidate feature matches, and
propose a novel pairwise dissimilarity measure and a robust
linkage model in the framework of hierarchical agglomera-
tive clustering. The algorithm handles significant amount
of outliers and deformation as well as multiple clusters,
thus enabling simultaneous feature matching and cluster-
ing from real-world image pairs with significant clutter and
multiple deformable objects. The experimental evaluation
on feature correspondence, object recognition, and object-
based image matching demonstrates that our method is ro-
bust to both outliers and deformation, and applicable to a
wide range of image matching problems.

1. Introduction

Many problems in computer vision involve feature cor-

respondences across images. The development of various

local invariant features [13, 14, 15] has brought about sig-

nificant progress in this area, and many algorithms exist

for visual correspondence in a wide range of applications

such as object recognition, image matching, 3D reconstruc-

tion and motion segmentation. Many of them typically use

global and strong constraints for rigid motion [13, 11, 4] or

exploit only appearance, discarding information about the

spatial layout of features [5, 16].

Recently, robust feature correspondence methods [2, 12,

18] have been proposed for considering geometric distor-

tion of objects between images. They formulate visual

correspondence as a graph matching problem by defining

an objective function based on both photometric similar-

ity and pairwise geometric compatibility between corre-

spondences. Despite the promising performance demon-

Figure 1. A result of our object-based image matching. It estab-

lishes both feature correspondences and their object-based clusters

across arbitrary image pairs. Despite deformation of objects and

high outlier ratio of candidate feature matches as shown in the

middle, our method extracts multiple clusters of reliable matches,

each representing a geometrically distinctive group of matches. It

enables object-based image matching as shown in the bottom. Two

detected clusters of feature correspondences are colored in red and

green, respectively.

strated by the methods, they all deal with weakly super-

vised cases with relatively low outlier ratio, where two im-

ages have one common object or a model image is used.

In real-world cases, however, image pairs can have signif-

icant clutter, multiple common objects, and even many-to-

many object correspondences. Therefore, unlike the pre-

vious methods, feature correspondence problems need to

be interleaved with finding multiple object-level clusters of
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correspondences against significant outliers in an unsuper-

vised way. Our goal is to establish both feature correspon-

dences and their object-based clusters against significant

clutter and deformation from arbitrary images. As shown

in Fig. 1, our method provides object-based image match-

ing from highly cluttered scenes, by taking into considera-

tion both how well the features’ descriptors match and how

well their pairwise geometric constraints are satisfied within

each cluster. In this work, we focus on image matching with

widely-used discriminative local features [13, 14, 15].

Our method is based on the following insights:

1. Bottom-up aggregation strategy: if we start from

confident correspondences and progressively merge them

with reliable neighbors, inliers can be effectively collected

in spite of enormous distracting outliers. For example,

seed-based exploration methods [7, 3, 10] demonstrate that

object recognition performance can be boosted by such a

bottom-up aggregation with iterative match-propagation.

2. Connectedness between parts: for deformable objects,

feature correspondences do not form global compactness in

their pairwise geometric similarity owing to deformation,

but deformed parts are locally connected by some medi-

ating parts. Thus, a connectedness criterion [8] should be

considered for clustering the feature correspondences on de-

formable objects.

On the basis of the above insights, we propose a new

algorithm in the framework of hierarchical agglomerative

clustering [1, 17], which forms compact correspondence

clusters in early stages and progressively merges locally

connected clusters adapting to deformed object parts. By

simply setting tolerable deformation and reliability thresh-

olds, it detects multiple clusters of reliable matches and the

number of reliable clusters is also estimated through the

procedure. As shown in Fig. 1, it enables object-based im-

age matching from arbitrary image pairs with significant

deformation and clutter. Our experiments validate the ef-

fectiveness of our method in feature correspondence, object

recognition, and object-based image matching problems.

Our approach has several advantages over previous

methods. The methods in [2, 12, 18] commonly require

a one-to-one (or one-to-many) feature mapping constraint

assuming a weakly supervised model view, and do not

deal with multiple object matches present between images.

Thus, they are not adequate for general matching of un-

supervised images. On the other hand, our approach pro-

vides reliable feature correspondence, object-level multi-

class clustering, and outlier elimination in an integrated

way. Its control parameters are simple and intuitive, and it

does not require a global energy formulation [2, 18], strong

global constraints [13, 4], nor a specified number of clus-

ters [19]. Moreover, it is very robust to distracting outliers

arising from clutter in real-world images.

2. Problem Formulation
We formulate our object-based image matching as unsu-

pervised multi-class clustering of candidate feature corre-

spondences as follows. Suppose two sets of features
�

and�
, each obtained from an image, and a set of candidate cor-

respondences � � � � �
. For each candidate correspon-

dence � � � 	 
 � � 
 � � , a unary dissimilarity score measures

the dissimilarity between 
 � �
and � � �

. For each pair

of correspondences 	 � � � � � 
 where � � � � � � � , pairwise dis-

similarity score evaluates geometric deformation between

� � and � � . Our goal is to construct clusters of mutually co-

herent feature correspondences eliminating outliers from � .

The solution is represented by a mutually disjoint set of cor-

respondence clusters � � � � � � � � � � � � � � � � where � � � � � ,

� � � � . To reduce notational clutter we will sometimes

abbreviate � � � � � as � � � � . Any kind of mapping con-

straints used in other methods [2, 12, 18] can be employed,

such as: one-to-one constraint allowing one feature from
�

to match at most one feature from
�

, or one-to-many con-

straint allowing one feature from
�

to match more than one

features from
�

. Our method, however, can dispense with

such specific mapping constraints, allowing arbitrary cross-

mapping.

3. Dissimilarity of Feature Correspondences
Our problem is settled by the distance metric that mea-

sures dissimilarity between two candidate feature matches.

This can be regarded as the internal force driving feature

correspondence and clustering. Various features and de-

scriptors can be adopted in our framework, depending on

specific problems. In this work, we use affine covariant re-

gion detectors [14, 15] for features, and SIFT [13] for de-

scriptors, which are widely used in the literature. Thus, we

represent a candidate feature correspondence � � � 	 
 � � 
 �
� as a candidate match � � � 	 � � � � �� � � � 
 , interchangeably,

where � � , � �� , � � denotes center of 
 , center of � , and ho-

mography from 
 to � , respectively [15].

Photometric dissimilarity � app 	 � � 
 of a feature corre-

spondence � � � 	 
 � � 
 is defined by the Euclidean distance

between corresponding SIFT descriptors of feature 
 and

� . Since two features of a true correspondence are likely

to have similar local descriptors, a set of candidate corre-

spondences � is usually constructed using this photomet-

ric dissimilarity. Geometric dissimilarity � geo 	 � � � � � 
 be-

tween two feature correspondences � � � 	 � � � � �� � � � 
 and

� � � 	 � � � � �� � � � 
 is defined by

� geo 	 � � � � � 
 �
 

! 	 � geo 	 � � " � � 
 # � geo 	 � � " � � 
 
 � (1)

� geo 	 � � " � � 
 �
 

! 	 " � �� $ � � � � " # " � � $ � % �� � �� " 
 � (2)

� geo 	 � � " � � 
 �
 

! 	 " � �� $ � � � � " # " � � $ � % �� � �� " 
 � (3)

1281



where � � � denotes the Euclidean distance function. It cor-

responds to a projection error, which will be small if � �
and � � are similar to each other. Exploiting the homogra-

phies of two correspondences, this geometric dissimilarity

provide a discriminative measure for our agglomerative al-

gorithm.

Combining the photometric and geometric dissimilarity,

we define an overall pairwise dissimilarity function as

� � � � 	 � � 
 � � geo � � � 	 � � 
 � 
 � � � � � app � � � 
 	 � app � � � 
 
 	
(4)

where 
 denotes a weighting factor for photometric dis-

similarity. The � � � operator means that both of two corre-

spondences in the pair should have low dissimilarity for a

confident correspondence pair.

4. Algorithm
In this section we introduce hierarchical agglomerative

algorithms and propose a new algorithm in the agglomera-

tive framework for deformable object matching. The pair-

wise dissimilarity function defined in the previous section

is used for the algorithm.

4.1. Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering algorithms are ef-

ficient and have been widely used in various fields [1, 17].

Hierarchical agglomerative clustering does not require ex-

plicit global model, and a particular algorithm can be ob-

tained by the definition of the dissimilarity measure be-

tween two clusters, which determines the priority of a clus-

ter pair to merge. Let � � � � 	 � � 
 be a cluster dissimilar-

ity function defined for all possible pairs of clusters. Then,

the general agglomerative scheme can be stated as in Algo-

rithm 1. It produces a sequence of agglomerative cluster-

ings, decreasing the number of clusters at each step. The

result consists of a sequence of nested data partitions in a

hierarchical structure, graphically represented as a dendro-

gram. A partition can be obtained by various methods [17]

(e.g. setting a cut-off threshold on the dendrogram). The

main representatives of the algorithms are the single-link,

the complete-link, and the average-link (also known as the

unweighted pair group method average) algorithms [17].

The single-link algorithm defines the cluster dissimilar-

ity function � as the minimum among all pairwise dissim-

ilarities between elements of two clusters. It is appropriate

for the recovery of elongated or connected clusters. In our

problem formulation, the single-link dissimilarity between

two correspondence clusters � � and � � is represented by

� si � � � 	 � � 
 � � � �� � � � � � � � � � � � � 	 � � 
 � (5)

The complete-link algorithm uses the maximum of all

pairwise dissimilarities between elements of two clusters,

Algorithm 1. General Hierarchical Agglomerative Scheme

1: (Initialization)

2: Set � � � � � � � �  � ! 	 " � # 	 � � � 	 $ ! as the initial clus-

tering.

3: % � &
4: (Hierarchical Agglomerative Clustering)

5: repeat
6: % � % � #
7: Among all possible pairs � � ' 	 � ( 
 in � , find � � � 	 � � 


such that � � � � 	 � � 
 � � � � ' � ( � � � ' 	 � ( 

8: Define � ) � � � * � � and produce the new clustering

� + � � � + , - . � � � 	 � � ! 
 * � � ) ! .

9: until all elements lie in a single cluster.

so tends to produce very tight clusters. The complete-link

dissimilarity in our formulation is presented as

� co � � � 	 � � 
 � � � �� � � � � � � � � � � � � 	 � � 
 � (6)

The average-link algorithm is a compromise between the

single-link and the complete-link, resulting in an intermedi-

ate structure between the loosely bound single-link cluster

and tightly bound complete-link clusters. The average-link

dissimilarity is described in our formulation as

� av � � � 	 � � 
 �
#

� � � � � � � �
/

� � � �
/

� � � � � � � � 	 � � 
 � (7)

Each linkage model has its own drawbacks for cluster-

ing. The single-link clustering can produce straggling clus-

ters. Because the merge criterion is strictly local, a chain of

elements can be extended for long distances without regard

to the overall shape of the emerging cluster. This effect is

called “chaining”. The complete linkage and the average

linkage are robust to the chaining effect, but fails when the

target clusters are not compact around their centers.

4.2. Adaptive Partial Linkage Model

For deformable objects of images, feature correspon-

dences do not form global compactness in their pairwise ge-

ometric similarity due to deformation, and deformed parts

are locally connected by some mediating parts. Thus, the

linkage model for the problem should adapt to connected-

ness of elements as well as compactness of elements. As

we noted, however, the single linkage model is susceptible

to chaining outliers, and the other linkage models are essen-

tially inclined toward a compactness criterion.

Therefore, we define a 0 NN linkage model as follows.

� 1 NN � 0 	 � � 	 � � 
 �
#

� 2 � � � �3
/

4 � � � 5 � 3 � � � � 	 � � 
 	 (8)

6 � % � 2 7 � � 8 � � 	 � 2 � � � � � � 0 	 � � � � � � � � 
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(a) Number of the nearest neighbor pairs used for dissimilarity

(b) Ratio of the nearest neighbor pairs used for dissimilarity

Figure 2. AP linkage compared to the other linkages. (a) shows

changes of the number of NN pairs considered for the cluster dis-

similarity between � � and � � as the number of all the possible

element pairs � � � � � � � � increases. (b) depicts the ratio of the num-

ber of NN pairs to � � � � � � � � . Two parameters, � � � and � � � con-

trols compactness and connectedness of emerging clusters in the

AP linkage. For � NN linkage, � 	 � � � in this graphs.

where 
 � � 
 denotes the number of elements in the clus-

ter � � . 
 � � 
 
 � 
 
 represents the number of possible element

pairs between two clusters. Our � NN linkage model uses

the average of � minimum dissimilarity among all possi-

ble dissimilarities of element pairs between the two clus-

ters. While recovering elongated or connected clusters, it

is robust to the chaining effect since it considers � support-

ing element pairs rather than just one element pair as in the

single linkage. When 
 � � 
 
 � 
 
 is smaller than � , the � NN

linkage is equivalent to the average linkage as shown in

Fig. 2. Thus, the � NN-link clustering forms compact clus-

ters in the early stages of agglomerative clustering, and pro-

gressively relaxes compactness and shifts to connectedness.

Note that the compactness in the early stages is appropri-

ate in the clustering procedure. In agglomerative clustering,

merging chaining outliers in the early stages can be critical

in the next steps. The early compactness of the � NN link-

age helps to avoid this problem. However, it can still suffer

from straggling when 
 � � 
 
 � 
 
 grows much larger than � .

To avoid this “asymptotic chaining effect”, we propose

the adaptive partial (AP) linkage model that uses an adap-

tive method for determining � of the � NN linkage as fol-

lows.

� AP � � � � � 
 � � � � NN � � � � � � � 
 � � (9)

� � � � AP if 
 � � 
 
 � 
 
 � � AP � � AP� � � AP 
 � � 
 
 � 
 
 if 
 � � 
 
 � 
 
 � � AP � � AP � (10)

where � AP and � AP denote the control parameters. As

shown in Fig. 2(a), the AP linkage is equivalent to the � NN

linkage when 
 � � 
 
 � 
 
 is smaller than � AP � � AP. Other-

wise, it increases the supporting NN pairs to � AP 
 � � 
 
 � 
 
 .
In terms of the ratio of the NN pairs to the total num-

ber of element pairs 
 � � 
 
 � 
 
 as shown in Fig. 2(b), the� NN linkage continuously converges to the single linkage

as 
 � � 
 
 � 
 
 increases. The AP linkage, however, always

examines at least � AP of all the element pairs. Thus, the

AP linkage effectively avoids the asymptotic chaining ef-

fect of the � NN linkage and accommodates deformation

of objects supported by intermediate joint correspondences.

Moreover, this characteristic of AP-link clustering can be

adjusted or learned by control parameter � AP and � AP, de-

pending on the specific problems. Integrating the AP link-

age in the framework of hierarchical agglomerative cluster-

ing, we can progressively aggregate elements considering

both compactness and connectedness.

4.3. Agglomerative Correspondence Clustering

To solve feature correspondence and clustering problem

defined in Sec.2, we propose an algorithm based on the

AP linkage, which reflects the connectedness between de-

formable object parts as well as the compactness in the ob-

ject parts. The algorithm is summarized in Algorithm 2.

At each agglomerating step, clusters with inlier correspon-

dences are likely to merge into larger clusters, and clusters

with outliers are likely to remain as smaller clusters. The

agglomerating step is iterated until the minimum dissimi-

larity � � � � � � � AP � � � � � � � is larger than a tolerable dissimi-

larity threshold  D. After the iteration ends, isolated clusters

are obtained. 1.

Note that different kinds of specific mapping constraints

such as one-to-one or one-to-many feature mapping can be

adopted in our algorithm. In that case, all the correspon-

dences conflicting with those in the merged cluster are re-

moved from ! at the step 10 of Algorithm 2. Our method,

however, can be applied to general cases, allowing for any

cross-mapping.

This agglomerative framework is useful for multi-class

clustering with many distracting outliers. Particularly in our

problem of object-based image matching with real-world

images, significant outlier correspondences disturb the cap-

ture of inliers since some of the outlier pairs also have high

similarity incidentally. However, after iterations of our al-

gorithm under a tolerable dissimilarity value  " , outliers are

1Other cluster isolation criteria can also be used such as dissimilarity
increment criterion in [9]
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Algorithm 2. Agglomerative Correspondence Clustering

1: (Initialization)

2: Establish a set of candidate correspondences

� � � � � � � � � � � � � � 	 

3: Set � th cluster � 
 � � � 
 
 � � � � � � � � � � �
4: � � � � � � � � � � � � � � � 	 

5: (Agglomerative Clustering)

6: repeat
7: � � � � �
8: Find � � � � �

s.t. � AP � � � � � � � � � � � � � � � AP � � � � � � �
9: Merge � � and � � into a single cluster � �

10: Remove from �  ! � all correspondences in conflict

with those in � � (given a mapping constraint)

11: �  � � �  ! � " � � � � � � 
 � # � � � 

12: until $ � t $ � � �

or � � � � � � � AP � � � � � � � % & '
13: (Cluster Selection)

14: Eliminate unreliable clusters from �

likely to form many small correspondence clusters while in-

liers lie in large clusters. Therefore, we can select reliable

clusters of inliers by choosing well-formed large clusters,

eliminating small and trivial outlier clusters. Typically, in-

lier clusters are likely to get enough numbers of correspon-

dences and spread over sufficient areas. Thus, for evaluating

reliability of a cluster, we propose simple reliability criteria

as follows.

1. Both of its convex hulls should be larger than ( a% of

their entire image area.

2. The number of elements in the cluster should be more

than ( m.

All trivial clusters against the above criteria are removed,

and thus outliers are effectively eliminated even if no prior

mapping constraints are provided.

5. Experiments
We evaluate the robustness of our method on three

tasks. The experiments demonstrate the performance of our

method on feature correspondence, object recognition, and

object-based image matching, respectively.

5.1. Feature Correspondence with Outliers, Defor-
mation, and Multiple Object Matches

In this experiment, we generate synthesized images to

simulate cluttered scenes where deformable objects appear.

The purpose is to quantitatively evaluate the feature corre-

spondence performance of our algorithm on various scenes.

We generate ) * ) tiled images pairs, which contain + c

common sub-image(s) as shown in Fig. 3. The ETHZ toys

dataset 2 is used for generating the tiled images. + c com-

2http://www.robots.ox.ac.uk/ , ferrari/datasets.html

Figure 3. An example of synthesized image pairs for experiment.- . -
tiled image forms each of the two images, and the pair

contains / c common sub-image(s) as indicated by dashed lines

( / c 0 1 for this example). Deformation is applied to the right

image using TPS. See the text.

mon sub-images of the tiled image pair are randomly taken

from model images of the dataset 3, the other sub-images

are randomly selected from test images of the dataset. The

position of all the sub-images on the tiled images are also

randomly determined. Then, we impose deformation on

one of the tiled image pair using Thin-Plate-Spline (TPS)

model as shown in the right of Fig. 3. To deform the

image, we select 2 * 2 crossing points from a
� 3 * � 3

meshgrid of the entire image and use them as the control

points of TPS. All the control points are perturbed by Gaus-

sian noise of + � 3 � 4 	 � independently, then TPS warping

is applied. Since we can identifiy the true corresponding

points between the image pair using the TPS model, we can

quantitatively evaluate the feature correspondence scores,

while controlling the amount of outlier, deformation, and

the number of common objects.

We compare the performance of our method with the

spectral method of [12]. To obtain initial candidate fea-

ture matches for both algorithms, we use the MSER fea-

ture detector [14] and the SIFT descriptor [13]. The best

1200 candidate correspondences among all possible ones

are collected according to the distance of SIFT descriptor.

For fair comparison, our dissimilarity measure of (4) was

commonly used for both algorithms with 5 � 3 . The con-

trol parameters are fixed as 6 7 8 = 10 and 9 AP � 3 � 3 : .

For each agglomeration step, we eliminate the candidate

matches conflicting with merging matches based on the

one-to-one mapping constraint as in [12], and the agglom-

eration iterated until a single cluster remains. Thus, cluster

selection is not performed in this experiment. To gener-

ate the affinity matrix ; used in [12], we set ; � � � < � �
� = > � ? " @ � A 
 � A B � C 4 �

s � 3 � based on our dissimilarity mea-

sure. As noted in [12], the parameters of affinity function,

4 s and ? controls the sensitivity to deformation just like the

control parameter 6 AP and 9 AP in our algorithm. We tuned

4 s and ? to generate its best average in our trials: ? � D 3 ,

4 s � � � 3 .

3All the model images are tightly segmented for eliminating back-
ground.
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Figure 4. Performance comparison for our method vs. spectral

method [12]. The average recall rate represented as a solid blue

line for ours and a red dashed line for the method of [12]. std is

shown as vertical bar. The first two rows: both deformation noise

and the number of common sub-image pairs are fixed, varying the

number of outliers. The third row: the number of common sub-

image pairs is fixed and all candidate matches are used, varying the

deformation noise. The forth row: deformation noise is fixed and

all candidate matches are used, varying the number of common

sub-image pairs.

We measure the performance by calculating the recall

rate of each algorithm under the one-to-one feature map-

ping constraint. Both algorithms ran 30 times to produce the

mean values and the standard deviations. Figure 4 shows

the performance curves of our method vs. the spectral

method [12] as we vary the number of outliers, the amount

of deformation, and the number of common sub-images or

objects. The first two rows show the performance with vary-

ing the number of outliers. To control the number of out-

liers in the experiments, all the candidate correspondences

are classified into two sets, inliers and outliers in advance.

Then, starting from the set of only inliers, we gradually in-

crease the outliers in the set. The third row shows the per-

formance curve varying deformation factor � � , and the last

row varying the number of common sub-images � c.

The experiments demonstrate that our method clearly

(a) Image matching examples between model and test images

(b) ROC curves on the ETHZ toys dataset

Figure 5. Object recognition on the ETHZ toys dataset

outperforms than the spectral method [12] except the cases

that few outliers exist. When the amount of deformation or

the number of common objects is varied without control-

ling outliers, our method consistently shows higher average

performance with lower variance. However, both perfor-

mance curves of two algorithms have the similar decreasing

rate. It suggests that the major factor explaining the perfor-

mance difference between two algorithms is the amount of

outliers. The spectral method is prone to the adverse effect

of outliers since all candidates are analyzed as a whole in

the framework. Thus, the eigenvectors of the affinity matrix

� in the spectral method [12] are gradually perturbed by

increasing outliers. Our method, however, starts from con-

fident correspondence pairs and progressively merge them

with reliable neighbors in a bottom-up way exploiting both

compactness and connectedness. It avoids the adverse ef-

fect of distracting outliers.
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5.2. Object Recognition

In this experiment, we test our method on view-based ob-

ject recognition problem with the ETHZ toys dataset. The

performance was quantified by processing all pairs of model

and test images, and compared with Ferrari et al.’s [6] and

Kannala et al.’s [10] reported in their papers. The ROC

curves in Fig. 5 depicts the detection rate versus false-

positive rate of all the methods, while varying the detection

threshold from 0 to 200 matches. A model object is detected

if the number of produced matches, summed over all its

model views, exceeds this threshold. For our algorithm, the

initial candidate feature matches are obtained in the same

way of the previous experiment, and control parameters of

AP linkage are fixed as: � � � = 10 and � AP � � � � �
. and

we set 	 
 � � � for the tolerable deformation and 
 a � � �
,


 m � � for cluster selection. As shown in the plot above, our

method outperforms the state-of-the-arts recognition meth-

ods of both [6] and [10], and achieves 98% detection with

1% false-positives. The results demonstrate impressive per-

formance of our algorithm on inlier collection in feature-

based image matching for recognition. Examples of model-

test view matching are also shown in Fig. 5. Note that unlike

[6] and [10], in this experiment, we did not use the color in-

formation, which might improve our results further.

5.3. Object-based Image Matching

In this section we test our method on the task of object-

based image matching using cluttered image pairs. We used

all the 23 test images of the ETHZ toys dataset without

any model image, which include several deformable objects

with significant clutter, occlusion, and view changes. We

attempted to detect object matching between all the com-

bination pairs of 23 images, 253 image pairs. All the set-

tings of our algorithm was fixed as the previous experiment,

except 
 m � � � . For each combination image pairs, we

assigned a matching score as the total area of the convex

hull of the detected correspondence clusters. Figure 6(a)

shows the several image pairs with high scores, where con-

vex hulls of detected clusters are indicated by colored lines.

In spite of significant deformation and view changes, our

method successfully detects matching image pairs and com-

mon objects. For evaluating object-based image matching

performance, we ranked all the combination pairs based on

the matching scores, and examine from the top score image

whether the image pair have common objects or not. The

right graph of Fig. 6(a) shows how the precision and recall

rate changes as we increase the number of image pairs from

the top score. It demonstrates that most of image pairs in-

cluding matching objects are highly ranked by our method.

To evaluate the detection rate of the object matching, we

checked all detected correspondence clusters based on the

object matching criterion: 50% overlap with the ground-

truth common object region. Our method detected 83.6%

(51 out of 61) among all the object correspondence present

in the 253 image pairs.

Figure 6(b) shows the matching results on various im-

ages collected from Caltech dataset and Flickr site, which

include multiple object correspondences with clutter and se-

vere deformation. In this experiment, we fixed the parame-

ters as follows: � � � = 30, � AP � � � � � , 	 
 � � � , 
 a � � �
,


 m � � � . As shown in Fig. 6(b), despite appearance change

and geometric deformation, our method detects multiple

object-level correspondences across cluttered images. The

last two images in the bottom show object matching re-

sults within single images. The results demonstrate that our

method is useful for unsupervised object-based matching

and category learning.

6. Conclusion

We have presented a novel approach to unsupervised

object-based image matching across arbitrary images. Our

method establishes both feature correspondences and their

object-based clusters, effectively eliminating outliers from

highly noisy candidate matches. The method is simple and

constructed in a general clustering framework, which makes

it applicable to many other unsupervised clustering prob-

lems. We demonstrate that our method not only achieves

good performance, but also has several advantages for fea-

ture matching and object-based clustering problem. We be-

lieve our method is useful for a variety of vision applica-

tions dealing with real-world images such as unsupervised

object matching, content-based image retrieval, unsuper-

vised category recognition, and reconstruction.
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