
Hardware-Based Public-Key Cryptography with Public
Physically Unclonable Functions

Nathan Beckmann1 and Miodrag Potkonjak2

1 Massachusetts Institute of Technology
beckmann@csail.mit.edu

2 University of California, Los Angeles
miodrag@cs.ucla.edu

Abstract. A physically unclonable function (PUF) is a multiple-input, multiple-
output, large entropy physical system that is unreproducible due to its structural
complexity. A public physically unclonable function (PPUF) is a PUF that is cre-
ated so that its simulation is feasible but requires very large time even when ample
computational resources are available. Using PPUFs, we have developed concep-
tually new secret key exchange and public key protocols that are resilient against
physical and side channel attacks and do not employ unproven mathematical con-
jectures. Judicious use of PPUF hardware sharing, parallelism, and provably cor-
rect partial simulation enables 1016 advantage of communicating parties over an
attacker, requiring over 500 of years of computation even if the attacker uses all
global computation resources.

Keywords: PPUF, security, cryptography, public key cryptography.

1 Introduction

Motivation. Cryptography is a scientific and engineering field that develops and an-
alyzes techniques for protecting privacy of stored or communicated information. Cur-
rently, it is mainly realized using secret key (a.k.a. symmetric key, shared key, private
key, and one key) and public key techniques. The emergence and rapid proliferation
of mobile, sensing, health, financial, e-commerce and other pervasive applications has
elevated the system importance of sound, practical cryptographic protocols.

Cryptographic techniques, and in particular public key protocols, have been the
basis for numerous security applications, ranging from secure email, secure remote
access (e.g. passwords and smart cards), remote gambling, and digital signatures to pri-
vacy protection, digital rights management, watermarking, and fingerprinting. However,
there are two major drawbacks of classical cryptographic techniques that are widely
documented in security literature. The first is that the current state-of-the-art crypto-
graphic techniques are based on extremely likely but nevertheless unproven mathemat-
ical assumptions. The second is that even if there are no algorithmic weaknesses in
public key cryptographical protocols, often they can be easily broken due to software
vulnerabilities, physical attacks, or side channels.

Our primary goal in this paper is to present a new type of cryptography that uses a
generalized form of physically unclonable functions (PUFs), an approach that resolves

S. Katzenbeisser and A.-R. Sadeghi (Eds.): IH 2009, LNCS 5806, pp. 206–220, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Hardware-Based Public-Key Cryptography 207

the two main conceptual and practical limitations of classical public cryptography. The
first disadvantage, the use of non-proven mathematical conjectures, is replaced with
technological, physical, and chemical laws that prevent manufacturing of fully identical
physical systems at gate and transistor levels of silicon technology or other nano-scale
systems. The second, more important vulnerability, susceptibility to physical and side
channel attacks, is completely eliminated. In addition, PPUF-based security is in many
applications much faster and requires significantly less energy. For example, in remote
authentication, the new scheme requires only one control cycle to generate the correct
answer.

The new cryptographical approach is based on the novel notion of a public physically
unclonable function (PPUF). A PUF is a physically system that is intractably complex to
replicate. Modern and future silicon technology-based integrated circuits may serve as
PUFs due to their intrinsic manufacturing variability. PUFs have been manufactured and
their use for secret key-based security applications has been demonstrated. Recently, it
has been shown that many types of PUFs can be easily reversed engineered. While
these approaches jeopardize some secret key applications of PUFs, they also create
starting points for the creation of public key-based protocols that employ unclonable
hardware.

PPUFs form a class of PUFs that can be reversed engineered, but once their struc-
ture is completely characterized, one still requires very large time to compute the PPUF
outputs for a given input. We use PPUF characteristics as a public key. We focus on
PPUFs realized as a small circuit. It is relatively easy to envision how PPUF with the
ratio of simulation vs. execution times of κ, gives the computational advantage of κ to
each of the communicating parties (see below). What is remarkable is that this advan-
tage can not only be used for remote exchange of secret information, but can be further
significantly amplified using parallel computations and directly used for creation of a
number of security protocols. We believe that PPUF-based cryptography will provide
an impetus for the creation of conceptually new security approaches that are not just
much faster and use much less energy, but are also resilient against physical attacks and
side channels.

The paper is organized as follows. In §2, we discuss the related work in crytography
and circuits necessary for description of PPUFs. In §3, we discuss some preliminary
results that our work is based on. In §4, we present and analyze a PPUF architecture.
In §5, we present a secret key exchange protocol using PPUFs. And §6 concludes the
paper.

A Simple Example. We now demonstrate the operation of a PPUF and how it can be
used in a secret key exchange protocol. Figure 1 shows a simple PPUF consisting of 6
XOR gates arranged in three rows. The delay through each gate is also shown in Table
1. Due to manufacturing variability, the delays are unequal for each gate and each input
(see §3).

We assume that “01” is initially on the input and the circuit has reached a steady state
(output “00” on gates E, F). Then, at time t = 0, the input becomes “10”. At t = 0.88,
the “0” reaches the output of gate B, which becomes 0. At t = 1.12, the “1” reaches the
output of gate B, and its output becomes 1. Similarly, at t = 0.93 and t = 1.01, gate A
transitions to 0 and then 1.

208 N. Beckmann and M. Potkonjak

Table 1. Gate delays from given input to output (in ps)

Input 1 Input 2 Input 1 Input 2
E .86 .95 F 1.24 .96
C 1.11 .90 D .78 .71
A .93 1.01 B 1.12 .88

Table 2. Output transitions

E {2.54, 2.64, 2.66, 2.74, 2.78, 2.88, 2.9, 2.98} F {2.55, 2.67, 2.75, 2.79, 3.02, 3.26, 3.28, 3.36}
C {1.78, 2.02, 2.04, 2.12} D {1.59, 1.71, 1.79, 1.83}
A {.93, 1.01} B {.88, 1.12}

Fig. 1. A simple PPUF

This pattern repeats through each row of the PPUF. On
row 2, gate C transitions each time a new input arrives.
Looking at Table 1, this occurs at transitions of gate A
plus 1.11 ps and transitions of gate B plus .90 ps. All in
all, gate C transitions at times t ∈ {2.04, 2.12, 2.02, 1.78}.
Similarly, gate D’s output transitions whenever gates A or
B transition, plus the delay through gate D. Gate D tran-
sitions at times t ∈ {1.71, 1.79, 1.83, 1.59}. It should be
clear that on row 3, gates E and F will each transition 8
times, when either C or D transition (plus the delay through
the gate). This gives rise to an exponential number of tran-
sitions on the number of rows (§4.2). See Table 2.

We now show how to exchange a secret key between two parties, Alice and Bob. Sup-
pose Alice owns the above PPUF. The gate-level characterization of the circuit (given
by Table 1) is effectively the public key, enabling accurate simulation of the PPUF.
Bob begins by choosing two numbers to input into the circuit — suppose he chooses
x0 = 01 and x1 = 10. Bob also chooses a time, say t = 2.7 ps. Bob then simulates the
PPUF starting at steady state on input x0 with input x1 arriving at time 0, attempting to
determine the output after 2.7 ps. To do so, he computes all 16 output transitions as we
have done, concluding that the output reads y = 10 at 2.7 ps.

Bob then sends x0, t, and y to Alice. It is now Alice’s job to find x1. To do so, she
iterates over all possible inputs and checks the output of the PPUF for each, clocking
the output at t = 2.7 ps. In this case, x1 = 10 is the only input that produces output
y after 2.7 ps (see Table 3). In a sense, the PPUF is the private key, enabling Alice to
quickly find x1 — the PPUF runs in a matter of picoseconds, so searching the entire
input space takes little time.

An attacker, on the other hand, gets the worst of both worlds: he must simulate
every possible input until x1 is found. He is at a disadvantage over Alice of simulating
the PPUF instead of running it (see §4). He is at a disadvantage to Bob of simulating
several values instead of a single one (see §5). Expanding on these two advantages, we
are able to achieve insurmountable advantage over an attacker.

Hardware-Based Public-Key Cryptography 209

2 Related Work

Table 3. Output at 2.7ps

Input Output
00 01
01 00
10 10
11 11

Cryptography. Since the mid seventies when the first pa-
per on public key cryptography [9] and the first practical
realization [30] were published, cryptography has devel-
oped into a large field with a wide variety of elegant re-
sults. A number of excellent books are available [24] that
emphasize both the theoretical [12] and practical [32] as-
pects. Numerous public key cryptography protocols have
been developed for ciphers, hash functions, message di-
gests, message authentication codes, asymmetric public
key secure communication and storage, public key infras-
tructure, digital signatures, authentication, zero knowledge
proofs, secret sharing, digital money, secure watermarking, remote gambling, and many
other applications. More recently, quantum cryptography has been attracting a great
deal of interest.

Side Channel Attacks. However, quantum cryptography is still a pending technol-
ogy, and there are several serious problems with traditional mathematical cryptography.
While there is relatively little chance that its unproven foundations will be compro-
mised, and although conceptually new algorithmic and statistical attacks are rare and
often fixable [5], there is a wide consensus that a great variety of often inexpensive and
fast physical and side channel attacks are surprisingly effective [17,34].

Unclonable artifacts and PUFs. Unique and unclonable artifacts were first proposed
in early eighties [3]. More recently, several actual implementations have been demon-
strated and analyzed [6]. Lofstrom et al. proposed use of silicon manufacturing vari-
ability (MV) as a source of unique integrated circuits [20]. Koushanfar et al. proposed
used of unique integrated circuits as security and digital right management mechanisms
[19]. Papu et al. introduced powerful notion of physical one-way functions [28]. De-
vadas and his research group realized that silicon MV is a very practical technology
for creation and use of such physically unclonable functions (PUFs) and demonstrated
and analyzed their properties [11]. The joint efforts of Rice and UCLA system secu-
rity groups demonstrated a number of techniques for exposing vulnerabilities of a wide
classes of initial silicon PUFs [22], and introduced several secure PUF architectures
[21].

Timing Precision. There are a large number of techniques for the creation and mea-
surement of rapidly changing signals: (i) interval stretching followed by digital count-
ing, (ii) time-to-amplitude conversion combined with A/D conversion, and three purely
digital methods, (iii) the Vernier method with two oscillators, (iv) time-to-digital con-
version using a tapped delay line, and (v) the Vernier method using two differential
delay lines [16]. Although progress has been steady, it is difficult to achieve time res-
olution significantly better than 1 picosecond using standard on-chip technology and

210 N. Beckmann and M. Potkonjak

techniques. However, with the use of lasers and materials that change their properties
under the impact of changing light, methods exist for measurements in femtosecond
and attosecond range [13,2]. Currently, the most accurate clocks measure time intervals
in a range of 10 attoseconds.

3 Preliminaries

In this section, we briefly summarize the sources of manufacturing variability (MV),
MV modeling, and its impact on delay, dynamic, and leakage power of a gate, issues
and techniques used for gate-level characterization, and introduce our approaches for
addressing time variability of these characteristics due to operational and environmental
impact.

Manufacturing Variability. As the feature size of silicon integrated circuits keeps
shrinking, any given gate from a single design has unique characteristics on each phys-
ical implementation of the design [4]. Essentially, a number of unavoidable physical
and chemical phenomena, such as silicon lattice imperfections, uneven distribution of
dopants, imperfect mask alignment, and non-uniform chemical mechanical polishing,
result in gates with sharply different characteristics [31]. Already in 45 nanometer tech-
nologies, it is common that the delay of the same gate in different ICs differs by 1/3
from the nominal value and that leakage power differs by factor of 20. Note that while
in 1 micron technology, each transistor had a million dopants, in 45 nanometers, the
number is only a few hundred [31]. Therefore, even small variations have pronounced
impact. In future technologies, this situation is bound to become even more significant.
In addition, if the goal is to intentionally create high and unreproducable manufacturing
variability, variable exposition to strong light can further enhance MV by at least two
orders of magnitude [26].

Gate-level Characterization. Gate-level characterization is a process of characterizing
each gate of an IC in terms of its physical properties such as gate width, gate length,
and thickness of oxide or its manifestation properties such as delay, leakage power, and
switching power. An important observation is that if the physical properties are known,
it is straightforward to calculate the manifestation properties and vice versa [23]. There
are two main and orthogonal approaches for gate characterization. The first focuses on
direct measurement of physical parameters using sophisticated microscopes [10]. The
second one measures global delays between flip-flops or static or dynamic power for
different input vectors and uses various techniques for solving systems of equations
under various assumptions to find individual gate characteristics [33,18,1].

The advantage of the first approach is that one can directly measure all gates on each
IC regardless of design structure. However, the approach is very expensive and slow
and requires wafer-level inspection, which has significant potential for damage. On the
other hand, the second approach is fast, inexpensive, and can be applied on packaged
ICs, but sometimes a fraction of gates can not be characterized.

Hardware-Based Public-Key Cryptography 211

While these efforts address gate-level characterization of an arbitrary IC, Dabiri et
al. [8] have developed a specialized architecture that enables complete and accurate
characterization of all gates even in presence of significant error measurements. Their
technique combines statistical modeling and convex programming for very accurate
gate-level characterization. Our architecture design is even better suited to this technique
than their requirements, so it is assumed this technique is used for characterization.

Stability. Increases in temperature may significantly increase the delay of pertinent
gates. Supply voltage has even greater impact, quadratic on switching power and lin-
ear on delay [23]. The surrounding environment and operational conditions may sig-
nificantly alter the nominal manifestation parameters of each gate, sometimes even in
different ways for different gates.

In order to preserve the correctness of our hardware-based cryptography approach,
we use three approaches, two synthetic and one operational. First, we place all gates
as close as possible and supply them by the same part of the power/ground networks
so that the differential impact of manufacturing variability is minimized. Second, we
place several delay paths that consist only of inverters and multiplexers that can be
rapidly characterized interleaved with the PPUF circuitry. Our cryptographic procedure
is invoked only when no or consistent delay changes are detected on these delay paths.

4 Public Physically Unclonable Functions (PPUFs)

We begin with a description of a PPUF and its operation. Later sections demonstrate the
cost of simulation in the general case, how to ensure correct operation under a variety
of conditions, and technological trends related to PPUFs.

4.1 Description

As defined earlier, a PPUF is a physical system that is unclonable due to its structural
complexity, yet whose simulation is feasible, although requiring large time to do so. We
describe how to create a simple circuit meeting these criteria.

A PPUF is a rectangular array of gates of size w x h (Figure 2). Inputs are fed into
the bottom row, and outputs are read from the top row. Each intermediate row feeds the
next, with each gate having b inputs from the previous row.

Due to manufacturing variability, the delay through each gate will vary by a signif-
icant percentage from its neighbors. Furthermore, because of the transistor-level con-
struction of gates, the delay through any given gate for each of its inputs will differ.
Thus, as demonstrated in §1, there will be many transitions on the output before the
circuit reaches steady state.

In order to operate a PPUF, we need three values: x0, the previous input; x1, the
input; and t, the output time. We assume that the circuit has reached steady state with
input x0 before x1 arrives. x1 is input to the circuit, and we clock the circuit at precisely
time t to read the output. This is the final output of the PPUF.

212 N. Beckmann and M. Potkonjak

Fig. 2. A canonical PPUF
circuit

This circuit is a physically unclonable function (PUF)
because its output is heavily dependent on manufacturing
variability in the delay of its gates. This is inherently unfea-
sible to replicate with the same manufacturing technology.
This circuit is public, however, because given the delay of
each gates it can be simulated. As we’ll see in the next
section, this requires exponential time in the height of the
circuit.

4.2 Simulation Analysis

We now analyze the simulation cost of a PPUF. We first do
a simple analysis assuming all gates are XORs. Then we
present a serious flaw with using XOR/XNOR gates and
how to negotiate that issue.

Cost Analysis Using XOR. Consider the simulation of
the PPUF on input x1. We must first calculate the state of the circuit when x0 arrives.
Because the circuit has reached steady state, this computation is trivial to perform by
going through every row of the PPUF, starting at the input, and computing its output
based on the output of the previous level. This can be done in linear time on the number
of gates. But because the output of the PPUF is measured before the circuit reaches
steady state, simulation is no longer so simple.

We proceed using dynamic programming to compute the timings of transitions for
every gate at each level. Because the gates are XORs, a transition on the input will cor-
respond to a transition on the output. We calculate the output level-by-level, as before,
except now we must track much more information. We must record every transition that
occurs at each level, because the timing that ultimately appears at time t could originate
from any of large number of timings from intermediate gates. (There are exponentially
many paths from an intermediate gate to an output gate, each with unique delay.)

We therefore measure the simulation cost of a PPUF as the number of transitions on
the output and intermediate gates. We assume that x1 and x0 are independently selected
— that is, the probability of transition between any bit of x1 and x0 is 1

2 . Let Ni be the
number of transitions at row i in the PPUF. Let ni be the number of transitions for a
single gate at level i.

Ni = wni (1)

ni = bni−1 (2)

Since the delay from each input of a single gate to the output is unique and inputs are
random, E(n0) = 1

2 . Finally, the expected number of transitions at level i is,

E(Ni) =
1
2
wbi (3)

The simulation cost of the entire PPUF is measured at level h, E(Nh) = wbh

2 . The
simulation cost is exponential in the height of the PPUF. This model agrees extremely
well with simulation under the above assumptions.

Hardware-Based Public-Key Cryptography 213

Table 4. “Good” 3-input gates

Input A B C D
000 0 0 1 1
001 0 1 0 1
010 1 1 0 0
011 0 0 0 1
100 1 1 0 0
101 0 0 1 0
110 1 1 1 1
111 1 0 1 0

(a) Truth tables

Value A B C D

B1 0.5 0.5 1.0 1.0
B2 0.5 0.5 0.5 0.5
B3 0.5 1.0 0.5 0.5
B 1.5 2.0 2.0 2.0

(b) Transition rates

Problems with XOR. Until now, we have made a dangerous assumption: gates toggle
their output whenever there is a transition on their input. This assumption is valid for
XOR and XNOR, but it allows for more efficient simulation of the PPUF, ruining our
exponential advantage.

The idea is that if the output toggles at every input transition, then we can easily
compute the output transitions for any input based on the transitions generated by each
bit of the input. These can in turn be precomputed and sorted, giving logarithmic search
time per input. This reduces the simulation time to linear on the size of the circuit.

Let Ti be the set of output transition timings that occur when only input i toggles.
This is well-defined because although the output may vary, the timing of transitions will
be the same regardless of the previous state of the circuit. Let a = a1...aw be an input
to the PPUF. (Assume that previously the input was 0, so ai = 1 if and only if the ith

input toggles). Then the set of output timings generated by a is Ta = ∪i:ai=1Ti.
We can now use Ta to compute the output at any time after a arrives. First, we

compute the output before a arrives in linear time. Then, to compute the output at time
t after a arrives, we must know the number of output transitions occurring before t in
Ta. This can be computed by summing the number from each Ti. Assuming that each
Ti has been precomputed and sorted, this takes O(log(bh)) = O(h log(b)). There are
w inputs, giving overall simulation cost of O(wh log(b)).

Fortunately, this approach is easily foiled. We can break the key assumption by us-
ing a more complicated truth table than XOR. We design the gate so that it has equal
numbers of 0’s and 1’s on the output — this keeps the probability of each 1

2 for each
output, uniformly dividing the PPUF’s output through the number space1. However, the
only 2-input gates that have this property are XOR, XNOR, and functions of a single
input, so we must move to at least 3-input gates.

There are many 3-input gates that meet our needs of (i) having equal numbers of 0’s
and 1’s on the output, (ii) depending on all inputs, and (iii) having “complex” output
behavior (not toggling on every input transition). Table 4a gives some examples.

1 This isn’t completely true, because gates share inputs and therefore aren’t independent. Simu-
lation indicates that before the circuit reaches steady state, it is still approximately correct.

214 N. Beckmann and M. Potkonjak

Revised Cost Analysis. We must reassess the cost analysis if we use gates that do
not always toggle on an input transition. Previously, in Eq. (2) we multiplied ni−1 by
b because we assumed each input transition produced an output transition. We must
replace this with the expected number of output transitions per input transition for the
gate.

Define Bi as the expected number of output transitions when input i is toggled, and
Ci the number of possible transitions if input i is toggled. Clearly, Bi = Ci

2b
2.For XOR

and XNOR, Ci = 2b and Bi = 1 for all i. Now define B as the expected number of
output transitions per input transition, B =

∑b
i=1 Bi. Eq. (2) and (3) become (assuming

homogenous gates),

E(ni) = Bni−1 (4)

E(Ni) =
1
2
wBi (5)

Our advantage remains exponential, although slightly diminished. Table 4b gives values
of Bi and B for gates in Table 4a. We wrote a simulator for PPUFs of several gate types,
and results agreed with the growth rates calculated for each type of gate.

4.3 Limiting Simulation Cost

This section describes a small modification to the PPUF that allows for much less ex-
pensive simulation for the simulating party in the secret key exchange protocol (§5).

As indicated in the example (§1), it will be useful to find ways to limit the cost of
simulation, so long as doing so does not proportionally reduce the simulation time for
an attacker. One such method is to compute a single output gate of the PPUF instead of
the complete output. This requires computing a large fraction of the previous rows, but
since simulation cost increases exponentially with the height of the circuit, we still save
the majority of simulation cost.

This gives us a single bit as the output of the PPUF. This isn’t sufficient for our
purposes, because we need to be able use the output of the PPUF to distinguish between
many different inputs. In order to increase the size of the output, we can simply include
the output of several previous rows feeding the final output (Figure 3). These will be
mapped through a hash function so that their inclusion does not provide third parties
any additional information or enable them to short-circuit the simulation.

Optimistically, we are computing one of w outputs, so we should expect 1
w reduced

simulation cost. But this ignores the cost of simulating the previous rows, which reduces
the savings. Summing over the previous rows, it can be shown that the reduction is
roughly 2

w .

2 Because we have equal numbers of 0’s and 1’s from each gate and the PPUF’s input is assumed
to be random, we can assume that the input to each gate will also be random. So for each
possible input transition, we can average over all possible inputs.

Hardware-Based Public-Key Cryptography 215

4.4 Fault Tolerance

Fig. 3. Inputs “feeding” a
PPUF output

A major practical concern in the operation of PPUFs is the
timing of the output. With exponential growth in the num-
ber of output transitions and the extremely fast operation
of circuitry, the mean time between output transitions is
tremendously small. Section 2 discussed the state of the
art in measurement accuracy. This section presents a few
algorithmic techniques to mitigate the problem.

There are a number of strategies to increase our ability
to clock the output at the proper time. The circuit can be
clocked multiple times (both simultaneously and in sep-
arate computations), with each measurement “voting” on
the final value of the output. This reduces the impact of
changing conditions, such as temperature.

More significantly, note that the simulating party is at a
distinct advantage. Because the output timings are some-
what randomly distributed, there will be intervals that are
much larger than the mean interval time. The simulating party can choose a time that
has an unusually long stable interval.

Finally, note that the maturation of developing technologies (§2 and [13,7,2,14,25])
could eliminate this problem as a practical consideration entirely. With accuracy in the
attosecond range, combined with the techniques already mentioned, the simulation cost
of a PPUF could be raised as high as practically desirable.

4.5 Technological Trends

Any security techniques must be evaluated against technological trends. Although any
strategy for predicting the future is inherently risky, it appears that essentially all tech-
nological trends favor hardware-based cryptography and security techniques. First of
all, rapid progress in high-speed imaging technologies and micro/nano sensing will
make side channel attacks even more effective and widespread. Also, the proliferation
of horizontal integrated circuit business models where design tools, design, manufac-
turing, testing, and integration are done by different untrusted companies will increase
the danger of hardware Trojan horses and hidden channels. Finally, application trends
favor mobile systems where their physical security will be significantly lower.

We believe that six technology trends will have major impact on PPUFs and our new
cryptography and security approach: higher levels of VLSI integration, smaller feature
sizes, increasingly difficult cooling, new interconnect and input/output technologies,
and more economically viable and accurate time measurement technologies.

Higher integration levels have two main ramifications: larger PPUFs and faster sim-
ulation. The main consequence is a rapidly increasing execution-simulation gap due
to increased PPUF parallelism. Finer feature sizes have three qualitatively novel ram-
ifications: the transistor will not be additionally faster, switching power will begin to
increase slowly, and leakage power will become dominant [35]. The net consequence is

216 N. Beckmann and M. Potkonjak

that thermal management will become more difficult and will effectively reduce simu-
lation speed. New interconnect technologies such as nanowires, photonic crystals, plas-
monics, RF, and 3D ICs have potential to increase I/O and data transfer rates by several
orders of magnitude and, therefore, favor simulation. However, photonic crystals [29]
and plasmonic wires [27] are even more sensitive to manufacturing variability, operate
on much higher frequencies, are more complex to simulate, and will greatly increase
the execution-simulation gap. In summary, new technologies will keep increasing the
simulation speed and PPUF realized in today’s technologies will be more susceptible to
simulation attacks. At the same time, PPUF-based techniques will become even more
attractive as technology progresses.

5 Secret Key Exchange with PPUFs

5.1 Description

We enable two parties, A and B, to exchange a secret key. We assume that A is in
possession of a PPUF. B is the “simulating party” who uses the public description of
A’s PPUF to simulate its output for some input.

The basic idea of the protocol is simple: We consider a range of numbers of size n. B
selects some number, x, from this range and simulates the PPUF on this input. B sends
the output, y, to A. A then searches through all n numbers until x is found. The full
protocol has a few twists to make it work correctly with PPUFs as they are described
above and to get a few other useful properties.

Before describing the detailed protocol, we go over a few fundamentals. One way this
protocol could be attacked is to precompute the output of the PPUF for every possible
input. This is easy to prevent by choosing the secret key, x, to be a fairly long number,
say 1024 bits. This would require 21024 bits of storage, which is completely infeasible3.

Another concern is that we use the output of the PPUF to distinguish between differ-
ent x, but there might be collisions, leading to false matches and incorrect results. This
is addressed in the same fashion by using a long enough output so that the probability of
a collision is negligible4. Both technique come at very little hardware cost in the PPUF.

The protocol is as follows:

1. B simulates values.
(a) B randomly selects x0 from 0...2w, where w is input width of the PPUF.
(b) B selects x1...xm from x0...x0 + n, where n is computed as in §5.2.
(c) B applies a hashing function, f , to compute z1 = f(x1)...zm = f(xm).
(d) B simulates z1...zm on A’s PPUF, starting with x0 as the initial input, and

timing at t1...tm. This produces outputs y1...ym.
2. B sends x0, m, n, y1...ym, and t1...tm to A.
3. A finds x1...xm.

3 Actually, it requires much more. One would need to store the PPUF output for all inputs of the
form (x0, x1, t).

4 The output of each bit of the PPUF is 0 or 1 with equal probability, as described earlier (§4).
Therefore the output is distributed uniformly through the output space, and increasing the
length of the output exponentially drops the chance of collisions.

Hardware-Based Public-Key Cryptography 217

(a) A iterates over each x ∈ (x0, x0 + n).
(b) A computes z = f(x).
(c) A runs the PPUF with x0 as the steady-state input, z as the input, and clocking

at each t1...tm.
(d) If the output at time ti equals yi, then store x as xi.
(e) Halt when all x1...xm are found.

4. A and B concatenate z1...zm to form the secret key.

The two new elements of the protocol are the multiple values, m, and the hashing func-
tion, f . We use multiple values in order to reduce the variance in the protocol. When a
single value is sent, then the search time for A or any attacker has large variance. This
is undesirable if we are trying to achieve a specific level of security or allocate a set
amount of work for A. By sending more values, we increase the expected fraction of
the number space that must be searched and, more importantly, significantly reduce the
variance.

We also apply a hashing function, f , to each value before sending it to the PPUF.
This is because using partial simulation (§4.3), the PPUF’s output doesn’t depend on
all of its inputs. By selecting from a range x0...x0 + n, we will have many bits that
are shared between numbers. Therefore, the output of the PPUF might no longer be
unique, greatly increasing the odds of collisions on the output. By applying a hashing
function, we ensure that the bits of the input will be different for each xi and therefore
the output of the PPUF will be unique (with extraordinarily high probability). There
are many ways of achieving the same effect — for example, defining xi = f i(x0), or
having the output of xi−1 be the steady-state input for xi.

5.2 Analysis

The advantage of this protocol comes because an attacker does not know which values
have been selected, nor does he have A’s PPUF to enable fast searching. He therefore
must search the x0...x0 + n values, simulating each, to find each xi. Even with fairly
small m, he will have to search the majority of the n numbers. So his disadvantage over
B is roughly n, and his disadvantage over A is roughly κ, the cost of simulation.

More specifically, let WA be the expected work for the owner of the PPUF. Here,
work is normalized to the cost of computing the output of the PPUF. Similarly, WB is
the expected work for the simulating party, and WO is the expected work for an observer
(attacker). If WA �= WB , then the effective computational advantage over an attacker is
the minimum of either advantage. This imposes the constraint WA = WB .

The owner of the PPUF’s work is dominated by the search for x1...xm. So WA is
simply the amount of numbers that must be searched to find all xi. Using simple proba-
bility, WA = m

m+1n. Similarly, the simulating party’s work is dominated by simulation
and WB = mκ. This yields,

n = (m + 1)κ (6)

The work for an attacker is the same expected number of computations, except each is
a simulation of the PPUF.

WO =
mn

m + 1
· κ =

WA
2

m
(7)

218 N. Beckmann and M. Potkonjak

The attacker performs quadratically more computation than either communicating
party.

Including partial simulation (§4.3), WB is reduced by a factor of ∼ 2
w . This changes

the results to,5

n =
2
w

κ(m + 1) (8)

WO =
mn

m + 1
κ =

w

2
WA

2

m
(9)

Finally, note that the network requirements of this protocol are minimal. We send 2m+1
values of length w and two fairly small integers. Because m is fairly small, network
requirements are no more than 1 kB.

5.3 Practical Performance

This section gives numbers to the equations above and shows the advantage that can be
practically gained. Pessimistically assuming that the PPUF operates in the cycle time
of a general purpose processor, simulation takes κ cycles. Due to inherent parallelism
in the simulation and the availability of multicores, the simulating party should have
roughly 10 GHz, or 1010 cycles per second of computational power.

If m = 3 numbers are simulated and the simulating party takes 103 seconds (fifteen
minutes) to simulate, then this gives the simulating party roughly 3 · 1012 cycles of
simulation per number. Assuming a PPUF with w ≈ 104 (much less than could be
achieved with modern silicon manufacturing technology), the simulation cost is κ ≈
1.7 · 1016 cycles6. The owner of the PPUF should search n ≈ 1013 numbers, which is
obvious since WA = WB , and the simulating party spends 1010 · 103 = 1013 cycles.
The attacker must perform WO = 1.7 · 1029 cycles of simulation on average to find the
secret key.

Studies indicate that there are no more than one billion computers in the world [15].
The vast majority of these computers are incapable of 10 GHz of computation, but for
argument we will assume that each is as powerful as the simulating party’s. Then the
computational throughput of an attacker has an upper bound of 1019 cycles per second.
An attacker would take 1.7 · 1010 seconds, or 528 years to break this protocol.

Throughout this example we have been extremely generous to the attacker. In reality,
the security of the scheme is several orders of magnitude better than claimed.

6 Conclusion

We have developed a new approach for exchange of secret keys and public key cryp-
tography. We use the novel notion of a public physical unclonable function and its

5 Since m � n, the majority of simulations performed by an attacker are unsuccessful and he
must simulate all outputs, increasing the cost by a factor of two. This also accounts for the
reduction in WB .

6 Note that this does not exactly correspond to Nh = κ (see Eq (3)), as there are constant factors
that require much more than one cycle to process a single transition in the PPUF.

Hardware-Based Public-Key Cryptography 219

implementation via integrated circuits implementation where easily measured delays of
PPUF gates serve as public key. The approach is intrinsicly resilient against physical
and side channel attacks due to physical laws and technological constraints that prevent
PPUF cloning.

References

1. Alkabani, Y., Massey, T., Koushanfar, F., Potkonjak, M.: Input vector control for post-silicon
leakage current minimization in the presence of manufacturing variability. In: Design Au-
tomation Conference, pp. 606–609 (2008)

2. Baltuska, A., Udem, T., Uiberacker, M., Hentschel, M., Goulielmakis, E., Gohle, C.,
Holzwarth, R., Yakovlev, V., Scrinzi, A., Hansch, T., Krausz, F.: Attosecond control of elec-
tronic processes by intense light fields. Nature 421, 611–615 (2003)

3. Bauder, D.: An anti-counterfeiting concept for currency systems. Technical report, Sandia
National Labs, Albuquerque, NM (1983)

4. Bernstein, K., Frank, D., Gattiker, A., Haensch, W., Ji, B., Nassif, S.R., Nowak, E., Pearson,
D., Rohrer, N.: High-performance cmos variability in the 65-nm regime and beyond. IBM
Journal of Research and Development 50(4/5), 433–449 (2006)

5. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. Journal of Cryp-
tology 4(1), 3–72 (1991)

6. Chen, Y., Mihcak, M., Kirovski, D.: Certifying authenticity via fiber-infused paper. ACM
SIGecom Exchanges 5(3), 29–37 (2005)

7. Corkum, P., Krausz, F.: Attosecond science. Nature Physics 3(6), 381–387 (2007)
8. Dabiri, F., Potkonjak, M.: Hardware aging-based software metering. In: The Design, Au-

tomation, and Test in Europe (2009)
9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information

Theory IT-22, 644–654 (1976)
10. Friedberg, P., Cao, Y., Cain, J., Wang, R., Rabaey, J., Spanos, C.: Modeling within-die spa-

tial correlation effects for process-design co-optimization. In: Proceedings of the 6th Inter-
national Symposium on Quality of Electronic Design, pp. 516–521 (2005)

11. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In:
Proceedings of the 9th ACM conference on Computer and communications security, pp.
148–160 (2002)

12. Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University Press, Cambridge
(2001)

13. Goulielmakis, E., Yakovlev, V., Cavalieri, A., Uiberacker, V.P.M., Apolonski, A., Kienberger,
R., Kleineberg, U., Krausz, F.: Attosecond control and measurement: Lightwave electronics.
Science 317, 769–775 (2007)

14. Gustafsson, E., Ruchon, T., Swoboda, M., Remetter, T., Pourtal, E., Lpez-Martens, R., Bal-
cou, P., L’Huillier, A.: Broadband attosecond pulse shaping. Physical Review A 76(1) (2007)

15. In 2008 the number of personal computers will reach billion (2008),
http://www.science.portal.org/in/71 (accessed on February 15, 2009)

16. Kalisz, J.: Review of methods for time interval measurements with picosecond resolution.
Metrologia 41(1), 17–32 (2004)

17. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other sys-
tems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidel-
berg (1996)

18. Koushanfar, F., Boufounos, P., Shamsi, D.: Post-silicon timing characterization by com-
pressed sensing. In: IEEE/ACM International Conference on Computer-Aided Design, pp.
185–189 (2008)

http://www.science.portal.org/in/71

220 N. Beckmann and M. Potkonjak

19. Koushanfar, F., Qu, G., Potkonjak, M.: Intellectual property metering. In: Moskowitz, I.S.
(ed.) IH 2001. LNCS, vol. 2137, pp. 87–102. Springer, Heidelberg (2001)

20. Lofstrom, K., Daasch, W.R., Taylor, D.: Ic identification circuit using device mismatch. In:
IEEE International Solid-State Circuits Conference, pp. 372–373 (2000)

21. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure puf. In: IEEE/ACM Inter-
national Conference on Computer Aided Design (2008)

22. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware security. In:
IEEE International Test Conference (2008)

23. Martin, S., Flautner, K., Mudge, T., Blaauw, D.: Combined dynamic voltage scaling and
adaptive body biasing for lower power microprocessors under dynamic workloads. In:
IEEE/ACM international conference on Computer-aided design, November 10-14, pp. 721–
725 (2002)

24. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, Boca Raton (1996)

25. Mysyrowicz1, A., Couairon, A., Keller, U.: Self-compression of optical laser pulses by fila-
mentation. New J. Phys. 10, 1–14 (2008)

26. Neureuther, A.: Personal Communication (November 2007)
27. Ozbay, E.: Plasmonics: Merging photonics and electronics at nanoscale dimensions. Sci-

ence 311, 189–193 (2006)
28. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Sci-

ence 297(5589), 2026–2030 (2002)
29. Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton

(2008)
30. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM 21(2), 120–126 (1978)
31. Roy, S., Asenov, A.: Where do the dopants go? Science 309(5733), 388–390 (2005)
32. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. John

Wiley, Chichester (1996)
33. Shamsi, D., Boufounos, P., Koushanfar, F.: Noninvasive leakage power tomography of inte-

grated circuits by compressive sensing. In: International symposium on Low power electron-
ics and design, pp. 341–346 (2008)

34. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003)

35. Thompson, S., Packan, P., Bohr, M.: Mos scaling: Transistor challenges for the 21st century.
Intel Technology Journal, Q3, 1–19 (1998)

	Hardware-Based Public-Key Cryptography with Public Physically Unclonable Functions
	Introduction
	Related Work
	Preliminaries
	Public Physically Unclonable Functions (PPUFs)
	Description
	Simulation Analysis
	Limiting Simulation Cost
	Fault Tolerance
	Technological Trends

	Secret Key Exchange with PPUFs
	Description
	Analysis
	Practical Performance

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

