
Accountable Clouds

Ashish Gehani, Gabriela F. Ciocarlie, Natarajan Shankar
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, USA

{ashish.gehani, gabriela.ciocarlie, natarajan.shankar}@sri.com

Abstract—An increasing number of organizations are migrat-
ing their critical information technology services, from healthcare
to business intelligence, into public cloud computing environ-
ments. However, even if cloud technologies are continuously
evolving, they still have not reached a maturity level that allows
them to provide users with high assurance about the security of
their data beyond existent service level agreements (SLAs).

To address this limitation, we propose a suite of mechanisms
that enhances cloud computing technologies with more assur-
ance capabilities. Assurance becomes a measurable property,
quantified by the volume of evidence to audit and retain in
a privacy-preserving and nonrepudiable fashion. By proactively
collecting potential forensic evidence, the cloud becomes more
accountable, while providing its regular services. In the case of
a security breach, the cloud provides the appropriate reactive
security framework for validating or repudiating claims. More-
over, different levels of assurance relate to different levels of
storage and privacy protection requested by users, leading to an
assurance-based price model for cloud services.

I. INTRODUCTION

Digital forensics is playing an increasing important role
in investigating criminal activity. According to the Federal
Bureau of Investigations (FBI) [6], in 2011, 4,263 TB of
data was processed for digital forensic in 7,629 criminal
examinations as opposed to 439 TB and 880 criminal cases
in 2003. With the increased migration of critical information
technology services into the cloud, digital evidence is poised to
become instrumental in investigating criminal activity commit-
ted in cloud environments as well. The reasons are manifold –
financially lucrative targets are now hosted on clouds, systems
are so complex that vulnerabilities are regularly discovered,
and digital identities are becoming widespread, making audit
trails effective. Verifying security compliance using audit trails
is an effective complement to access control systems. The
approach supports greater flexibility since security policies
can be introduced retrospectively, modified dynamically, and
reasonable violations can be accommodated. It is scalable since
the auditing granularity can be dynamically tuned.

When a loss is reported, the offense must be characterized.
Forensic analysis in the physical world relies on the trail of
environmental changes made by a crime’s perpetrator. This is
known as Locard’s exchange principle [14], after the French
pioneer of forensic science who articulated it in the early
20th century. In a digital world, a criminal could conceivably
erase all traces of activity. It is thus incumbent on cloud
computing services to provide assurance based on trustworthy
audit trail with sufficient detail and reliability to allow forensic
conclusions to be drawn. However, the indiscriminate addition

of auditing to a runtime environment introduces performance
penalties for executing applications, requires large amounts of
storage, and may compromise the privacy of individuals.

Currently, cloud computing technologies offer little in
terms of sound digital forensic support, and their service
level agreements (SLAs) include no clauses with procedures
to follow in case of forensic investigations [21]. There are
numerous scenarios where this lack of appropriate forensic
support as a reactive security measure could play a significant
role; we review some of the most relevant ones below.

Healthcare Systems

Many hospitals now outsource their information technology
infrastructure to services that are deployed on clouds. A
patient wishes to demonstrate that a hospital was negligent in
following the proper procedures, while the hospital wishes to
demonstrate that there was no lapse on its part. The hospital
therefore collects nonrepudiable evidence for the procedures
that it has followed. The patient has a right to examine the
evidence that is relevant to his or her treatment. The evidence
can be analyzed with respect to the processes that the hospital
is required to follow. These processes also pertain to the
sharing of medical information as regulated by the Health
Insurance Portability and Accountability Act (HIPAA) [12].

Electronic Mail

Email often contains evidence similar to that of physical
correspondence, but without the same degree of reliability.
To support digital forensics, an electronic mail server must
require email to be authenticated by the sender and registered
by the receiver. The evidence of the sending and receipt of
the electronic mail must be recorded by mail servers residing
on clouds. The sequence of mail exchanges can then be used
as evidence to establish certain claims. The electronic mail
record can also be combined with other forms of evidence to
corroborate a breach of contract.

Business Workflow

Many transactions involve work that is sequenced through
multiple agents. Each agent can pick up the transaction only
when some preconditions have been met. Since these actions
are distributed over a network, it is not possible to monitor
an entire transaction. Parts of the transaction might also be
outsourced across multiple business domains. However, by
recording the state of the transaction using cloud services at
key points in the workflow, it will be possible to reconstruct the

Nondet

read(int fd, void *buf, size_t nbyte);
access(const char *path, int amode);

Events:

Requirements:

filter=/usr/local/cybertrail/hipaa.rules
path=/home/user/medical_record

Step 1. Extract application/OS
 function/argument
 requirements from
 formalization of laws.

/dev/tcp
Nondet

/home/user/medical_record

/home/user/encrypted_record

open(cons char *path, int flag, ...);

Step 2. Annotate audit targets
 that are nondeterministic.

/dev/random

HIPAA

permittedBy(Section_16_502_a, Atom) :ï
 isFromCoveredEntity(Atom),
 requiredBy(Section_16_502_b, Atom)).

ordering of events to reactively ensure that the business rules
have been followed. Evidence-based workflow has applications
beyond law enforcement in areas such as software certification
and clinical trials.

Online Services

A purchase of services or goods from a service in the
cloud can involve a complex sequence of exchanges. For
example, an auction involves collecting bids and counterbids
to determine a winner. The auditing infrastructure can ensure
that the bidding process and winner selection was fair by
automatically generating evidence that each participant can use
to verify that the process was free of collusion after the auction
ends. In particular, it will allow the seller and the bidders to
check that previously observable claims are consistent with the
end result.

Insider Threats

A security violation occurs when a computing agent obtains
unauthorized accesses to a protected resource. By maintaining
a record of the accesses along with the permissions and
authorizations, a cloud service can detect security violations.
This is particularly useful where there are obvious legal and

employment consequences to such unauthorized access. While
such breaches can also be flagged by an online intrusion detec-
tion system, an audit-based approach is open to new forms and
sources of evidence and can more easily admit exceptions and
policy changes, including those that have retrospective effect.

II. CLOUD FORENSICS

Given the challenges raised by the previous scenarios, we
propose a principled approach for collecting forensic evidence
in the cloud environment. The approach includes different
steps that lead to more accountable cloud environments, while
allowing for assurance-based price models for cloud services.

Formal Representation

The first step consists of taking extant laws and extracting
from them an abstract description of what elements can serve
as digital evidence. For example, a substantial part of HIPAA
and portions of other laws have been converted into a formal
representation by members of the computer science department
and law school at Stanford [3]. Such representations can
serve as the basis for defining a set of operating-system- and
application-level evidence requirements.

requirements

Kernel
User

Application
logClaim()

open()
read()

Step 3. Auditing is activated
 only where and when
 necessary.

Evidence

Target Mapping

The next step involves translating the evidence require-
ments into concrete elements of the operating-system and
target applications’ programming interfaces. This will inform
the cloud computing runtime regarding which specific pa-
rameters and functions need to be audited. In particular,
any elements that would introduce nondeterminism into the
execution of a target application, such as reads from a network
socket, /dev/random, or an asynchronous signal, need to
be audited. Coupled with the target applications’ binaries
and linked libraries, and a record of their initial execution
environments, this will suffice for validating an audit record,
as demonstrated in the virtual-machine context [5]. The use
of a continuous snapshotting filesystem, such as NILFS [16],
will ensure the subsequent availability of data after files are
modified or deleted.

Dynamic Auditing

A third step consists of mechanisms to dynamically activate
auditing functionality to collect digital evidence when required.
Extant systems rely on interfaces that either introduce too
much overhead or do not have visibility at the abstraction levels
of interest. The use of a trusted kernel can significantly reduce
the overhead imposed. For example, the Linux kernel markers
insert noops that do not adversely affect runtime behavior
at locations where auditing functionality is inactive by default
and can safely be added subsequently. When a point of interest
is determined, the kernel image can be dynamically modified
in memory, replacing the specific noops corresponding to a
marker with a branch to the requisite auditing code.

Privacy-Aware Evidence Management

The fourth step aims to protect the privacy of users, starting
from the point at which audit records are first generated. The
approach relies on being able to separate digital evidence that
has been deterministically generated from that which is not.

For example, the data read from a file is considered to be
deterministic if it can be read again from a retained copy (such
as one available from a snapshotting filesystem), whereas data
read from a network connection is considered nondeterminis-
tic. The vast majority of evidence is deterministic and can be

omitted from the evidence record if its sources (which include
the program that created it, the runtime environment in which
the program started, and all nondeterministic inputs) are re-
tained. The remaining records are a small enough set that they
can be encrypted using attribute-based encryption [17] such
that only parties with the right set of credentials can access
them. Committing signed hashes of an applications’ binary
and linked libraries, input files, and runtime environment will
make it possible to detect if a cloud user claims to have used
a different application or inputs from the ones she actually
utilized.

Distributed Trails

The next critical step ensures that the audit trail is nonrepu-
diable. Past approaches [9] have focused on applications that
can be modeled as deterministic finite state automata. Nodes
that serve as witnesses are assumed to have copies of these
automata to check that the evidence emitted from a remote
node is consistent. However, handling arbitrary programs and
maintaining user privacy precludes sharing the automata de-
scriptions.

To create a distributed audit trail, a system service can run
on all participating cloud nodes. When a cloud node boots
up, it inserts itself into an overlay that performs a rendezvous
using an extant structured peer-to-peer infrastructure, such as
OpenDHT [19]. Since the privacy-protected evidentiary record
developed in the previous step is relatively small, redundant
copies of it will be maintained as a distributed journal in the
overlay. The functioning of the latter construct will be similar
to that of the log used in journaling filesystems [11] with
optimization for intra-node locality.

The system service maintains a witness store at each cloud
node that contains fragments of other nodes’ journals. When
nondeterministic elements of digital evidence are needed dur-
ing a forensic analysis, they are retrieved from corresponding
distributed journals rather than the originating nodes. In this
manner, the audit trail can be repudiated only if a substantial
fraction of the cloud infrastructure has been compromised.
The system has the desirable property that its trustworthiness
increases with scale, similarly to Tor, the Onion Router [4].
If the overlay has a sufficient number of nodes outside the
cloud infrastructure, the scheme will yield accountable cloud

Nondet

questionnaire
libc

File

FileFile

Process

/home/user/filled_answers
File

= Hash committed

= Hash and Encrypted version
 committed

Step 4. Nondeterministic inputs are

/dev/tcp

 encrypted for remote commitment
 along with hashes of all inputs,
 binaries, linked libraries, and outputs.

/home/user/medical_record

/bin/questionnaire/usr/lib/libc

computing. The external nodes will record sufficiently many
nondeterministic fragments of a computation to allow claims
to be validated or repudiated.

Actuarial Forensics

Finally, rather than attempting to provide an a priori
level of auditing, cloud providers allow customers to select
a level of service. This assumes a price model based on the
quantity of proactively collected forensic evidence and privacy
protection, similar to insurance price models. If an application
is compromised, the chance of being able to reconstruct
the intruder’s actions increases as more detailed evidence is
available. The finer granularity of evidence could take the
form of higher sampling rate in the case of statistical-based
anomaly detection (which requires high fidelity data), or more
classes of events and details in the case of specification-based
anomaly detection. Both cases impose an overhead in storage
and processing resources that the cloud service has to support.

III. GUARANTEES

The above steps towards an accountable cloud will offer
the following security guarantees:

• Evidence completeness: The formal representation
and target mapping steps will ensure that all the
relevant evidence (according to the extant laws) is
collected.

• User privacy-preservation: The privacy-aware evi-
dence management step will ensure that the users’
privacy is protected, by applying attribute-based en-
cryption to the audited data generated by users’ activ-
ity.

• Audit-trail nonrepudiation: The distributed trails
steps will ensure that that the audit trails are nonre-

pudiable by storing them in distributed journals. The
guarantee increases with scale.

IV. RELATED WORK

The need for accountable cloud has been identified also by
Haeberlen, who emphasized the benefits for both the customers
and the cloud providers [10]. His work was “intended as a
call for action”, which we followed, by providing more steps
towards accountable cloud.

Our approach calls for proactive collection of forensic
evidence which is then examined to identify criminal activity.
Possible approaches for forensic analysis include online in-
trusion detection using a rule-based expert system to examine
audit data to identify possible unauthorized access in a system.
The rules are based on the typical patterns and profiles of
attacker behavior. Auditing has been used to monitor threats
against Air Force computers by Anderson as far back as 1980
[1]. Most host-based intrusion detection systems use logs [2].
A number of research efforts have focused on log management.
Schneier analyzed the problem of maintaining the integrity of
log files on a host [22]. Silbert considered the problem of
secure auditing in a distributed system [23]. Flack focused
on reconstructing formal semantics from logs [7]. Roger im-
plemented an online algorithm that checks the model defined
by declarative constraints stated in a temporal logic against
log records [20]. Marty proposes the use of use-case oriented
logging for forensic analysis of cloud applications [15]. The
main concern we focus on is whether sufficient auditing can
be performed within a budget to be able to prove in a court of
law that the evidence supports a specific claim that a violation
did or did not occur.

In the case that the cloud service provides an installed
operating system, the auditing can occur in the trusted code
present in the virtual machine. On Unix-based systems, the

node

journal

on cloud
Witness store

Distributed

Cloud node

Step 5. Nondeterministic evidence is redundantly

 overlay of participating witness stores.
 logged in a distributed journal stored in an

ptrace interface was designed for debugging and therefore
allows very fine-grained intervention. However, the fact that
it requires two context switches (to and from the monitoring
process) to handle each system call means that it slows
down the monitored process by an order of magnitude [13]
for applications that make heavy use of resources (such as
the filesystem or network) that are mediated through kernel
interfaces. Another strategy is to use the /proc filesystem
to gather evidence, as done by sandboxing schemes [8], or
a kernel module that intercedes at the system call interface
directly, such as the auditing library libaudit and its associ-
ated tools that are included in prominent Linux distributions.
These approaches have substantially improved performance
though they are unable to audit application-level function
calls. The SystemTap project [18] allows a wider range of
instrumentation, with visibility into the kernel itself, and allows
specifications to be written at an abstract level that is then
automatically compiled into C, which in turn produces a kernel
module. However, all these approaches rely on tracehooks or
tracepoints in the kernel where a check is done to see if the
event is of interest, in which case an audit record is generated.
The side effect of the branch that must be performed is that a
cache miss results, slowing down performance even when no
auditing is active. Our proposed approach using Linux kernel
markers does not suffer from this.

V. CONCLUSIONS

Due to the continuous migration of organizations’ critical
information technology into the cloud, we believe that the
cloud providers should make a concerted effort towards ac-
countable clouds. Assurance of the security of their customers’
data can be formalized by first-class SLA clauses. These can
be supported in practice by a number of steps we introduce
here, aiming to make cloud computing more accountable by
proactively collecting forensic evidence. These steps include

mapping laws into evidentiary requirements, targeting these
into system-specific evidence descriptions, dynamically acti-
vating auditing as needed, cryptographically protecting the re-
sulting evidence, distributing the audit trails so they cannot be
repudiated and providing varying levels of auditing according
to the level of forensic assurance needed by the customers.

REFERENCES

[1] James P. Anderson, Computer security threat monitoring and surveil-
lance, Technical Report, Fort Washington, PA, 1980.

[2] Stefan Axelsson, Intrusion detection systems: A survey and taxonomy,
Technical Report 99-15, Chalmers University of Technology Depart-
ment of Computer Engineering, March 2000.

[3] Adam Barth, Design and analysis of privacy policies, Ph.D. Thesis,
Stanford University, 2008.

[4] R. Dingledine, N. Mathewson, and P. Syverson, Tor: The second-
generation onion router, 13th Conference on USENIX Security Sym-
posium, 2004.

[5] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and
Peter M. Chen, ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay, Symposium on Operating Systems Design
and Implementation, 2002.

[6] Regional Computer Forensics Laboratory Program, Annual Report
for Fiscal Year 2011, http://www.rcfl.gov/downloads/documents/RCFL
Nat Annual11.pdf

[7] Chapman Flack and Mikhail J. Atallah, Better logging through formal-
ity: Applying formal specification techniques to improve audit logs and
log consumers, Recent Advances in Intrusion Detection, 2000.

[8] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer,
A secure environment for untrusted helper applications, 6th Usenix
Security Symposium, 1996.

[9] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel, PeerReview:
Practical accountability for distributed systems, 21st ACM Symposium
on Operating Systems Principles, 2007.

[10] Andreas Haeberlen, A Case for the Accountable Cloud, 3rd ACM
SIGOPS International Workshop on Large-Scale Distributed Systems
and Middleware, 2009.

[11] R. Hagmann, Reimplementing the Cedar file system using logging and
group commit, 11th ACM Symposium on Operating Systems Principles,
1987.

[12] http://www.cms.hhs.gov/SecurityStandard/
[13] Kapil Jain and R. Sekar, User-level infrastructure for system call

interposition: A platform for intrusion detection and confinement, ISOC
Network and Distributed Systems Symposium, 2000.

[14] Renico Koen, The development of an open-source forensics platform,
M.Sc. Thesis, University of Pretoria, 2009.

[15] Raffael Marty, Cloud application logging for forensics, ACM Sympo-
sium on Applied Computing, 2011.

[16] NILFS, http://www.nilfs.org/en/
[17] Rafail Ostrovsky, Amit Sahai, and Brent Waters, Attribute-based en-

cryption with non-monotonic access structures, 14th ACM Conference
on Computer and Communications Security, 2007.

[18] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and B.
Chen, Locating system problems using dynamic instrumentation, Ot-
tawa Linux Symposium, 2005.

[19] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia
Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu, OpenDHT: A
public DHT service and its uses, ACM SIGCOMM, 2005.

[20] Muriel Roger and Jean Goubault-Larrecq, Log auditing through model
checking, 14th IEEE Computer Security Foundations Workshop, 2001.

[21] Keyun Ruan, Joe Carthy, Tahar Kechadi and Mark Crosbie, Cloud
forensics: an overview, Advances in Digital Forensics, Vol. 7, 2011.

[22] Bruce Schneier and John Kelsey, Secure audit logs to support computer
forensics, ACM Transactions on Information and System Security, 2(2),
pp. 159-176, May 1999.

[23] W. Olin Sibert, Auditing in a distributed system: Secure SunOS audit
trails, 11th National Computer Security Conference, 1988.

